
On some generalized geometric difference
sequence spaces

Khirod Boruah
Rajiv Gandhi University, India

and
Bipan Hazarika

Rajiv Gandhi University, India
Received : October 2016. Accepted : April 2017

Proyecciones Journal of Mathematics
Vol. 36, No 3, pp. 373-395, September 2017.
Universidad Católica del Norte
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Abstract

In this paper we introduce the generalized geometric difference se-
quence spaces G

∞(∆
m
G ), c

G(∆m
G ), c

G
0 (∆

m
G ), and to prove that these are

Banach spaces. Then we prove some inclusion properties. Also we
compute their dual spaces.
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1. Introduction

In the area of non-Newtonian calculus pioneering work was carried out by
Grossman and Katz [9] which we call as multiplicative calculus. The oper-
ations of multiplicative calculus are called as multiplicative derivative and
multiplicative integral. We refer to M. Grossman [10], Grossman et al. [11],
Jane Grossman [12], Stanley [17], Bashirov et al. [1, 2] for different types of
Non-Newtonian calculi and its applications. An extension of multiplicative
calculus to functions of complex variables is handled by Bashirov and Rıza
[3], Uzer [20], Çakmak and Başar [5], Tekin and Başar[18], Türkmen and
Başar [19].

Nowadays geometric calculus is an alternative to the usual calculus of
Newton and Leibniz. It provides differentiation and integration tools based
on multiplication instead of addition. Almost all properties in Newtonian
calculus has an analog in multiplicative calculus. Generally speaking mul-
tiplicative calculus is a methodology that allows one to have a different
look at problems which can be investigated via calculus. In some cases,
mainly problems of price elasticity, multiplicative growth etc. the use of
multiplicative calculus is advocated instead of a traditional Newtonian one.
To know better about Non-Newtonian calculus, we must have idea about
different types of arithmetics and their generators.

2. α−generator and geometric real field

A generator is a one-to-one function whose domain is R (the set of real
numbers) and range is a set A ⊂ R. Each generator generates exactly one
arithmetic and each arithmetic is generated by exactly one generator. For
example, the identity function generates classical arithmetic, and exponen-
tial function generates geometric arithmetic. As a generator, we choose
the function α such that whose basic algebraic operations are defined as
follows:

α− additionx+̇y = α[α−1(x) + α−1(y)]
α− subtractionx−̇y = α[α−1(x)− α−1(y)]
α−multiplicationx×̇y = α[α−1(x)× α−1(y)]

α− division ˙x/y = α[α−1(x)/α−1(y)]
α− orderx<̇y ⇔ α−1(x) < α−1(y).

for x, y ∈ A, where A is a range of the function α.

If we choose exp as an α − generator defined by α(z) = ez for z ∈ R
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then α−1(z) = ln z and α− arithmetic turns out to geometric arithmetic.

α− additionx⊕ y = α[α−1(x) + α−1(y)] = e(lnx+ln y) = x.y
geometric addition

α− subtractionxª y = α[α−1(x)− α−1(y)] = e(lnx−ln y) = x÷ y, y 6= 0
geometric subtraction

α−multiplicationx¯ y = α[α−1(x)× α−1(y)] = e(lnx×ln y) = xln y

geometric multiplication

α− divisionx® y = α[α−1(x)/α−1(y)] = e(lnx÷ln y) = x
1
ln y , y 6= 1

geometric division.

It is obvious that ln(x) < ln(y) if x < y for x, y ∈ R+. That is, x <
y ⇔ α−1(x) < α−1(y) So, without loss of generality, we use x < y instead
of the geometric order x<̇y.

C. Türkmen and F. Başar [19] defined the sets of geometric integers,
geometric real numbers and geometric complex numbers Z(G),R(G) and
C(G), respectively, as follows:

Z(G) = {ex : x ∈ Z}
R(G) = {ex : x ∈ R} = R+\{0}
C(G) = {ez : z ∈ C} = C\{0}.

Remark 2.1. (R(G),⊕,¯) is a field with geometric zero 1 and geometric
identity e, since

(1). (R(G),⊕) is a geometric additive Abelian group with geometric zero
1,

(2). (R(G)\1,¯) is a geometric multiplicative Abelian group with geo-
metric identity e,

(3). ¯ is distributive over ⊕.

But (C(G),⊕,¯) is not a field, however, geometric binary operation ¯
is not associative inC(G). For, we take x = e1/4, y = e4 and z = e(1+iπ/2) =
ie. Then

(x¯ y)¯ z = e¯ z = z = ie
but x¯ (y ¯ z) = x¯ e4 = e.
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Let us define geometric positive real numbers and geometric negative
real numbers as follows:

R+(G) = {x ∈ R(G) : x > 1}
R−(G) = {x ∈ R(G) : x < 1}.

Then for all x, y ∈ R(G)
• x⊕ y = xy

• xª y = x/y

• x¯ y = xln y = ylnx

• x® y or x
yG = x

1
ln y , y 6= 1

• x1 ⊕ x2 ⊕ ...⊕ xn =G
Pn

i=1 xi = x1.x2...xn

• x2G = x¯ x = xlnx

• xpG = xln
p−1 x

• √xG = e(lnx)
1
2

• x−1G = e
1

log x

• x¯ e = x and x⊕ 1 = x

• en ¯ x = xn = x⊕ x⊕ .....(upto n number of x)

|x|G =

⎧⎪⎨⎪⎩
x, if x > 1
1, if x = 1
1
x , if x < 1

• Thus |x|G ≥ 1.

