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Abstract

Let T be a time scale which is unbounded above and below and
such that t0 ∈ T. Let id + h, id + r : [t0,∞) ∩ T→ T be such that
(id+ h) ([t0,∞) ∩T) and (id+ r) ([t0,∞) ∩T) are time scales. We
use the contraction mapping theorem to obtain convergence to zero
about the solution for the following linear advanced dynamic equation

x4 (t) + a (t)xσ (t+ h (t)) + b (t)xσ (t+ r (t)) = 0, t ∈ [t0,∞) ∩T,

where f4 is the 4-derivative on T. A convergence theorem with a
necessary and sufficient condition is proved. The results obtained here
extend the work of Dung [11]. In addition, the case of the equation
with several terms is studied.

Subjclass [2010] : 34K20, 34K30, 34k40.

Keywords : Fixed points, advanced dynamic equations, Asymptotic
behavior, time scales.
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1. Introduction

The concept of time scales analysis is a fairly new idea. In 1988, it was
introduced by the German mathematician Stefan Hilger in his Ph.D. thesis
[13]. It combines the traditional areas of continuous and discrete analysis
into one theory. After the publication of two textbooks in this area by
Bohner and Peterson [6] and [7], more and more researchers were getting
involved in this fast-growing field of mathematics.

The study of dynamic equations brings together the traditional research
areas of differential and difference equations. It allows one to handle these
two research areas at the same time, hence shedding light on the reasons for
their seeming discrepancies. In fact, many new results for the continuous
and discrete cases have been obtained by studying the more general time
scales case (see [1, 3, 4, 14] and the references therein).

There is no doubt that the Lyapunov method have been used success-
fully to investigate stability properties of wide variety of ordinary, func-
tional and partial equations. Nevertheless, the application of this method
to problem of stability in differential equations with delay has encountered
serious difficulties if the delay is unbounded or if the equation has un-
bounded term. It has been noticed that some of theses difficulties vanish
by using the fixed point technic. Other advantages of fixed point theory
over Lyapunov’s method is that the conditions of the former are average
while those of the latter are pointwise (see [2, 5, 8, 9, 10, 11, 12] and refer-
ences therein).

In paper, we consider the following linear advanced dynamic equation

x4 (t)+a (t)xσ (t+ h (t))+b (t)xσ (t+ r (t)) = 0, t ∈ [t0,∞)∩T,
(1.1)
where T is an unbounded above and below time scale and such that t0 ∈ T,
a and b are rd-continuous functions on [t0,∞)∩T, the advanced arguments
h and r are rd-continuous functions with h (t) ≥ 0 and r (t) ≥ 0. We assume
that (id+ h) ([t0,∞) ∩T) and (id+ r) ([t0,∞) ∩T) are time scales where
id is the identity function.

Our purpose here is to use the contraction mapping theorem (see [15])
to show the convergence to zero about the solution for (1.1). A convergence
theorem with a necessary and sufficient condition is proved. In the special
case T = R, Dung [11] shows the solution of (1.1) is convergent to zero
with a necessary and sufficient condition by using the contraction mapping
theorem.
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In Section 2, we present some preliminary material that we will need
through the remainder of the paper. We will state some facts about the
exponential function on a time scale. We present our main results on con-
vergence in Section 3. A study of the general form of (1.1) with several
terms is also given. The results presented in this paper extend the main
results in [11].

2. Preliminaries

In this section, we consider some advanced topics in the theory of dynamic
equations on a time scales. Again, we remind that for a review of this topic
we direct the reader to the monographs of Bohner and Peterson [6] and [7].

A time scale T is a closed nonempty subset of R. For t ∈ T the forward
jump operator σ is defined as σ (t) = inf {s ∈ T : s > t}. This operator
allow elements in the time scale to be classified as follows. We say t is right
scattered if σ (t) > t and right dense if σ (t) = t. The graininess function
µ : T→ [0,∞) is defined by µ (t) = σ (t)− t and gives the distance between
an element and its successor. We set inf ∅ = supT and sup ∅ = inf T. If
T has a left scattered maximum M , we define Tk = T \ {M}. Otherwise,
we define Tk = T. If T has a right scattered minimum m, we define
Tk = T \ {m}. Otherwise, we define Tk = T.

