Proyecciones Journal of Mathematics Vol. 36, N^o 3, pp. 423-434, September 2017. Universidad Católica del Norte Antofagasta - Chile

Positive periodic solutions for neutral functional differential systems

Ernest Yankson University of Cape Coast, Ghana and Samuel E. Assabil University of Cape Coast, Ghana Received : November 2015. Accepted : June 2017

Abstract

We study the existence of positive periodic solutions of a system of neutral differential equations. In the process we construct two mappings in which one is a contraction and the other compact. A Krasnoselskii's fixed point theorem is then used in the analysis.

Key words : Krasnoselskii, Neutral Functional differential System, Positive periodic solutions

AMS subject classifications: 34K20, 45J05, 45D05.

1. Introduction

In this paper we use a fixed point theorem due to Krasnoselskii to study the existence of positive periodic solutions of the system of neutral differential equations

$$(1.1)\frac{d}{dt}x(t) = A(t)x(t-\tau(t)) - C(t)\frac{d}{dt}x(t-\tau(t)) - F(t,x(t-\tau(t))),$$

where

 $C(t) = \operatorname{diag}[c_1(t), c_2(t), ..., c_n(t)], A(t) = \operatorname{diag}[a_1(t), a_2(t), ..., a_n(t)], \text{ and } F(t, x(t - \tau(t))) = [f_1(t, x_1(t - \tau(t))), f_2(t, x_2(t - \tau(t))), ..., f_n(t, x_n(t - \tau(t)))]^T.$

The scalar version of (1.1) arises in food-limited population models ([3], [4]-[7], [8], [9]) and blood cell models [2]. Recently, Raffoul, [21] obtained sufficient conditions for the existence of positive periodic solutions for the scalar neutral nonlinear differential equation

(1.2)
$$x'(t) = -a(t)x(t) + c(t)x'(t - g(t)) + q(t, x(t - g(t))).$$

In the current paper we extend the results in [21] to systems of equations. It must be noted that if $\tau(t) = 0$ in the first term on the right hand side of (1.1) and n = 1, then (1.1) reduces to (1.2). Thus, even for n = 1 our results obtained in this paper are more general than that obtained in [21]. Let $\mathbf{R}_{+} = [0, +\infty)$. For each $x = (x_1, x_2, x_3, ..., x_n)^T \in \mathbf{R}^n$, the norm of x is defined as $|x| = \sum_{j=1}^n |x_j|$. $\mathbf{R}_{+}^n = \{(x_1, x_2, x_3, ..., x_n)^T \in \mathbf{R}^n : x_j \ge 0, j =$ $1, 2, 3, ..., n\}$. We say that x is "positive" whenever $x \in \mathbf{R}_{+}^n$.

In this paper we make the following assumptions.

- (H1) There exist constants $\sigma_j > 0$ such that $\sigma_j < c_j(t), \ j = 1, ..., n$, for all $t \in [0, \omega]$.
- (H2) There exist constants α_j , such that $||c_j|| \leq \alpha_j$, j = 1, 2, ..., n.
- (H3) There exist continuous functions $h_j : \mathbf{R} \to \mathbf{R}, j = 1, ..., n$ such that

(1.3)
$$h_j(t+\omega) = h_j(t), \quad \int_0^\omega h_j(s)ds > 0.$$

- (H4) $0 < h_j(t) < 1$ for all $t \in [0, \omega], j = 1, ..., n$.
- (H5) $\tau'(t) > 1$ for all $t \in \mathbf{R}$.

2. Preliminaries

Let $\mathbf{S}_{\omega} = \{\phi \in C(\mathbf{R}, \mathbf{R}^n) : \phi(t + \omega) = \phi(t) \text{ for } t \in \mathbf{R} \}$, be endowed with the usual linear structure as well as the norm

$$||\phi|| = \sum_{j=1}^{n} |\phi_j|_0$$
, for $\phi = (\phi_1, \phi_2, ..., \phi_n) \in \mathbf{S}_{\omega}$,

where

$$|\phi_j|_0 = \sup_{t \in \mathbf{R}} |\phi_j(t)| = \sup_{t \in [0,\omega]} |\phi_j(t)|, \ j = 1, ..., n.$$

Then \mathbf{S}_{ω} is a Banach space.