•
√
x2G

G
= |x|G

• |ey|G = e|y|

• |x¯ y|G = |x|G ¯ |y|G

• |x⊕ y|G ≤ |x|G ⊕ |y|G

• |x® y|G = |x|G ® |y|G

• |xª y|G ≥ |x|G ª |y|G

• 0G ª 1G ¯ (xª y) = y ª x , i.e. in short ª (xª y) = y ª x.
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2.1. Geometric Limit

According to Grossman and Katz [9], geometric limit of a positive valued
function defined in a positive interval is same to the ordinary limit. Here, we
define Geometric limit of a function with the help of geometric arithmetic
as follows:

A function f, which is positive in a given positive interval, is said to
tend to the limit l > 0 as x tends to a ∈ R, if, corresponding to any
arbitrarily chosen number > 1, however small(but greater than 1), there
exists a positive number δ > 1, such that

1 < |f(x)ª l|G <

for all values of x for which 1 < |xª a|G < δ. We write

G lim
x→a

f(x) = l or f(x)Gl.

Here,

|xª a|G < δ ⇒
¯̄
x
a

¯̄G
< δ

⇒ 1
δ <

x
a < δ

⇒ a
δ < x < aδ.

Similarly, |f(x)ª l|G < ⇒ l < f(x) < l .
Thus, f(x)Gl means that for any given positive real number > 1, no

matter however closer to 1,∃ a finite number δ > 1 such that f(x) ∈] l , l [
for every x ∈]aδ , aδ[. It is to be noted that lengths of the open intervals ]

a
δ , aδ[

and ] l , l [ decreases as δ and respectively decreases to 1. Therefore, as
decreases to 1, f(x) becomes closer and closer to l, as well as x becomes
closer and closer to a as δ decreases to 1. Hence, l is also the ordinary limit of
f(x). i.e. f(x)Gl⇒ f(x)→ l. In other words, we can say that G-limit and
ordinary limit are same for bipositive functions whose functional values as
well as arguments are positive in the given interval. Only difference is that
in geometric calculus we approach the limit geometrically, but in ordinary
calculus we approach the limit linearly.

A function f is said to tend to limit l as x tends to a from the left, if
for each > 1(however small), there exists δ > 1 such that |f(x)ª l|G <
when a/δ < x < a. In symbols, we then write

G lim
x→a−

f(x) = l or f(a− 1) = l.

Similarly, a function f is said to tend to limit l as x tends to a from
the right, if for each > 1 (however small), there exists δ > 1 such that
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|f(x)ª l|G < when a < x < aδ. In symbols, we then write

G lim
x→a+

f(x) = l or f(a+ 1) = l.

If f(x) is negative valued in a given interval, it will be said to tend to a
limit l < 0 if for > 1,∃δ > 1 such that f(x) ∈]l , l [ whenever x ∈]aδ , aδ[.

2.2. Geometric Continuity

A function f is said to be geometric continuous at x = a if

(i) f(a) i.e., the value of f(x) at x = a, is a definite number,

(ii) the Geometric-limit of the function f(x) as xGa exists and is equal
to f(a).

Alternatively, a function f is said to be Geometric-continuous at x = a,
if for arbitrarily chosen > 1, however small, there exists a number δ > 1
such that

|f(x)ª f(a)|G <

for all values of x for which, |xª a|G < δ.

On comparing the above definitions of limits and continuity, we can
conclude that a function f is geometric-continuous at x = a if

lim
x→a

f(x)

f(a)
= 1.

Let ∞, c and c0 be the linear spaces of complex bounded, convergent
and null sequences, respectively, normed by

||x||∞ = sup
k
|xk|.

It is easy to prove that

ω(G) = {(xk) : xk ∈ R(G) for all k ∈N}
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is a vector space over R(G) with respect to the algebraic operations ⊕
addition and ¯ multiplication

⊕ : ω(G)× ω(G)→ ω(G)
(x, y)→ x⊕ y = (xk)⊕ (yk) = (xkyk)

¯ : R(G)× ω(G)→ ω(G)
(α, y)→ α¯ y = α¯ (yk) = (αln yk),

where x = (xk), y = (yk) ∈ ω(G) and α ∈ R(G). Then

∞(G) = {x = (xk) ∈ ω(G) : supk∈N |xk|G <∞}
c(G) = {x = (xk) ∈ ω(G) : G limk→∞|xk ª l|G = 1}

c0(G) = {x = (xk) ∈ ω(G) : G limk→∞xk = 1}
p(G) = {x = (xk) ∈ ω(G) : G

P∞
k=0

³
|xk|G

´pG
<∞},

where G
P
is the geometric sum,

are classical sequence spaces over the field R(G). Also they have shown
that ∞(G), c(G) and c0(G) are Banach spaces with the norm

||x||G = sup
k
|xk|G, x = (x1, x2, x3, . . .) ∈ λ(G), λ ∈ { ∞, c, c0}.

Here, G lim is the geometric-limit. For the convenience, we denote

∞(G), c(G), c0(G), respectively as lG∞, c
G, cG0 .

In 1981, Kizmaz [13] introduced the notion of difference sequence spaces
using forward difference operator ∆ and studied the classical difference
sequence spaces ∞(∆), c(∆), c0(∆). Following C. Türkmen and F. Başar
[19], we defined geometric sequence space in [4] as follows:

G
∞(∆G) = {x = (xk) ∈ ω(G) : ∆Gx ∈ G

∞}, where ∆Gx = xk ª xk+1.

where ∆Gx = (∆Gxk) = (xk ª xk+1).