Let t ∈ Tk and let f : T → R. The delta derivative of f (t), denoted
f4 (t), is defined to be the number (when it exists), with the property that,
for each � > 0, there is a neighborhood U of t such that¯̄̄

f (σ (t))− f (s)− f4 (t) [σ (t)− s]
¯̄̄
≤ � |σ (t)− s| ,

for all s ∈ U . If T = R then f4 (t) = f 0 (t) is the usual derivative. If
T = Z then f4 (t) = 4f (t) = f (t+ 1)− f (t) is the forward difference of
f at t.

A function f is right dense continuous (rd-continuous), f ∈ Crd =
Crd (T,R), if it is continuous at every right dense point t ∈ T and its left-
hand limits exist at each left dense point t ∈ T. The function f : T → R
is differentiable on Tk provided f4 (t) exists for all t ∈ Tk.

We are now ready to state some properties of the delta-derivative of f .
Note fσ (t) = f (σ (t)).

Theorem 1 ([6, Theorem 1.20]). Assume f, g : T → R are differen-
tiable at t ∈ Tk and let α be a scalar. (i) (f + g)4 (t) = g4 (t) + f4 (t).
(ii) (αf)4 (t) = αf4 (t). (iii) The product rules
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(fg)4 (t) = f4 (t) g (t) + fσ (t) g4 (t) ,

(fg)4 (t) = f (t) g4 (t) + f4 (t) gσ (t) .

(iv) If g (t) gσ (t) 6= 0 thenµ
f

g

¶4
(t) =

f4 (t) g (t)− f (t) g4 (t)

g (t) gσ (t)
.

The next theorem is the chain rule on time scales ([6, Theorem 1.93],
Theorem 1.93).

Theorem 2 (Chain Rule). Assume ν : T→ R is strictly increasing andeT := ν (T) is a time scale. Let ω : eT → R. If ν4 (t) and ωe4 (ν (t)) exist
for t ∈ Tk, then (ω ◦ ν)4 =

³
ωe4 ◦ ν´ ν4.

A function F : T→ R is said to be a delta antiderivative of f : T→ R,
provided F4 (t) = f (t) for all t ∈ Tk. For all a, b ∈ T, a < b, the delta
integral of f from a to b is defined byZ b

a
f (t)4t = F (b)− F (a) .

In the sequel we will need to differentiate and integrate functions of the
form f (t− τ (t)) = f (ν (t)) where, ν (t) := t − τ (t). Our next theorem is
the substitution rule ([6, Theorem 1.98], Theorem 1.98).

Theorem 3 (Substitution). Assume ν : T → R is strictly increasing
and eT := ν (T ) is a time scale. If f : T→ R is rd-continuous function and
ν is differentiable with rd-continuous derivative, then for a, b ∈ T ,Z b

a
f (t) ν4 (t)4t =

Z ν(b)

ν(a)

³
f ◦ ν−1

´
(s) e4s.

A function p : T→ R is said to be regressive provided 1+µ (t) p (t) 6= 0
for all t ∈ Tk. The set of all regressive rd-continuous function f : T → R
is denoted by R. The set of all positively regressive functions R+, is given
by R+ = {f ∈ R : 1 + µ (t) f (t) > 0 for all t ∈ T}.

Let p ∈ R and µ (t) 6= 0 for all t ∈ T. The exponential function on T
is defined by
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ep (t, s) = exp

µZ t

s

1

µ (z)
log (1 + µ (z) p (z))∆z

¶
.

It is well known that if p ∈ R+, then ep (t, s) > 0 for all t ∈ T. Also, the
exponential function y (t) = ep (t, s) is the solution to the initial value prob-
lem y4 = p (t) y, y (s) = 1. Other properties of the exponential function
are given by the following lemma.