We assume that all functions in (1.1) are continuous with respect to their arguments.

We also assume that for all $t \in \mathbf{R}$,

(2.1)
$$a_j(t+\omega) = a_j(t), \ j = 1, 2, ..., n$$

(2.2)
$$f_j(t+\omega, .) = f_j(t, .), \ j = 1, 2, ..., n$$

(2.3)
$$\tau(t+\omega) = \tau(t)$$

(2.4)
$$c_j(t+\omega) = c_j(t), \ j = 1, 2, ..., n$$

Let

(2.5)
$$G_j(t,u) = \frac{e^{\int_u^t h_j(s)ds}}{1 - e^{-\int_0^\omega h_j(s)ds}}, \ j = 1, 2, \dots n.$$

 Set

(2.6)
$$G(t, u) = \operatorname{diag}[G_1(t, u), G_2(t, u), ..., G_n(t, u)].$$

Also, let

$$M_{j} = \frac{e^{\int_{0}^{2\omega} |h_{j}(s)|ds}}{1 - e^{-\int_{0}^{\omega} h_{j}(s)ds}}, \ j = 1, 2, ...n$$

and

$$m_j = \frac{e^{-\int_0^{2\omega} |h_j(s)|ds}}{1 - e^{-\int_0^{\omega} h_j(s)ds}}, \ j = 1, 2, \dots n.$$

It is easy to see that for all $(t,s) \in [0,2\omega] \times [0,2\omega]$,

$$m_j \le G_j(t,s) \le M_j.$$

It is clear that $G_j(t + \omega, s + \omega) = G_j(t, s)$ and so $G(t + \omega, s + \omega) = G(t, s)$ for all $(t, s) \in \mathbf{R}^2$.

Let
$$\gamma = \max_{t \in \mathbf{R}} \left[\tau'(t) - 1 \right]^{-1}$$
 and $\gamma_* = \min_{t \in \mathbf{R}} \left[\tau'(t) - 1 \right]^{-1}$.

For the next lemma we consider

$$x'_{j}(t) = a_{j}(t)x_{j}(t-\tau(t)) - c_{j}(t)x'_{j}(t-\tau(t)) - f_{j}(t,x_{j}(t-\tau(t))),$$
(2.7) $j = 1, 2, ...n.$

Lemma 2.1. Suppose (2.1)-(2.4) hold. Suppose also that $\tau'(t) \neq 1$ for all $t \in \mathbf{R}$. If $x(t) \in \mathbf{S}_{\omega}$, then $x_j(t)$ is a solution of (2.7) if and only if

$$x_j(t) = \frac{c_j(t)}{\tau'(t) - 1} x_j(t - \tau(t)) + \int_t^{t+\omega} G_j(t, s) [f_j(s, x_j(s - \tau(s)))]$$

(2.8)
$$+ h_j(s)x_j(s) - r_j(s)x_j(s - \tau(s)) - a_j(s)x_j(s - \tau(s))]ds,$$

where $G_j(t, u)$ is defined by (2.5) and

(2.9)
$$r_j(s) = \frac{\left(c'_j(s) - c_j(s)h_j(s)\right)\left(1 - \tau'(s)\right) + \tau''(s)c_j(s)}{(1 - \tau'(s))^2}.$$

Proof.