In [4], we introduced some theorems, definitions and basic results as
follows:

Theorem 2.1. The space G
∞ (∆G) is a normed linear space w.r.t. the

norm

kxkG∆G
= |x1|G ⊕ k∆GxkG∞ .(2.1)
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Theorem 2.2. The space G
∞ (∆G) is a Banach space w.r.t. the norm

k.kG∆G
.

Remark 2.2. The spaces

(a) cG(∆G) = {(xk) ∈ w(G) : ∆Gxk ∈ cG}

(b) cG0 (∆G) = {(xk) ∈ w(G) : ∆Gxk ∈ cG0 }

are Banach spaces with respect to the norm ||.||G∆G
. Also these spaces are

BK-spaces.

Lemma 2.3. The following conditions (a) and (b) are equivalent:

(a) sup
k
|xk ª xk+1|G <∞ i.e. sup

k
|∆Gxk|G <∞;

(b) (i) sup
k

ek
−1 ¯ |xk|G <∞ and

(ii) sup
k
|xk ª ek(k+1)

−1 ¯ xk+1|G <∞.

Lemma 2.4.

If sup
n

¯̄̄̄
¯G

nX
v=1

cv

¯̄̄̄
¯
G

≤ ∞ then sup
n

⎛⎝pn ¯
¯̄̄̄
¯G

∞X
k=1

cn+k−1
pn+k

G

¯̄̄̄
¯
G
⎞⎠ <∞.

Corollary 2.5. Let (pn) be monotonically increasing. If

sup
n

¯̄̄̄
¯G

nX
v=1

pv ¯ av

¯̄̄̄
¯
G

<∞ then sup
n

¯̄̄̄
¯̄pn ¯ G

∞X
k=n+1

ak

¯̄̄̄
¯̄
G

<∞.

Corollary 2.6.

If G

∞X
k=1

pk ¯ ak is convergent then lim
n

pn ¯ G

∞X
k=n+1

ak = 1.

Corollary 2.7. G
P∞

k=1 e
k ¯ ak is convergent iff G

P∞
k=1Rk is convergent

withen ¯Rn = O(e), where

Rn = G

∞X
k=n+1

ak.
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3. Main Results

Following Kizmaz [13], generalized sequence spaces ∞(∆m), c(∆m) and
c0(∆

m) were introduced by Et and Çolak [7]. Based on Et and Çolak
[7], Çolak and Et [6]. In [4] we introduced the geometric difference se-
quence. Now we define the following geometric generalized difference se-
quence spaces

G
∞(∆

m
G ) = {x = (xk) : ∆m

Gx ∈ G
∞},

cG(∆m
G ) = {x = (xk) : ∆m

Gx ∈ cG},
cG0 (∆

m
G ) = {x = (xk) : ∆m

Gx ∈ cG0 }.

where m ∈ N and

∆0Gx = (xk)
∆Gx = (∆Gxk) = (xk ª xk+1)
∆2Gx = (∆

2
Gxk) = (∆Gxk ª∆Gxk+1)

= (xk ª xk+1 ª xk+1 ⊕ xk+2)
= (xk ª e2 ¯ xk+1 ⊕ xk+1)

∆3Gx = (∆
3
Gxk) = (∆

2
Gxk ª∆2Gxk+1)

= (xk ª e3 ¯ xk+1 ⊕ e3 ¯ xk+1 ª xk+3)
................................................................

∆m
Gx = (∆

m
Gxk) = (∆

m−1
G xk ª∆m−1

G xk+1)

=
³
G
Pm

v=0(ªe)vG ¯ e(
m
v ) ¯ xk+v

´
, with (ªe)0G = e.

Then it can be easily proved that G
∞(∆

m
G ), c

G
∞(∆

m
G ) and cG0 (∆

m
G ) are

normed linear spaces with norm

kxkG∆G
=G

mX
i=1

|xi|G ⊕ k∆m
GxkG∞ .

Note: Throughout this paper often we write G
P

k instead of G
∞P
k=1

and lim
n

instead of lim
n→∞

.

Definition 3.1 (Geometric Associative Algebra). An associative al-
gebra is a vector space A ⊂ R(G), equipped with a bilinear map(called
multiplication)

¯ : A×A → A
(a, b) → a¯ b
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which is associative, i.e.

(a¯ b)¯ c = a¯ (b¯ c)∀a, b, c ∈ A.

An algebra is commutative if a¯ b = b¯ a for all a, b ∈ A. An algebra
is unital if there exists a unique e ∈ A such that e ¯ a = a¯ e = a for all
a ∈ A. A subalgebra of the algebra A is a subspace B that is closed under
multiplication, i.e. a¯ b ∈ A for all a, b ∈ B.

Definition 3.2 (Geometric Normed Algebra). A normed algebra is a
normed space A ⊂ ω(G) that is also an associative algebra, such that the
norm is submultiplicative: ka¯ bkG ≤ kakG ¯ kbkG for all a, b ∈ A. A
geometric algebra is a complete normed algebra, i.e., a normed algebra
which is also a Banach space with respect to its norm.

It is to be noted that the submultiplicativity of the norm means that
multiplication in normed algebras is jointly continuous, i.e. if anGa and
bnGb then (an) is bounded and

kan ¯ bn ª a¯ bkG = kan ¯ (bn ª b)⊕ (an ª a)¯ bkG
≤ kankG ¯ kbn ª bkG ⊕ kan ª akG ¯ kbkG

≤ sup
n
kankG

o
¯ kbn ª bkG ⊕ kbkG ¯ kan ª akGG1 as n→∞.

