
Edge fixed monophonic number of a graph

P. Titus
University College of Engineering, India

and
S. Eldin Vanaja

University College of Engineering, India
Received : July 2015. Accepted : May 2017

Proyecciones Journal of Mathematics
Vol. 36, No 3, pp. 363-372, September 2017.
Universidad Católica del Norte
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Abstract

For an edge xy in a connected graph G of order p ≥ 3, a set S ⊆ V (G) is an
xy-monophonic set of G if each vertex v ∈ V (G) lies on an x − u monophonic path
or a y − u monophonic path for some element u in S. The minimum cardinality of
an xy-monophonic set of G is defined as the xy-monophonic number of G, denoted by
mxy(G). An xy-monophonic set of cardinality mxy(G) is called a mxy-set of G. We
determine bounds for it and find the same for special classes of graphs. It is shown that
for any three positive integers r, d and n ≥ 2 with 2 ≤ r ≤ d, there exists a connected
graph G with monophonic radius r, monophonic diameter d and mxy(G) = n for some
edge xy in G.
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1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph without loops or
multiple edges. The order and size of G are denoted by p and q respectively. For basic
graph theoretic terminology we refer to [1, 2]. For vertices x and y in a connected graph G,
the distance d(x, y) is the length of a shortest x − y path in G. An x − y path of length
d(x, y) is called an x− y geodesic. The neighborhood of a vertex v is the set N(v) consisting
of all vertices u which are adjacent with v. A vertex v is a simplicial vertex if the subgraph
induced by its neighbors is complete. A non-separable graph is connected, non-trivial, and
has no cut-vertices. A block of a graph is a maximal non-separable subgraph. A connected
block graph is a connected graph in which each of its blocks is complete. A caterpillar is a
tree for which the removal of all the end vertices gives a path.

A chord of a path P is an edge joining two non-adjacent vertices of P . A path P
is called monophonic if it is a chordless path. The closed intervel Im[x, y] consists of all
vertices lying on some x− y monophonic of G. For any two vertices u and v in a connected
graph G, the monophonic distance dm(u, v) from u to v is defined as the length of a longest
u − v monophonic path in G. The monophonic eccentricity em(v) of a vertex v in G is
em(v) = max {dm(v, u) : u ∈ V (G)}. The monophonic radius, radm(G) of G is radm {G}
= min {em(v) : v ∈ V (G)} and the monophonic diameter, diamm {G} of G is diamm {G}
= max {em(v) : v ∈ V (G)}. The monophonic distance was introduced in [3] and further
studied in [4]. The concept of vertex monophonic number was introduced by Santhakumaran
and Titus [5]. A set S of vertices of G is an x-monophonic set if each vertex v of G lies
on an x− y monophonic path in G for some element y in S. The minimum cardinality of
an x-monophonic set of G is defined as the x-monophonic number of G and is denoted by
mx(G) or simply mx. An x-monophonic set of cardinality mx(G) is called a mx-set of G.
The following theorems will be used in the sequel.

Theorem 1.1. [2] Let v be a vertex of a connected graph G. The following statements are
equivalent:

i) v is a cut-vertex of G.

ii) There exist vertices u and w distinct from v such that v is on every u−w path.

iii) There exists a partition of the set of vertices V −{v} into subsets U and W such that
for any vertices u ∈ U and w ∈W , the vertex v is on every u−w path.

Theorem 1.2. [2] Every non-trivial connected graph has at least two vertices which are
not cut-vertices.

Theorem 1.3. [2] Let G be a connected graph with at least three vertices. The following
statements are equivalent:

i) G is a block.

ii) Every two vertices of G lie on a common cycle.

Throughout this paper G denotes a connected graph with at least three vertices.
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2. Edge fixed monophonic number

Definition 2.1. Let e = xy be any edge of a connected graph G of order at least three. A
set S of vertices of G is an xy-monophonic set if every vertex of G lies on either an x− u
monophonic path or a y−u monophonic path in G for some element u in S. The minimum
cardinality of an xy-monophonic set of G is defined as the xy-monophonic number of G and
is denoted by mxy(G) or me(G). An xy-monophonic set of cardinality mxy(G) is called a
mxy-set or me-set of G.