Multiplying both sides of (2.7) by $e^{-\int_0^t h_j(s)ds}$ and then integrating from t to $t + \omega$ gives

$$x_{j}(t+\omega)e^{-\int_{0}^{t+\omega}h_{j}(s)ds} - x_{j}(t)e^{-\int_{0}^{t}h_{j}(s)ds} = \int_{t}^{t+\omega} \left[a_{j}(s)x_{j}(s-\tau(s)) - h_{j}(s)x_{j}(s) - c_{j}(s)x_{j}'(s-\tau(s)) - f_{j}(s,x_{j}(s-\tau(s)))\right]e^{-\int_{0}^{s}h_{j}(u)du}ds.$$

By dividing both sides of the above equation by $e^{-\int_0^t h_j(s)ds}$ and using the fact that $x_j(t+T) = x_j(t)$, in the above equation gives

$$x_{j}(t) \left[e^{-\int_{0}^{\omega} h_{j}(u)du} - 1 \right] = \int_{t}^{t+\omega} \left[a_{j}(s)x_{j}(s-\tau(s)) - h_{j}(s)x_{j}(s) - c_{j}(s)x_{j}'(s-\tau(s)) - h_{j}(s)x_{j}(s-\tau(s))) - h_{j}(s,x_{j}(s-\tau(s))) \right] e^{\int_{s}^{t} h_{j}(u)du} ds.$$
(2.10)

Rewrite

$$\int_{t}^{t+\omega} c_j(s) x'_j(s-\tau(s)) e^{\int_{s}^{t} h_j(u) du} ds$$

= $\int_{t}^{t+\omega} \frac{c_j(s) x'_j(s-\tau(s))(1-\tau'(s))}{(1-\tau'(s))} e^{\int_{s}^{t} h_j(u) du} ds.$

Integration by parts on the above integral with

$$U = \frac{c_j(u)}{1 - \tau'(u)} e^{\int_s^t h_j(u) du}, \text{ and } dV = x'_j(s - \tau(s))(1 - \tau'(s)) ds$$

gives

$$\int_{t}^{t+\omega} c_{j}(s) x'(s-\tau(s)) e^{\int_{s}^{t} h_{j}(u) du} ds$$

= $\frac{c_{j}(t)}{1-\tau'(t)} x_{j}(t-\tau(t)) \left[e^{-\int_{0}^{\omega} h_{j}(u) du} - 1 \right] - \int_{t}^{t+\omega} r_{j}(s) e^{\int_{s}^{t} h_{j}(u) du} x_{j}(s-\tau(s)) ds.$
(2.11)

Substituting (2.11) into (2.10) and dividing through by $e^{-\int_0^\omega h_j(u)du} - 1$ we obtain,

$$x_{j}(t) = \frac{c_{j}(t)}{\tau'(t) - 1} x_{j}(t - \tau(t)) + \int_{t}^{t+\omega} G_{j}(t,s) [f_{j}(s, x_{j}(s - \tau(s))) + h_{j}(s) x_{j}(s) - r_{j}(s) x_{j}(s - \tau(s)) - a_{j}(s) x_{j}(s - \tau(s))] ds.$$

This completes the proof.

We next state Krasnoselskii's Theorem which is the main mathematical tool in this paper in the following lemma.

Lemma 2.3 (Krasnoselskii's) Let \mathbf{M} be a closed convex nonempty subset of a Banach space (\mathbf{S}_{ω} , ||.||). Suppose that J and D map \mathbf{M} into \mathbf{S}_{ω} such that

(i) $x, y \in \mathbf{M}$, implies $Jx + Dy \in \mathbf{M}$,

(ii) D is continuous and $D\mathbf{M}$ is contained in a compact set,

(iii) J is a contraction mapping. Then there exists $z \in \mathbf{M}$ with z = Jz + Dz.

3. Main Results

For some non-negative constant L and a positive constant K define the set

$$\mathbf{M} = \{ \phi \in \mathbf{S}_{\omega} : L \le ||\phi|| \le K \text{ with } \frac{L}{n} \le |\phi_j|_0 \le \frac{K}{n}, \ j = 1, 2, ..., n. \},\$$

which is a closed convex and bounded subset of the Banach space \mathbf{S}_{ω} . We also assume that for all $s \in \mathbf{R}, \rho \in \mathbf{M}$

$$\frac{(1-\sigma_j\gamma_*)L}{m_j\omega n} \le f_j(s,\rho_j) + h_j(s)\rho_j - r_j(s)\rho_j - a_j(s)\rho_j \le \frac{(1-\alpha_j\gamma)K}{M_j\omega n}$$
(3.1)