Definition 3.3 (Geometric Sequence Algebra). A geometric sequence
space E(G) is said to be sequence algebra if x¯y ∈ E(G) for x = (xk), y =
(yk) ∈ E(G). i.e. E(G) is closed under the geometric multiplication ¯
defined by

¯ : E(G)×E(G)→ E(G)

(x, y)→ x¯ y = (xk)¯ (yk) = (xln ykk )

for any two sequences x = (xk), y = (yk) ∈ E.

Since ω(G) is closed under geometric multiplication ¯, hence, ω(G) is
a sequence algebra. Also sequence algebra ω(G) is unital as keGkG = e,
where eG = (e, e, e, . . .) ∈ ω(G).

Definition 3.4 (Continuous Dual Space). If X is a normed space, a
linear map f : X → R(G) is called linear functional. f is called continuous
linear functional or bounded linear functional if kfkG <∞, where

kfkG = sup
n
|f(x)|G : kxkG ≤ e for all x ∈ X

o
.

Let X∗ be the collection of all bounded linear functionals on X. If
f, g ∈ X∗ and α ∈ R(G), we define (α ¯ f ⊕ g)(x) = α ¯ f(x) ⊕ g(x);X∗

is called the continuous dual space of X.
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Theorem 3.1. The sequence spaces G
∞(∆

m
G ), c

G(∆m
G ) and c

G
0 (∆

m
G ) are Ba-

nach spaces with the norm

kxkG∆G
=G

mX
i=1

|xi|G ⊕ k∆m
GxkG∞ .

Proof. Let (xn) be a Cauchy sequence in
G
∞(∆

m
G ), where xn = (x

(n)
i ) =

(x
(n)
1 , x

(n)
2 , x

(n)
3 , ....) for n ∈ N and x

(n)
k is the kth coordinate of xn. Then

kxn ª xlkG∆G
=G

mX
i=1

¯̄̄
x
(n)
i ª x

(l)
i

¯̄̄G
⊕ k∆m

G (xn ª xl)kG∞

= G
Pm

i=1

¯̄̄
x
(n)
i ª x

(l)
i

¯̄̄G
⊕ supk |∆m

G (xn ª xl)|G → 1 as l, n→∞.

(3.1)

Hence we obtain
|x(n)k ª x

(l)
k |G → 1

as n, l → ∞ and for each k ∈ N. Therefore (x
(n)
k ) = (x

(1)
k , x

(2)
k , x

(3)
k , . . .) is

a Cauchy sequence in R(G). Since R(G) is complete, (x
(n)
k ) is convergent.

Suppose limn x
(n)
k = xk, for each k ∈ N. Since (xn) is a Cauchy se-

quence, for each > 1, there exists N = N( ) such that kxn ª xlkG∆G
<

for all n, l ≥ N. Hence from (3.1)

G

mX
i=1

¯̄̄
x
(n)
i ª x

(l)
i

¯̄̄G
< and

¯̄̄̄
¯G

mX
v=0

(ªe)vG ¯ e(
m
v ) ¯ (x(n)k+v ª x

(l)
k+v)

¯̄̄̄
¯
G

<

for all k ∈N and n, l ≥ N. So we have

liml G
Pm

i=1

¯̄̄
x
(n)
i ª x

(l)
i

¯̄̄G
=G

Pm
i=1

¯̄̄
x
(n)
i ª xi

¯̄̄G
<

and liml

¯̄̄
G∆

m
G (x

(n)
k ª x

(l)
k )
¯̄̄G
=
¯̄̄
G∆

m
G (x

(n)
k ª xk)

¯̄̄G
< , ∀n ≥ N.

This implies kxn ª xkG∆G
< 2,∀n ≥ N, that is xn

G→ x as n → ∞,

where x = (xk). Now we have to show that x ∈ G
∞(∆

m
G ). We have
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|∆m
Gxk|

G =
¯̄̄
G
Pm

v=0(ªe)vG ¯ e(
m
v ) ¯ xk+v

¯̄̄G
=
¯̄̄
G
Pm

v=0(ªe)vG ¯ e(
m
v ) ¯ (xk+v ª xNk+v ⊕ xNk+v)

¯̄̄G
≤
¯̄̄
G
Pm

v=0(ªe)vG ¯ e(
m
v ) ¯ (xNk+v ª xk+v)

¯̄̄G
⊕
¯̄̄
G
Pm

v=0(ªe)vG ¯ e(
m
v ) ¯ xNk+v

¯̄̄G
≤
°°°xN ª x

°°°G
∆G

⊕
¯̄̄
∆m
G xNk

¯̄̄G
= O(e).

Therefore we obtain x ∈ G
∞(∆

m
G ). Hence

G
∞(∆

m
G ) is a Banach space.

2

It can be shown that cG(∆m
G ) and cG0 (∆

m
G ) are closed subspaces of

G
∞(∆

m
G ). Therefore these sequence spaces are Banach spaces with the same

norm defined for G
∞(∆

m
G ), above.

Now we give some inclusion relations between these sequence spaces.

Lemma 3.2.
(i) cG0 (∆

m
G )c

G
0 (∆

m+1
G );

(ii) cG(∆m
G )c

G(∆m+1
G );

(iii) G
∞(∆

m
G )

G
∞(∆

m+1
G ).