Lemma 1 ([6, Theorem 2.36]). Let p, q ∈ R. Then
(i) e0 (t, s) = 1 and ep (t, t) = 1,
(ii) ep (σ (t) , s) = (1 + µ (t) p (t)) ep (t, s),

(iii) 1
ep(t,s)

= eªp (t, s), where ªp (t) = − p(t)
1+µ(t)p(t) ,

(iv) ep (t, s) =
1

ep(s,t)
= eªp (s, t),

(v) ep (t, s) ep (s, r) = ep (t, r),

(vi) e4p (., s) = pep (., s) and
³

1
ep(.,s)

´4
= − p(t)

eσp (.,s)
.

Lemma 2 ([1]). If p ∈ R+, then

0 < ep (t, s) ≤ exp
µZ t

s
p (u)4u

¶
, ∀t ∈ T.

3. Main Results

In this section, we state and prove our main results. Before doing these,
let us recall a definition of the solution to (1.1).

Definition 1. A rd-continuously differentiable function x : [t0,∞) ∩T→
R is called a solution of equation (1.1), if it satisfies the relation (1.1) for
all t ∈ [t0,∞) ∩T.

We need a technical lemma which plays a key role in this article. This
lemma transforms (1.1) into an equivalent integral equation for which the
method of fixed points can work.

Lemma 3. Let x be the solution of (1.1) on [t0,∞)∩T. Then, x satisfies
the following integral equation

x (t) = x0eªD (t, t0) +
R t
t0
eªD (t, s) a (s)

³R σ(s+h(s))
σ(s) Ex (u)∆u

´
∆s

+
R t
t0
eªD (t, s) b (s)

³R σ(s+r(s))
σ(s) Ex (u)∆u

´
∆s, t ∈ [t0,∞) ∩T,

(3.1)

where x0 = x (t0), D (t) = a (t) + b (t) and Ex (t) = a (t)xσ (t+ h (t)) +
b (t)xσ (t+ r (t)).
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Proof. Using the relation

xσ (u)− xσ (t) =

Z σ(u)

σ(t)
x4 (s)∆s,

we can rewrite equation (1.1) as follows,

x4 (t) = − [a (t) + b (t)]xσ (t)− a (t)

Z σ(t+h(t))

σ(t)
x4 (s)∆s

−b (t)
Z σ(t+r(t))

σ(t)
x4 (s)∆s.

After substituting x4 from (1.1), we obtain

x4 (t) = − [a (t) + b (t)]xσ (t) + a (t)
R σ(t+h(t))
σ(t) (a (s)xσ (s+ h (s))

+b (s)xσ (s+ r (s)))∆s+ b (t)
R σ(t+r(t))
σ(t) (a (s)xσ (s+ h (s))

+b (s)xσ (s+ r (s)))∆s,

or equivalently,

x4 (t)+D (t)xσ (t) = a (t)

Z σ(t+h(t))

σ(t)
Ex (s)∆s+b (t)

Z σ(t+r(t))

σ(t)
Ex (s)∆s.

(3.2)

Multiplying both sides of (3.2) by the factor eD (t, t0) and then integra-
tion from t0 to t, we obtain

x (t) eD (t, t0)− x (t0) =
R t
t0
eD (s, t0) a (s)

³R σ(s+h(s))
σ(s) Ex (u)∆u

´
∆s

+
R t
t0
eD (s, t0) b (s)

³R σ(s+r(s))
σ(s) Ex (u)∆u

´
∆s,

which means that x is the solution of (3). The lemma is proved. 2

Theorem 4. Assume that the following conditions hold,

D ∈ R+, lim
t→∞

Z t

t0

1

µ(τ)
log(1 + µ(τ)D(τ))∆τ =∞,(3.3)

supt≥t0
R t
t0
eªD (s, t0)

³
|a (s)|

R σ(s+h(s))
σ(s) (|a (u)|+ |b (u)|)∆u

+ |b (s)|
R σ(s+r(s))
σ(s) (|a (u)|+ |b (u)|)∆u

´
∆s = α < 1.