Example 2.2. For the graph G given in Figure 2.1, the minimum edge fixed monophonic
sets and the edge fixed monophonic numbers are given in Table 2.1.

Theorem 2.3. For any edge xy in a connected graph G of order at least three, the vertices
x and y do not belong to any minimum xy-monophonic set of G.

Proof. Suppose that x belongs to a minimum xy-monophonic set, say S, of G. Since
G is a connected graph with at least three vertices and xy in an edge, it follows from the
definition of an xy-monophonic set that S contains a vertex v different from x and y. Since
the vertex x lies on every x − v monophonic path in G, it follows that T = S − {x} is an
xy-monophonic set of G, which is a contradiction to S a minimum xy-monophonic set of
G. Similarly, y does not belong to any minimum xy-monophonic set of G. 2
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Table 2.1: The Edge Fixed Monophonic Number of a Graph
Edge minimum e-monophonic
e e-monophonic sets number

v1v2 {v4, v6}, {v5, v6} 2

v2v3 {v4, v6}, {v5, v6} 2

v3v4 {v2, v6} 2

v4v5 {v2, v6} 2

v5v1 {v2, v6} 2

v1v6 {v2, v4} 2

v1v3 {v2, v6, v4}, {v2, v6, v5} 3

Theorem 2.4. Let xy be any edge of a connected graph G of order at least three. Then

i) every simplicial vertex ofG other than the vertices x and y (whether x or y is simplicial
or not) belongs to every mxy-set.

ii) no cut-vertex of G belongs to any mxy-set.

Proof. (i) By Theorem 2.3, the vertices x and y do not belong to any mxy-set. So, let
u 6= x, y be a simplicial vertex of G. Let S be a mxy-set of G such that u /∈ S. Then u is an
internal vertex of either an x − v monophonic path or a y − v monophonic path for some
element v in S. Without loss of generality, let P be an x− v monophonic path with u is an
internal vertex. Then both the neighbors of u on P are not adjacent and hence u is not a
simplicial vertex, which is a contradiction.
(ii) Let v be a cut-vertex of G. Then by Theorem 1.1, there exists a partition of the set of
vertices V − {v} into subsets U and W such that for any vertex u ∈ U and w ∈ W , the
vertex v lies on every u− w path. Let S be a mxy-set of G. We consider three cases.

Case (i): Both x and y belong to U . Suppose that S ∩ W = ∅. Let w1 ∈ W . Since
S is an xy-monophonic set, there exists an element z in S such that w1 lies on either an
x− z monophonic path or a y− z monophonic path in G. Suppose that w1 lies on an x− z
monophonic path P : x = z0, z1, . . . , w1, . . . , zn = z in G. Then the x−w1 subpath of P and
w1 − z subpath of P both contain v so that P is not a path in G, which is a contradiction.
Hence S ∩W 6= ∅. Let w2 ∈ S ∩W . Then v is an internal vertex of any x−w2 monophonic
path and v is also an internal vertex of any y − w2 monophonic path. If v ∈ S, then let
S0 = S − {v}. It is clear that every vertex that lies on an x− v monophonic path also lies
on an x − w2 monophonic path. Hence it follows that S

0 is an xy-monophonic set of G,
which is a contradiction to S a minimum xy-monophonic set of G. Thus v does not belong
to any minimum xy-monophonic set of G.

Case (ii): Both x and y belong to W . It is simillar to Case (i).

Case (iii): Either x = v or y = v. By Theorem 2.3, v does not belong to any mxy-set. 2

Corollary 2.5. Let T be a tree with k end vertices. Then mxy(T ) = k − 1 or k according
as xy is an end edge or cut-edge.
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Proof. This follows from Theorem 2.4. 2

Corollary 2.6. Let K1,n(n ≥ 2) be a star. Then mxy(K1,n) = n− 1 for any edge xy in
K1,n.