Proof. (i) Let x ∈ cG0 (∆
m
G ). Since¯̄̄

∆m+1
G xk

¯̄̄G
= |∆m

Gxk ª∆m
Gxk+1|

G

≤ |∆m
Gxk|

G ⊕ |∆m
Gxk+1|

G → 1 as k →∞.

therefore we obtain x ∈ cG0 (∆
m+1
G ). Thus cG0 (∆

m
G ) ⊂ cG0 (∆

m+1
G ).

This inclusion is strict. For let

x = (ek
m
) = (e, e2

m
, e3

m
, e4

m
, . . . , ek

m
, . . .).

Then x ∈ cG0 (∆
m+1
G ) as (m+1)th geometric difference of ek

m
is 1 (geometric

zero). But x /∈ cG0 (∆
m
G ) as m

th geometric difference of ek
m
is a constant.

Hence the inclusion is strict.
The proofs of (ii) and (iii) are similar to that of (i). 2

Lemma 3.3. (i) cG0 (∆
m
G )c

G(∆m
G );
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(ii) cG(∆m
G )

G
∞(∆

m
G ).

Proofs are similar to that of Lemma 3.2.

Furthermore, since the sequence spaces G
∞(∆

m
G ), c

G(∆m
G ) and cG0 (∆

m
G )

are Banach spaces with continuous coordinates, that is, kxn ª xkG∆G
→ 1

implies
¯̄̄
x
(n)
k ª xk

¯̄̄G
→ 1,∀k ∈N as n→∞, these are also BK-spaces.

Remark 3.1. It can be easily proved that cG0 is a sequence algebra. But
in general, G

∞(∆
m
G ), c

G(∆m
G ) and c

G
0 (∆

m
G ) are not sequence algebra. For let

x = (ek), y = (ek
m−1

). Clearly x, y ∈ cG0 (∆
m
G ). But

x¯ y =
³
ek ¯ ek

m−1´
=
³
ek

m
´
/∈ cG0 (∆

m
G ) for m ≥ 2,

since mth geometric difference of ek
m
is constant.

Let us define the operator

D : G
∞(∆

m
G )→ G

∞(∆
m
G ) as

Dx = (1, 1, 1, . . . , 1, xm+1, xm+2, . . .), where
x = (x1, x2, x3, . . . , xm, xm+1, . . .) ∈ G

∞(∆
m
G ). It is trivial that D is a

bounded linear operator on G
∞(∆

m
G ). Furthermore, the set

D
h
G
∞(∆

m
G )
i
= D G

∞(∆
m
G ) = {x = (xk) : x ∈ G

∞(∆
m
G ), x1 = x2 = . . . = xm = 1}

is a subspace of G
∞(∆

m
G ) and

kxkG∆G
= |x1|G ⊕ |x2|G ⊕ ...⊕ |xm|G ⊕ k∆m

Gxk
G
∞

= 1⊕ 1⊕ ...⊕ 1⊕ k∆m
Gxk

G
∞

= k∆m
Gxk

G
∞

kxkG∆G
= k∆m

Gxk
G
∞ in D G

∞(∆
m
G ).

Now let us define

∆m : D G
∞(∆

m
G )→ G

∞

∆m
Gx = y = (∆m−1

G xk ª∆m−1
G xk+1).(3.2)
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∆m
G is a linear homomorphism: Let x, y ∈ D G

∞(∆
m
G ). Then

∆m
G (xk ⊕ yk) =G

Pm
v=0(ªe)vG ¯ e(

m
v ) ¯ (xk ⊕ yk)

=G
Pm

v=0(ªe)vG ¯ e(
m
v ) ¯ xk ⊕G

Pm
v=0(ªe)vG ¯ e(

m
v ) ¯ yk

= ∆m
Gxk ⊕∆m

Gyk
∆m
G (x⊕ y) = ∆m

Gx⊕∆m
Gy. For α ∈ R(G)

∆m
G (α¯ x) = (∆m

Gα¯ xk)

=
³
G
Pm

v=0(ªe)vG ¯ e(
m
v ) ¯ α¯ xk

´
=
³
α¯G

Pm
v=0(ªe)vG ¯ e(

m
v ) ¯ xk

´
= α¯∆m

G ¯ x.

This implies that ∆m
G is a linear homomorphism. Hence D

G
∞(∆

m
G ) and

G
∞ are equivalent as topological spaces [16]. ∆m

G and (∆m
G )
−1 are norm

preserving and

k∆m
GkG∞ =

°°°(∆m
G )
−1
°°°G
∞
= e.

Let
h
G
∞
i0
and

h
D G

∞(∆
m
G )
i0
denote the continuous duals of G

∞ andD
G
∞(∆

m
G ),

respectively.
It can be shown that

s :
h
D G

∞(∆
m
G )
i0
→
h

G
∞
i0

f∆ → f∆ ◦ (∆m
G )
−1 = f

is a linear isometry. So
h
D G

∞(∆
m
G )
i0
is equivalent to

h
G
∞
i0
.

In the same way, it can be shown that DcG(∆m
G ) and DcG0 (∆

m
G ) are

equivalent as topological space to cG and cG0 , respectively. Alsoh
DcG(∆m

G )
i0
∼=
h
DcG0 (∆

m
G )
i0
∼= G

1 ,

where G
1 = {x = (xk) :G

P
k |xk|G <∞}.

Lemma 3.4. The following conditions (a) and (b) are equivalent:
(a) supk |xk ª xk+1|G <∞ i.e. supk |∆Gxk|G <∞;
(b)

(i) supk e
k−1 ¯ |xk|G <∞ and

(ii) supk |xk ª ek(k+1)
−1 ¯ xk+1|G <∞.
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Proof. Let (a) be true i.e. supk |xk ª xk+1|G <∞.