(3.4)

Then, any solution x of (1.1) converges to zero, that is, limt→∞ x (t) = 0.
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Proof. Let x be an arbitrary solution (1.1). We then can define x0 :=
x (t0). Thanks to Lemma 3, we know that x is a solution of equation (3)
with a initial condition x (t0) = x0. As a consequence, in order to obtain
the desired result, it is enough to show that equation (3) with the initial
condition x (t0) = x0 has an unique solution and this solution converges to
zero as t tends to ∞.

Denote by C the space of bounded continuous functions x on [t0,∞)∩T
such that x (t0) = x0. It is seen that C is a complete metric space with
metric

ρ (x, y) = sup
t≥t0

|x (t)− y (t)| .

We define the operator P on C as

(Px) (t) = x0eªD (t, t0) +
R t
t0
eªD (t, s) a (s)

³R σ(s+h(s))
σ(s) Ex (u)∆u

´
∆s

+
R t
t0
eªD (t, s) b (s)

³R σ(s+r(s))
σ(s) Ex (u)∆u

´
∆s, t ∈ [t0,∞) ∩T.

Obviously, we have P (C) ⊂ C. Let x, y ∈ C, then x (t0) = y (t0) = x0
and hence, we have

|(Px) (t)− (Py) (t)|
≤
R t
t0
eªD (t, s) |a (s)|

³R σ(s+h(s))
σ(s) |Ex (u)−Ey (u)|∆u

´
∆s

+
R t
t0
eªD (t, s) |b (s)|

³R σ(s+r(s))
σ(s) |Ex (u)−Ey (u)|∆u

´
∆s, t ∈ [t0,∞)∩T,

where

|Ex (u)−Ey (u)| ≤ |a (u)| |xσ (u+ h (u))− yσ (u+ h (u))|
+ |b (u)| |xσ (u+ r (u))− yσ (u+ r (u))|
≤ (|a (u)|+ |b (u)|) ρ (x, y) .

As a consequence, we have

|(Px) (t)− (Py) (t)|
≤
hR t

t0
eªD (t, s)

³
|a (s)|

R σ(s+h(s))
σ(s) (|a (u)|+ |b (u)|)∆u

+ |b (s)|
R σ(s+r(s))
σ(s) (|a (u)|+ |b (u)|)∆u

´
∆s
i
ρ (x, y) , t ∈ [t0,∞) ∩T.

This combine with (3) yields

ρ (Px,Py) ≤ αρ (x, y) .

As α < 1, we can conclude that P is a contraction operator.
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We now consider a closed subspace S of C

S =

½
x ∈ C : lim

t→∞
x (t) = 0

¾
.

We claim that P (S) ⊂ S. Indeed, let x ∈ S, then we have

|(Px) (t)| ≤ |x0| eªD (t, t0)+
R t
t0
eªD (t, s) |a (s)|

³R σ(s+h(s))
σ(s) |Ex (u)|∆u

´
∆s

+
R t
t0
eªD (t, s) |b (s)|

³R σ(s+r(s))
σ(s) |Ex (u)|∆u

´
∆s

:= I1 + I2 + I3, t ∈ [t0,∞) ∩T,

where

I1 = |x0| eªD (t, t0) , I2 =
Z t

t0
eªD (t, s) |a (s)|

ÃZ σ(s+h(s))

σ(s)
|Ex (u)|∆u

!
∆s,

and

I3 =

Z t

t0
eªD (t, s) |b (s)|

ÃZ σ(s+r(s))

σ(s)
|Ex (u)|∆u

!
∆s.