where j = 1, 2, ...n. Define the map $D : \mathbf{M} \to \mathbf{S}_{\omega}$ by

$$(D\varphi)(t) = \int_{t}^{t+\omega} G(t,s)[F(s,\varphi(s-\tau(s))) + H(s)\varphi(s) - R(s)\varphi(s-\tau(s)) - A(s)(s)\varphi(s-\tau(s))]ds,$$
(3.2)

where $(D\varphi) = (D\varphi_1, D\varphi_2, ..., D\varphi_n)^T$, $H(s) = \text{diag}[h_1(s), ..., h_n(s)]$ and $R(s) = \text{diag}[r_1(s), ..., r_n(s)].$

Also, define $J: \mathbf{M} \to \mathbf{S}_{\omega}$ by

(3.3)
$$(J\varphi)(t) = \frac{1}{\tau'(t) - 1} C(t)\varphi(t - \tau(t)),$$

where $(J\varphi) = (J\varphi_1, J\varphi_2, ..., J\varphi_n)^T$.

Lemma 3.1. Suppose that (2.1)-(2.4), (3.1), (H1), (H2), (H3) and (H5) hold. Then the operator D is completely continuous on \mathbf{M} .

Proof. For $t \in [0, T]$ and for $\varphi \in \mathbf{M}$, we have by (3.1) that

$$\begin{aligned} |(D\varphi_j)(t)| &\leq |\int_t^{t+\omega} G_j(t,s)[f_j(s,\varphi_j(s-\tau(s))) + h_j(s)\varphi_j(s) \\ &- r_j(s)\varphi_j(s-\tau(s)) - a_j(s)(s)\varphi_j(s-\tau(s))]ds| \\ &\leq M_j \omega \frac{(1-\alpha_j\gamma)K}{M_j\omega n} = \frac{(1-\alpha_j\gamma)K}{n}. \end{aligned}$$

It follows that

$$|(D\varphi_j)|_0 \leq \frac{(1-\alpha_j\gamma)K}{n}.$$

Thus,

$$||(D\varphi)|| = \sum_{j=1}^{n} |(D\varphi_j)|_0$$
$$\leq \sum_{j=1}^{n} \frac{(1-\alpha^*)K}{n},$$

where $\alpha^* = \min_{1 \le j \le n} \left(\alpha_j \gamma \right)$. It therefore follows that

$$||(D\varphi)|| \leq K.$$

This shows that $D(\mathbf{M})$ is uniformly bounded.

We will next show that $D(\mathbf{M})$ is equi-continuous. Let $\varphi \in \mathbf{M}$. Then differentiating (3.2) with respect to t gives

$$(D\varphi_j)'(t) = \left[G_j(t,t+\omega) - G_j(t,t)\right] \left[f_j(t,\varphi_j(t-\tau(t))) + h_j(t)\varphi_j(t) - r_j(t)\varphi_j(t-\tau(t)) - a_j(t)\varphi_j(t-\tau(t))\right] + h_j(t)(D\varphi_j)(t).$$
(3.4)

Thus

$$|(D\varphi_j)'(t)| \leq \frac{(1-\alpha_j\gamma)KM_j}{\omega n} + ||h_j||\frac{(1-\alpha_j\gamma)K}{n}.$$

It follows that

$$|(D\varphi_j)'|_0 \leq \frac{(1-\alpha_j\gamma)KM_j}{\omega n} + |h_j|_0 \frac{(1-\alpha_j\gamma)K}{n}.$$

Hence

$$\begin{aligned} ||(D\varphi)'|| &= \sum_{j=1}^{n} |(D\varphi_j)|_0 \\ &\leq \sum_{j=1}^{n} \left[\frac{(1-\alpha^*)KM}{\omega n} + ||h|| \frac{(1-\alpha^*)K}{n} \right] \\ &\leq \frac{(1-\alpha^*)KM}{\omega} + ||h||(1-\alpha^*)K, \end{aligned}$$

where $M = \max\{M_1, M_2, ..., M_n\}$. Thus showing that $D(\mathbf{M})$ is equicontinuous. Then using Ascoli-Arzela theorem we obtain that D is a compact map. Due to the continuity of all the terms in (3.2), we have that D is continuous.