Now |x1 ª xk+1|G =
¯̄̄
G
Pk

v=1(xv ª xv+1)
¯̄̄G

=
¯̄̄
G
Pk

v=1∆Gxv
¯̄̄G

≤ G
Pk

v=1 |∆Gxv|G = O(ek)
and |xk|G = |x1 ª x1 ⊕ xk+1 ⊕ xk ª xk+1|G

≤ |x1|G ⊕ |x1 ª xk+1|G ⊕ |xk ª xk+1|G = O(ek).

This implies that supk e
k−1 ¯ |xk|G < ∞. This completes the proof of

b(i).

Again

supk

¯̄̄
xk ª ek(k+1)

−1 ¯ xk+1
¯̄̄G
=
¯̄̄n
e(k+1) ¯ e(k+1)

−1o¯ xk ª ek(k+1)
−1 ¯ xk+1

¯̄̄G
=
¯̄̄n
(ek ⊕ e)¯ e(k+1)

−1o¯ xk ª ek(k+1)
−1 ¯ xk+1

¯̄̄G
=
¯̄̄n
ek(k+1)

−1 ¯ xk ⊕ e(k+1)
−1 ¯ xk

o
ª ek(k+1)

−1 ¯ xk+1
¯̄̄G

=
¯̄̄n
ek(k+1)

−1 ¯ (xk ª xk+1)
o
⊕
n
e(k+1)

−1 ¯ xk
o¯̄̄G

≤ ek(k+1)
−1 ¯ |xk ª xk+1|G ⊕ e(k+1)

−1 ¯ |xk|G
= O(e).

Therefore supk |xk ª ek(k+1)
−1 ¯ xk+1|G <∞. This completes the proof

of b(ii).
Conversely let (b) be true. Then¯̄̄

xk ª ek(k+1)
−1 ¯ xk+1

¯̄̄G
=
¯̄̄
e(k+1)(k+1)

−1 ¯ xk ª ek(k+1)
−1 ¯ xk+1

¯̄̄G
≥ ek(k+1)

−1 ¯ |xk ª xk+1|G ª e(k+1)
−1 ¯ |xk|G

i.e. ek(k+1)
−1 ¯ |xk ª xk+1|G ≤ e(k+1)

−1 ¯ |xk|G⊕
¯̄̄
xk ª ek(k+1)

−1 ¯ xk+1
¯̄̄G

.

Thus sup
k
|xk ª xk+1|G <∞ as b(i) and b(ii) hold. 2

Corollary 3.5. The following conditions (a) and (b) are equivalent

(a) sup
k

¯̄̄
∆m−1
G xk ª∆m−1

G xk+1
¯̄̄G

<∞;

(b) (i) sup
k

ek
−1 ¯

¯̄̄
∆m−1
G xk

¯̄̄G
<∞

(ii) supk

¯̄̄
∆m−1
G xk ª ek(k+1)

−1 ¯∆m−1
G xk+1

¯̄̄G
<∞.
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Proof. By putting ∆m−1
G xk instead of xk in Lemma 3.4, results are

obvious. 2

Lemma 3.6.

sup
k

ek
−i ¯ |∆Gxk|G <∞ implies sup

k
e
−(i+1) ¯ |xk|G <∞, ∀i ∈N.

Proof. For i = 1 it is obvious from the Lemma 3.4. Let the result be
true for i = n. i.e. supk e

k−n ¯ |∆Gxk|G <∞. Then

|xk ª xk+1|G = |G
Pk

v=1∆Gxk|G

≤G
Pk

v=1 |∆Gxk|G = O
µ³

ek
n
´k¶

= O
³
ek

(n+1)
´
,

as supk e
k−n ¯ |∆Gxk|G <∞

and –xk|G = |xk ⊕ x1 ª x1 ⊕ xk+1 ª xk+1|G

≤ |x1|G ⊕ |x1 ª xk+1|G ⊕ |xk ª xk+1|G = O
³
ek

(n+1)
´
.

From this we obtain, supk e
k−(n+1)¯|xk|G <∞. Thus supk e

k−(i+1)¯|xk|G <
∞, ∀i ∈ N. 2

Lemma 3.7.

supk e
k−i ¯

¯̄̄
∆m−1
G xk

¯̄̄G
<∞ implies

supk e
−(i+1) ¯ |∆m−(i+1)

G xk|G <∞, ∀i,m ∈N and 1 ≤ i < m.

Proof. Putting ∆m−i
G xk instead of ∆Gxk in Lemma 3.6, the result is

immediate. 2

Corollary 3.8. supk e
k−1 ¯

¯̄̄
∆m−1
G xk

¯̄̄
<∞ implies supk e

k−m ¯ |xk| <∞.

Proof. In Lemma 3.7, putting i = 1, we get

supk e
k−1 ¯

¯̄̄
∆m−1
G xk

¯̄̄G
<∞⇒ supk e

k−2 ¯
¯̄̄
∆m−2
G xk

¯̄̄G
<∞

Similarly,

supk e
k−2 ¯

¯̄̄
∆m−2
G xk

¯̄̄G
<∞⇒ supk e

k−3 ¯
¯̄̄
∆m−3
G xk

¯̄̄G
<∞.