By (3.3) we obtain I1 → 0 as t→∞. Moreover, it follows from the fact
x ∈ S that for any ε > 0, there exists T ≥ t0 such that |x (t)| < ε

2 for all
t ≥ T . Hence, we have

I2 =
R T
t0
eªD (t, s) |a (s)|

³R σ(s+h(s))
σ(s) |Ex (u)|∆u

´
∆s

+
R t
T eªD (t, s) |a (s)|

³R σ(s+h(s))
σ(s) |Ex (u)|∆u

´
∆s

≤
R T
t0
eªD (t, s) |a (s)|

³R σ(s+h(s))
σ(s) |Ex (u)|∆u

´
∆s

+ ε
2

R t
T eªD (t, s) |a (s)|

³R σ(s+h(s))
σ(s) (|a (u)|+ |b (u)|)∆u

´
∆s, t ≥ T.

We observe that the first term in the right hand side of (3) converges
to zero as t → ∞ due to condition (3.3). Thus, there exists T1 ≥ T , such
that

I2 ≤
ε

2
+
ε

2

Z t

T
eªD (t, s) |a (s)|

ÃZ σ(s+h(s))

σ(s)
(|a (u)|+ |b (u)|)∆u

!
∆s, t ≥ T1.

Using (3) we get I2 < ε for all t ≥ T1. In other words, we have I2 → 0
as t → ∞. Similarly, we also have I3 → 0 as t → ∞. Hence, (Px) (t) → 0
as t→∞.
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In summary, P is a contraction operator and P (S) ⊂ S. By the con-
traction mapping principle, P has a unique fixed point x in S, that is,

x = Px and lim
t→∞

x (t) = 0.

This means that equation (3) has a unique solution and this solution
satisfies lim

t→∞
. The proof is complete. 2

Example 1. Let T = R. Consider the equation

x0 (t)+0.2 cos (t)x (t+ 0.5)+0.05 (1 + sin (t))x
³
t+ cos2 (t)

´
= 0, t ≥ 0.

(3.5)

We have the following estimates

Z s+0.5

s
|0.2 cos (u)|+ 0.05 (1 + sin (u)) du ≤ 0.15,Z s+cos2(s)

s
|0.2 cos (u)|+ 0.05 (1 + sin (u)) du ≤ 0.3.

Hence

supt≥0
R t
0 e
−
R t
s
0.2 cos(u)+0.05(1+sin(u))du (0.15 |0.2 cos (s)|+ 0.015 (1 + sin (s))) ds

< 0.2001 < 1.

It is easy to see that all the conditions of Theorem 4 hold for α =
0.2001 < 1. Thus Theorem 4 implies that the solution x of (3.5) converges
to zero.

The first theorem provide sufficient conditions for convergence of the
solution to zero. Let us now give a necessary condition for convergence of
the solution to zero.

Theorem 5. Assume that (3) and the following condition hold

lim
t→∞

inf

Z t

t0

1

µ(τ)
log(1 + µ(τ)D(τ))∆τ > −∞.(3.6)

If all the solutions of (1.1) converge to zero, then (3.3) holds.
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Proof. Suppose that (3.3) fails. As (3.6) holds, this implies that

K := sup
t≥t0

eªD (t, t0) <∞,(3.7)

and that there exists a sequence {tn} with tn →∞ as n→∞ such that the

sequence
nR tn

t0
1

µ(τ) log(1 + µ(τ)D(τ))∆τ
o
n≥1

converges to a finite constant.

So, we can choose a positive constant H satisfying

−H ≤
Z tn

t0

1

µ(τ)
log(1 + µ(τ)D(τ))∆τ ≤ H, ∀n ≥ 1.(3.8)

For the convenience of the statement, we put

g (s) := |a (s)|
Z σ(s+h(s))

σ(s)
(|a (u)|+ |b (u)|)∆u

+ |b (s)|
Z σ(s+h(s))

σ(s)
(|a (u)|+ |b (u)|)∆u.

Then, it follows from (3) thatZ tn

t0
eD (s, t0) g (s)∆s ≤ αeD (tn, t0) < eH , ∀n > 1.