Lemma 3.2 Suppose that (H2) and (H5) hold. Then the operator J is a contraction.

Proof. For $\varphi, \psi \in \mathbf{M}$

$$(J\varphi_j) - (J\psi_j)|_0 \leq \alpha_j \gamma |\varphi_j - \psi_j|_0$$

Hence,

$$||(J\varphi_j) - (J\psi_j)|| \leq \sum_{j=1}^n |(J\varphi_j) - (J\psi_j)|_0$$

$$\leq \sum_{j=1}^n \alpha_j \gamma |\varphi_j - \psi_j|_0$$

$$\leq \alpha \sum_{j=1}^n |\varphi_j - \psi_j|_0 = \alpha ||\varphi - \psi||,$$

where $\alpha = \max{\{\alpha_1\gamma, ..., \alpha_n\gamma\}}$. This completes the proof of lemma 3.2.

Theorem 3.3 Suppose (H1), (H2), (H3), (H4), (H5), and (3.1) hold. Also suppose that the hypotheses of Lemma 3.2 and Lemma 3.3 hold. Then (1.1) has a positive periodic solution x satisfying $L \leq ||x|| \leq K$.

Proof. Let $\varphi, \psi \in \mathbf{M}$. Then

$$(J\psi_j)(t) + (D\varphi_j)(t) = \frac{1}{\tau'(t) - 1} c_j(t) \psi_j(t - \tau(t)) + \int_t^{t+\omega} G_j(t, s) [f_j(s, \varphi_j(s - \tau(s))) + h_j(s)\varphi_j(s) - r_j(s)\varphi_j(s - \tau(s)) - a_j(s)\varphi_j(s - \tau(s))] ds \leq \alpha_j \gamma \frac{K}{n} + M_j \int_t^{t+\omega} [f_j(s, \varphi_j(s - \tau(s))) + h_j(s)\varphi_j(s) - r_j(s)\varphi_j(s - \tau(s)) - a_j(s)\varphi_j(s - \tau(s))] ds \leq \alpha_j \gamma \frac{K}{n} + M_j \omega \frac{(1 - \alpha_j \gamma)K}{M_j n \omega} \leq \frac{K}{n}.$$

Thus,

$$(J\varphi)(t) + (H\psi)(t) \leq \sum_{j=1}^{n} \frac{K}{n} = K.$$

On the other hand,

$$(J\psi_j)(t) + (D\varphi_j)(t) = \frac{1}{\tau'(t) - 1} c_j(t)\psi_j(t - \tau(t)) + \int_t^{t+\omega} G_j(t,s)[f_j(s,\varphi_j(s - \tau(s))) + h_j(s)\varphi_j(s) - r_j(s)\varphi_j(s - \tau(s)) - a_j(s)\varphi_j(s - \tau(s))]ds \geq \sigma_j\gamma_*\frac{L}{n} + m_j\int_t^{t+\omega} [f_j(s,\varphi_j(s - \tau(s))) + h_j(s)\varphi_j(s) - r_j(s)\varphi_j(s - \tau(s)) - a_j(s)\varphi_j(s - \tau(s))]ds \geq \sigma_j\gamma_*\frac{L}{n} + m_j\omega\frac{(1 - \sigma_j\gamma_*)L}{m_jn\omega} \geq \frac{L}{n}.$$

Thus,

$$(J\varphi)(t) + (H\psi)(t) \geq \sum_{j=1}^{n} \frac{L}{n} = L.$$

This completes the proof of theorem 3.3.