Continuing the process we get

supk e
k−(m−1) ¯

¯̄
∆1Gxk

¯̄G
<∞⇒ supk e

k−m ¯
¯̄
∆0Gxk

¯̄G
<∞

Thus

supk e
k−1 ¯

¯̄̄
∆m−1
G xk

¯̄̄G
<∞⇒ supk e

k−m ¯ |xk|G <∞.

2

Corollary 3.9. If x ∈ G
∞(∆

m
G ) then supk e

k−m ¯ |xk|G <∞.
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Proof.

x ∈ G
∞(∆

m
G )⇒ ∆m

Gx ∈ G
∞

⇒ supk |∆m
Gxk|G <∞

⇒ supk |∆m−1
G xk ª∆m−1

G xk+1|G <∞
⇒ supk e

k−1 ¯ |∆m
Gxk|G <∞ by Corollary 3.5

⇒ supk e
k−m ¯ |xk|G <∞ by Corollary 3.8.

2

4. α−, β−, γ− duals

Definition 4.1. [8, 14, 15, 16] If X is a sequence space, it is defined that

(i) Xα = {a = (ak) :
∞P
k=1

|akxk| <∞, for eachx ∈ X};

(ii) Xβ = {a = (ak) :
∞P
k=1

akxk is convergent, for eachx ∈ X};

(iii) Xγ = {a = (ak) : sup
n
|

nP
k=1

akxk| <∞, for eachx ∈ X}.

Then Xα,Xβ and Xγ are called α−dual (or Köthe-Toeplitz dual),
β−dual (or generalized Köthe-Toeplitz dual) and γ−dual spaces of X, re-

spectively. Then Xα ⊂ Xβ ⊂ Xγ . If X ⊂ Y, then Y †⊂X†, for † = α, β or γ.
It is clear that X ⊂ (Xα)α = Xαα. If X = Xαα then X is called α−space.
α−space is also called a Köthe space or a perfect sequence space.

Then we defined and have proved that [4]³
s G
∞(∆G)

´α
=

½
a = (ak) : G

∞P
k=1

ek ¯ |ak|G <∞
¾

³
s G
∞(∆G)

´β
=

½
a = (ak) : G

∞P
k=1

ek ¯ ak is convergent with G

∞P
k=1
|Rk|G <∞

¾
³
s G
∞(∆G)

´γ
=

½
a = (ak) : sup

n
|G

nP
k=1

ek ¯ ak|G <∞,G
∞P
k=1
|Rk|G <∞

¾
,

where Rk = G

∞P
n=k+1

an and s : G
∞(∆G) → G

∞(∆G), x → sx = y =

(1, x2, x3, . . .).

Theorem 4.1. [4]

(i) If D1 =

(
a = (ak) : G

∞X
k=1

ek ¯ |ak|G <∞
)
then

³
s G
∞(∆G)

´α
= D1.



390 Khirod Boruah and Bipan Hazarika

(ii) If D2 =

(
a = (ak) : G

∞X
k=1

ek ¯ ak is convergent with G

∞X
k=1

|Rk|G <∞
)
.

Then
³
s G
∞(∆G)

´β
= D2.

(iii) If D3 =

⎧⎨⎩a = (ak) : supn
¯̄̄̄
¯G

nX
k=1

ek ¯ ak

¯̄̄̄
¯
G

<∞,G

∞X
k=1

|Rk|G <∞

⎫⎬⎭ .

Then
³
s G
∞(∆G)

´γ
= D3.

Lemma 4.2. Let U1 = {a = (ak) : G
P

k e
km ¯ |ak|G < ∞}. Thenh

D G
∞(∆

m
G )
iα
= U1.

Proof. Let a ∈ U1, then using Corollary 3.5, for x ∈ D G
∞(∆

m
G ), we have

G
P
k
|ak ¯ xk|G = G

P
k

n
ek

m ¯ |ak|G
o
¯
n
ek
−m ¯ |xk|G

o
<∞ by Corollary

(3.8).

This implies that a ∈
h
D G

∞(∆
m
G )
iα

. Therefore

U1 ⊆
h
D G

∞(∆
m
G )
iα

.(4.1)

Conversely, let a ∈
h
D G

∞(∆
m
G )
iα

. Then G
P
k
|ak ¯ xk|G < ∞ (by defi-

nition of α−dual) for x ∈ D G
∞(∆

m
G ). So we take

xk =
1, if k ≤ m
ek

m
, if k > m

(4.2)

Then x = (1, 1, 1, ..., 1, e(m+1)
m
, e(m+2)

m
, ...) ∈ D G

∞(∆
m
G ). Therefore

G
P∞

k=1 e
km ¯ |ak|G =G

Pm
k=1 e

km ¯ |ak|G ⊕ G
P∞

k=m+1 e
km ¯ |ak|G

=G
Pm

k=1 e
km ¯ |ak|G ⊕ G

P∞
k=1 |ak ¯ xk|G <∞

since ak ¯ xk = 1(the geometric zero) for k = 1, 2, . . . ,m.

Therefore a ∈ U1. This impliesh
D G

∞(∆
m
G )
iα
⊆ U1.(4.3)

Then from (4.1) and (4.3), we get
h
D G

∞(∆
m
G )
iα
= U1. 2

Lemma 4.3. h
D G

∞(∆
m
G )
iα
=
h
DcG(∆m

G )
iα

.
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Proof. SinceDcG(∆m
G ) ⊆ D G

∞(∆
m
G ), hence

h
D G

∞(∆
m
G )
iα
⊆
h
DcG(∆m

G )
iα

.