Corollary 2.7. Let G be a complete graph Kp(p ≥ 3). Then mxy(G) = p− 2 for any edge
xy in G.

Theorem 2.8. For any edge xy in the cube Qn(n ≥ 3), mxy(Qn) = 1.

Proof. Let e = xy be an edge in Qn and let x = (a1, a2, . . . , an), where ai ∈ {0, 1}. Let
x0 = (a01, a

0
2, . . . , a

0
n) be another vertex of Qn such that a

0
i is the compliment of ai. Let u

be any vertex in Qn. For convenience, let u = (a1, a
0
2, a3, . . . , an). Then u lies on an x− x0

monophonic path P : x = (a1, a2, . . . , an), (a1, a
0
2, a3, . . . , an), . . . , (a

0
1, a

0
2, . . . , a

0
n−1, an), (a

0
1,

a02, . . . , a
0
n) = x0. Hence {x0} is an xy-monophonic set of Qn and so mxy(Qn) = 1. 2

Theorem 2.9. i) For any edge xy in the wheel Wn = K1 +Cn−1(n ≥ 5),
mxy(Wn) = 1.

ii) For any edge xy in the complete bipartite graph Km,n(1 ≤ m ≤ n),

mxy(Km,n) =

⎧⎪⎨⎪⎩
n− 1 if m = 1
1 if m = 2
2 if m ≥ 3.

Proof. (i) Let xy be an edge in Wn. Then either x or y is a vertex of Cn−1. Let
x ∈ V (Cn−1) and let z be a non-adjacent vertex of x in Cn−1. It is clear that every vertex
ofWn lies on an x−z monophonic path. Hence {z} is amxy-set ofWn and somxy(Wn) = 1.

(ii) Let U = {u1, u2, . . . , um} and W = {w1, w2, . . . , wn} be the vertex subsets of the
bipartition of the vertices of Km,n. If m = 1, then by Corollary 2.6, mxy(K1,n) = n− 1 for
any edge xy in K1,n. If m = 2, let e be an edge in Km,n, say e = u1w1. It is clear that
every vertex of Km,n lies on an u1 − u2 monophonic path. Hence {u2} is an e-monophonic
set of Km,n and so me(Km,n) = 1. If m ≥ 3, then it is clear that no singleton subset of
V is an e-monophonic set of Km,n and so me(Km,n) ≥ 2. Without loss of generality, take
e = u1w1. Let S = {u2, w2}. Then every vertex of U lies on a w1 − w2 monophonic path
and every vertex of W lies on a u1− u2 monophonic path. Hence S is an e-monophonic set
of Km,n and so me(Km,n) = 2. 2

Theorem 2.10. For any edge xy in a connected graph G of order p ≥ 3,
1 ≤ mxy(G) ≤ p− 2.

Proof. It is clear from the definition ofmxy-set thatmxy(G) ≥ 1. Also, since the vertices
x and y do not belong to any mxy-set, it follows that mxy(G) ≤ p− 2. 2

Remark 2.11. The bounds for mxy(G) in Theorem 2.10 are sharp. If C is any cycle,
then mxy(C) = 1 for any edge xy in C. For any edge xy in a complete graph Kp (p ≥ 3),
mxy(Kp) = p− 2.
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Now we proceed to characterize graphs for which the upper bound in Theorem 2.10 is
attained.

Theorem 2.12. Let G be a connected graph of order at least 3. Then G is either Kp or
K1,p−1 if and only if mxy(G) = p− 2 for every edge xy in G.

Proof. If G = Kp, then by Corollary 2.7, mxy(G) = p − 2 for every edge xy in G. If
G = K1,p−1, then by Corollary 2.6, mxy(G) = p− 2 for any edge xy in G. Conversely,
suppose that mxy(G) = p − 2 for every edge xy in G. By Theorem 1.2, G has at least
two vertices which are not cut-vertices. Let xy be an edge of G with x is not a cut-vertex.
If G has two or more cut-vertices, then by Theorem 2.4(ii), mxy(G) ≤ p − 3, which is a
contradiction. Thus the number of cut-vertices k of G is at most one.