References

- [1] T. A. Burton, Stability by Fixed Point Theory for functional Differential Equations, Dover, New York, (2006).
- [2] E. Beretta, F. Solimano, Y. Takeuchi, A mathematical model for drug administration by using the phagocytosis of red blood cells, J. Math Biol. 10 Nov;35 (1), pp. 1-19, (1996).
- [3] Y. Chen, New results on positive periodic solutions of a periodic integro-differential competition system, Appl. Math. Comput., 153 (2), pp. 557-565, (2004).
- [4] F. D. Chen, Positive periodic solutions of neutral Lotka-Volterra system with feedback control, Appl. Math. Comput., 162 (3), pp. 1279-1302, (2005).

- [5] F. D. Chen, Periodicity in a nonlinear predator-prey system with state dependent delays, Acta Math. Appl. Sinica English Series, 21 (1) (2005), pp. 49-60, (2005).
- [6] F. D. Chen, S. J. Lin, Periodicity in a logistic type system with several delays, Comput. Math. Appl., 48 (1-), pp. 35-44, (2004).
- [7] F. D. Chen, F. X. Lin, X. X. Chen, Sufficient conditions for the existence of positive periodic solutions of a class of neutral delay models with feedback control, Appl. Math. Comput., 158 (1), pp. 45-68, (2004).
- [8] M. Fan, K. Wang, Global periodic solutions of a generalized n-species Gilpin-Ayala competition model, Comput. Math. Appl., 40, pp. 1141-1151, (2000).
- [9] M. Fan, P. J. Y. Wong, Periodicity and stability in a periodic n-species Lotka-Volterra competition system with feedback controls and deviating arguments, Acta Math. Sinica, 19 (4), pp. 801-822, (2003).
- [10] M. E. Gilpin, F. J. Ayala, Global Models of Growth and Competition, Proc. Natl. Acad. Sci., USA 70, pp. 3590-3593, (1973).
- [11] A. Datta and J. Henderson, Differences and smoothness of solutions for functional difference equations, Proceedings Difference Equations 1, pp. 133-142, (1995).
- [12] J. Henderson and A. Peterson, Properties of delay variation in solutions of delay difference equations, Journal of Differential Equations 1, pp. 29-38, (1995).
- [13] D. Jiang, J. wei, B. Zhang, Positive periodic solutions of functional differential equations and population models, Electron. J. Diff. Eqns., Vol. No. 71, pp. 1-13, (2002).
- [14] M. A. Krasnosel'skii, Positive solutions of operator Equations Noordhoff, Groningen, (1964).
- [15] L. Y. Kun, Periodic solution of a periodic neutral delay equation, J. Math. Anal. Appl., 319, pp. 315-325, (2006).
- [16] Y. Li, Y. Kuang, Periodic solutions of periodic delay Lotka-Volterra equations and systems, J. Math. Anal. Appl., 255, pp. 260-280, (2001).

- [17] M. Maroun and Y. Raffoul, Periodic solutions in nonlinear neutral difference equations with functional delay, Journal of Korean Mathematical Society 42, pp. 255-268, (2005).
- [18] Y. Raffoul, Periodic solutions for scaler and vector nonlinear difference equations, Pan-American Journal of Mathematics 9, pp. 97-111, (1999).
- [19] Y. N. Raffoul, Periodic solutions for neutral nonlinear differential equations with delay, Electron. J. Diff. Eqns., Vol. No. 102, pp. 1-7, (2003).
- [20] Y. Raffoul, Positive periodic solutions in neutral nonlinear differential equations, Electronic Journal of Qualitative Theory of Differential Equations 16, pp. 1-10, (2007).
- [21] Y. Raffoul, Existence of positive periodic solutions in neutral nonlinear equations with functional delay, Rocky Mount. Journal of Mathematics 42(6), pp. 1983-1993, (2012).
- [22] N. Zhang, B. Dai, Y. Chen, Positive periodic solutions of nonautonomous functional differential systems, J. Math. Anal., 333, pp. 667-678, (2007).

Ernest Yankson

Department of Mathematics and Statistics University of Cape Coast Cape Coast, Ghana e-mail : ernestoyank@gmail.com

and

Samuel E. Assabil

Department of Mathematics and Statistics University of Cape Coast Cape Coast, Ghana e-mail : Sammyassabil@gmail.com