Again let a ∈
h
DcG(∆m

G )
iα

. Then G
P

k |ak ¯ xk|G < ∞ for each x ∈
DcG(∆m

G ). If we take x = (xk) which is defined in (4.2), we get

G

X
k

ek
m ¯ |ak|G = G

mX
k=1

ek
m ¯ |ak|G ⊕ G

X
k

|ak ¯ xk|G <∞.

This implies that a ∈
h
D G

∞(∆
m
G )
iα

. Thush
D G

∞(∆
m
G )
iα
=
h
DcG(∆m

G )
iα

.

2

Lemma 4.4.

(i)
h
G
∞(∆

m
G )
iα
=
h
D G

∞(∆
m
G )
iα

.

(ii)
h
cG(∆m

G )
iα
=
h
DcG(∆m

G )
iα

.

Proof. (i) Since D G
∞(∆

m
G ) ⊆ G

∞(∆
m
G ), so

h
G
∞(∆

m
G )
iα
⊆
h
D G

∞(∆
m
G )
iα

.

Let a ∈
h
D G

∞(∆
m
G )
iα
and x ∈ G

∞(∆
m
G ). From Corollary 3.9, we have

G

X
k

|ak ¯ xk|G = G

X
k

ek
m ¯ |ak|G ¯ (ek

−m ¯ |xk|G) <∞.

Hence a ∈
h
G
∞(∆

m
G )
iα

.

(ii) DcG(∆m
G ) ⊆ cG(∆m

G ) implies
h
cG(∆m

G )
iα
⊆
h
DcG(∆m

G )
iα

.

Let a ∈
h
DcG(∆m

G )
iα
and x ∈ cG(∆m

G ). From Corollary 3.9, we have

G

X
k

|ak ¯ xk|G = G

X
k

ek
m ¯ |ak|G ¯ (ek

−m ¯ |xk|G) <∞

for x ∈ cG(∆m
G ) ⊆ lG∞(∆

m
G ). Hence a ∈

h
cG(∆m

G )
iα

. This completes the

proof. 2

Theorem 4.5. Let X stand for G
∞ or cG. Then

[X(∆m
G )]

α = {a = (ak) : G

X
k

ek
m ¯ |ak|G <∞}.
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Proof.h
G
∞(∆

m
G )
iα
=
h
D G

∞(∆
m
G )
iα

by Lemma 4.4

= {a = (ak) :G
P

k e
km ¯ |ak|G <∞} by Lemma 4.2.

Againh
cG(∆m

G )
iα
=
h
DcG(∆m

G )
iα

by Lemma 4.4

=
h
D G

∞(∆
m
G )
iα

by Lemma 4.3

= {a = (ak) : G
P

k e
km ¯ |ak|G <∞} by Lemma 4.2.

2

Corollary 4.6. For X = G
∞ or cG, then

[X(∆G)]
α = {a = (ak) : G

X
k

ek ¯ |ak|G <∞}, and

h
X(∆2G)

iα
= {a = (ak) : G

X
k

ek
2 ¯ |ak|G <∞}.

Proof. Putting m = 1 and m = 2 in Theorem 4.5, the results follow. 2

Theorem 4.7. Let X stand for G
∞ or cG and U2 = {a = (ak) : sup

k
ek
−m ¯

|ak|G <∞}. Then [X(∆m
G )]

αα = U2.

Proof. Let a ∈ U2 and x ∈ [X(∆m
G )]

α , then by definition of U2 and by
Lemma 4.2, we get

G
P

k |ak ¯ xk|G =G
P

k e
km ¯ |xk|G ¯ ek

−m ¯ |ak|G
≤G

P
k e

km ¯ |xk|G ¯ supk ek
−m ¯ |ak|G <∞.

Hence a ∈ [X(∆m
G )]

αα .
Conversely, let a ∈ [X(∆m

G )]
αα and a /∈ U2. Then we must have

sup
k

ek
−m ¯ |ak|G =∞.

Hence there exists a strictly increasing sequence (ek(i)) of geometric
integers (see [19]), where k(i) is a strictly increasing sequence of positive
integers such that

e[k(i)]
−m ¯ |ak(i)|G > ei

m
.
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Let us define the sequence x by

xk =

⎧⎨⎩
³
|ak(i)|G

´−1G
, k = k(i)

1, k 6= k(i).

where
³
|ak(i)|G

´−1G
is the geometric inverse of |ak(i)|G so that |ak(i)|G ¯³

|ak(i)|G
´−1G

= e.

Then we have

G

X
k

ek
m ¯ |xk|G = G

X
i

e[k(i)]
m ¯

h
|ak(i)|G

i−1G ≤ ei
−m

<∞.

Hence x ∈ [X(∆m
G )]

α and G
P

k |ak ¯ xk|G =
P

e =∞. This is a contradic-
tion as a ∈ [X(∆m

G )]
αα . Hence a ∈ U2. 2

Corollary 4.8. For X = G
∞ or cG, thenh

X(∆2G)
iαα

= {a = (ak) : sup
k

ek
−2 ¯ |ak|G <∞}.

Proof. In Theorem (4.7), putting m = 2 we obtain the result. 2

Corollary 4.9. The sequence spaces G
∞(∆

m
G ) and c

G(∆m
G ) are not perfect.

Proof. Proof is trivial as Xαα 6= X for X = G
∞(∆

m
G ) or c

G(∆m
G ). 2

5. Conclusion

In this paper, we have defined geometric generalized difference sequence
space and obtained some inclusion results between these spaces. We think
that geometric calculus may especially be useful as a mathematical tool for
economics, management and finance.
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