Case (i) k = 0. Then the graph G is a block. Now we claim that G is complete. If
G is not complete, then there exist two vertices x and y in G such that d(x, y) ≥ 2. By
Theorem 1.3, x and y lie on a common cycle and hence x and y lie on a smallest cycle
C : x, x1, x2, . . . , y, . . . , xn, x of length at least 4. Then (V (G) − V (C)) ∪ {y} is an xx1-
monophonic set of G and so mxx1(G) ≤ p − 3, which is a contradiction. Hence G is the
complete graph.

Case (ii) k = 1. Let x be the cut-vertex of G. If p = 3, then G = P3, a star with three
vertices. If p ≥ 4, we claim that G = K1,p−1. It is enough to prove that degree of every
vertex other than x is one. Suppose that there exists a vertex, say y, with deg y ≥ 2. Let
z 6= x be an adjacent vertex of y in G. Let e = yz. Since the vertices y and z do not lie on
any minimum yz-monophonic set of G and by Theorem 2.4(ii), we have myz(G) ≤ p − 3,
which is a contradiction. Thus every vertex of G other than x is of degree one. Hence G is
a star. 2

Theorem 2.13. For any edge xy in a connected graph G, every x-monophonic set of G is
an xy-monophonic set of G.

Proof. Let S be an x-monophonic set of G. Then every vertex of G lies on an x − z
monophonic path for some z in S. It follows that S is an xy-monophonic set of G. 2

Corollary 2.14. For any edge xy in a connected graph G,mxy(G) ≤ min{mx(G),my(G)}.

Theorem 2.15. For every pair a, b of integers with 1 ≤ a ≤ b, there is a connected graph
G with mxy(G) = a and mx(G) = b for some edge xy in G.

Proof. Let C4 : x, y, z, u, x be a cycle of order 4. Add b−1 new vertices v1, v2, . . . , va−1, w1, w2,
. . . , wb−a and joining each vi(1 ≤ i ≤ a− 1) to x and joining each wj(1 ≤ j ≤ b− a)
to the vertices y and u, thereby producing the graph G given in Figure 2.2. Let S =
{v1, v2, . . . , va−1} be the set of all simplicial vertices of G. Since S is not an xy-monophonic
set, it follows from Theorem 2.4(i) that mxy(G) ≥ a. On the other hand, S1 = S ∪ {u}
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is an xy-monophonic set of G and so mxy(G) = |S1| = a. Clearly, S2 = {v1, v2, . . . ,
va−1, z, w1, w2,. . . , wb−a} is the unique x-monophonic set of G and so mx(G) = |S2| = b.

We have seen that if G is a connected graph of order p ≥ 3, then 1 ≤ mxy(G) ≤ p− 2
for any edge xy in G. In the following theorem we give an improved upper bound for the
edge fixed monophonic number of a tree in terms of its order and monophonic diameter.

Theorem 2.16. If T is a tree of order p and monophonic diameter dm, then mxy(T ) ≤
p− dm + 1 for any edge xy in T .

Proof. Let P : v0, v1, v2, . . . , vdm be a monophonic path of length dm. Now, let S =
V (G)− {v1, v2, . . . , vdm−1}. If e is an internal edge of P , then clearly S is an e-monophonic
set of T so that me(T ) ≤ |S| = p − dm + 1. If e is an end edge of P , say e = v0v1, then
S1 = S − {v0} is an e-monophonic set of T so that me(T ) ≤ |S1| = p − dm. If e = xy
is an edge lies out side P , then S2 = S − {x, y} is an e-monophonic set of T so that
me(T ) ≤ |S2| = p− dm. Hence for any edge xy in T , mxy(T ) ≤ p− dm + 1. 2

Remark 2.17. The bound in Theorem 2.16 is not true for any graph. For example, con-
sider the graph G given in Figure 2.3. Here p = 7, dm(G) = 4,me(G) = 5 and p−dm+1 = 4.
Hence me(G) > p− dm + 1.