The sequence An :=
nR tn

t0
eD (s, t0) g (s)∆s

o
n≥1

is bounded, so it has

a convergent subsequence. For brevity in notation, we can assume that
lim
t→∞

An = l for some l. Consequently, for any ε0 > 0, there exists n0 ≥ 1
such that Z tn

tn0

eD (s, t0) g (s)∆s <
ε0
2K

,(3.9)

for K as in (3.7).

We replace x0 by ε0 and t0 by tn0 in equation (3) to get the following
equation

x(t) = ε0eªD (t, tn0) +
R t
tn0

eªD (t, s) a (s)
³R σ(s+h(s))

σ(s) Ex (u)∆u
´
∆s

+
R t
tn0

eªD (t, s) b (s)
³R σ(s+r(s))

σ(s) Ex (u)∆u
´
∆s, t ≥ tn0 .

From lemma 3, we known that the unique solution x of (3) is also a
solution of (1.1) on [tn0 ,∞) ∩T. Using the relation

x (tn0)−x (t)+
Z tn0

t
a (s)xσ (s+ h (s))∆s+

Z tn0

t
b (s)xσ (s+ r (s))∆s = 0,
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we can construct a solution x of (1.1) on [t0,∞) ∩ T with x (t) = x (t),
t ∈ [tn0 ,∞) ∩T. Because all solutions of (1.1) converge to zero, we have

lim
t→∞

x (t) = 0.(3.10)

We now fixe an ε0 > 0 such that ε0 <
1−α
KeH

. From equation (3), we can
obtain

sup
t≥tn0

|x (t)| ≤ K |ε0| eD (tn0 , t0) + α sup
t≥tn0

|x (t)|

≤ K |ε0| eH + α sup
t≥tn0

|x (t)| ,

which yields

sup
t≥tn0

|x (t)| ≤ KeHε0
1− α

< 1.

Hence, an application of the inequality a+ b+ c ≥ |a|− |b|− |c| to (3)
gives us

x (tn) ≥ ε0eªD (tn, tn0)−
Z tn

tn0

eªD (tn, s) g (s)∆s, n ≥ n0.

This combine with (3.9) and (3.8) implies that

x (tn) ≥ eªD (tn, tn0)
³
ε0 − eªD (tn0 , t0)

R tn
tn0

eD (s, t0) g (s)∆s
´

≥ eªD (tn, tn0)
³
ε0 −K

R tn
tn0

eD (s, t0) g (s)∆s
´

≥ eªD (tn, tn0)
¡
ε0 −K ε0

2K

¢
≥ ε0e−2H

2 ,

which contradicts with (3.10). The proof is completed. 2
Our results can be extended to the following general advanced dynamic

equation with several terms

x4 (t) +
NX
k=1

ak (t)x
σ (t+ hk (t)) , t ∈ [t0,∞) ∩T,(3.11)

where ak and hk are rd-continuous functions and hk (t) ≥ 0.
Indeed, as in Lemma 3, we can rewrite (3.11) as follows

x (t) = x0eªD (t, t0)

+

Z t

t0
eªD (t, s)

NX
k=1

Ã
ak (s)

Z σ(s+hk(s))

σ(s)
Ex (u)∆u

!
∆s, t ∈ [t0,∞) ∩T,
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where D (t) =
NP
k=1

ak (t) and Ex (t) =
NP
k=1

ak (t)x
σ (t+ hk (t)). Then, we

can get the following theorem without new difficulties.

Theorem 6. Suppose that the following condition holds,

sup
t≥t0

Z t

t0
eªD (t, s)

NX
k=1

Ã
|ak (s)|

Z σ(s+hk(s))

σ(s)

NX
i=1

|ai (u)|∆u
!
∆s := α < 1.

If

D ∈ R+, lim
t→∞

lim

Z t

t0

1

µ(τ)
log(1 + µ(τ)D(τ))∆τ =∞,

then any solution x of (3.11) converges to zero.
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