Theorem 2.18. For any edge xy in a non-trivial tree T of order p and monophonic diameter
dm, mxy(T ) = p− dm or p− dm + 1 if and only if T is a caterpillar.

Marisol Martínez
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Proof. Let T be any non-trivial tree. Let P : v0, v1, . . . , vd be a monophonic path of
length dm. Let k be the number of end vertices of T and let l be the number of internal
vertices of T other than v1, v2, . . . , vd−1. Then dm − 1 + l + k = p. By Corollary 2.5,
mxy(T ) = k or k− 1 for any edge xy in T and so mxy(T ) = p− dm− l+1 or p− dm− l for
any edge xy in T . Hence mxy(T ) = p− dm+1 or p− dm for any edge xy in T if and only if
l = 0, if and only if all the internal vertices of T lie on the monophonic path P , if and only
if T is a caterpillar.

For any connected graph G, radm(G) ≤ diamm(G). It is shown in [3] that every two
positive integers a and b with a ≤ b are realizable as the monophonic radius and monophonic
diameter, respectively, of some connected graph. This result can be extended so that the
edge fixed monophonic number can be prescribed. 2

Theorem 2.19. For positive integers r, d and n ≥ 2 with 2 ≤ r ≤ d, there exists a
connected graph G with radm(G) = r, diamm(G) = d and mxy(G) = n for some edge xy
in G.

Proof. Case (i) 2 ≤ r = d. Let Cr+2 : v1, v2, . . . , vr+2, v1 be the cycle of order r+2.
Let G be the graph obtained from Cr+2 by adding n vertices u1, u2, . . . , un and joining each
vertex ui (1 ≤ i ≤ n) to both v2 and vr+2, and also adding the edge v1u1. The graph
G is shown in Figure 2.4. It is easily verified that the monophonic eccentricity of each
vertex of G is r and so radm(G) = diamm(G) = r. Also, for the edge v1u1, it is clear that
S = {vr+1, u2, . . . , un} is a minimum xy-monophonic set of G and so mxy(G) = n.

Case (ii) 2 ≤ r < d ≤ 2r. Let Cr+2 = v1, v2, . . . , vr+2, v1 be the cycle of order r + 2 and let
Pd−r+1 : u0, u1, . . . , ud−r be a path of order d− r + 1. Let H be the graph obtained from
Cr+2 and Pd−r+1 by identifying v1 in Cr+2 and u0 in Pd−r+1. Let G be the graph obtained
from H by adding n− 1 new vertices w1, w2, . . . , wn−1 and joining each wi(1 ≤ i ≤ n− 1)
with ud−r−1. The graph G is shown in Figure 2.5. It is easily verified that r ≤ em(x) ≤ d
for any vertex x in G, em(v1) = r and em(v3) = d. Thus radm(G) = r and diamm(G) = d.
For the edge e = ud−r−1ud−r, S = {w1, w2,. . . , wn−1, v3} is a minimum e-monophonic set
of G and so me(G) = n.

Marisol Martínez
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Case (iii) d > 2r. Let P2r−1 : v1, v2, . . . , v2r−1 be a path of order 2r − 1. Let G be the
graph obtained from the wheel W = K1 +Cd+2 and the complete graph Kn by identifying
the vertex v1 of P2r−1 with the central vertex of W , and identifying the vertex v2r−1 of
P2r−1 with a vertex of Kn. The graph G is shown in Figure 2.6. Since d > 2r, we have
em(x) = d for any vertex x ∈ V (Cd+2). Also, em(x) = 2r for any vertex x ∈ V (Kn)−v2r−1;
r ≤ em(x) ≤ 2r − 1 for any vertex x ∈ V (P2r−1); and em(x) = r for the central vertex x of
P2r−1. Thus radm(G) = r and diamm(G) = d.

Let S = V (Kn) − {v2r−1} be the set of all simplicial vertices of G. Then by Theorem
2.4(i), every me-set contains S for the edge e = u1u2. It is clear that S is not an e-
monophonic set of G and some(G) > |S| = n− 1. Since S0 = S∪{ud+1} is an e-monophonic
set of G, we have me(G) = n. 2
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