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Universidad Católica del Norte
Antofagasta - Chile

Abstract

Let A ,B be two rings. A mapping δ : A → B is called quartic
derivation, if δ is a quartic function satisfies δ(ab) = a4δ(b) + δ(a)b4

for all a, b ∈ A. The main purpose of this paper to prove the gen-
eralized Hyers—Ulam—Rassias stability of the quartic derivations on
Banach algebras.
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1. Introduction

The study of stability problems as just mentioned originated from a famous
talk given by S.M. Ulam [65] in 1940: Under what condition does there
exists a homomorphism near an approximate homomorphism? In 1941, D.
H. Hyers [28] gave the first affirmative answer to the question of Ulam for
Banach spaces. Let f : E −→ E0 be a mapping between Banach spaces
such that

kf(x+ y)− f(x)− f(y)k ≤ δ

for all x, y ∈ E, and for some δ > 0. Then there exists a unique additive
mapping T : E −→ E0 such that

kf(x)− T (x)k ≤ δ

for all x ∈ E. Moreover if f(tx) is continuous in t ∈ R for each fixed x ∈ E,
then T is linear. Finally in 1978, Th. M. Rassias [60] proved the following
theorem.

Theorem 1.1. Let f : E −→ E0 be a mapping from a normed vector space
E into a Banach space E0 subject to the inequality

kf(x+ y)− f(x)− f(y)k ≤ (kxkp + kykp) (1.1)

for all x, y ∈ E, where and p are constants with > 0 and p < 1. Then
there exists a unique additive mapping T : E −→ E0 such that

kf(x)− T (x)k ≤ 2

2− 2pkxk
p (1.2)

for all x ∈ E. If p < 0 then inequality (1.1) holds for all x, y 6= 0, and (1.2)
for x 6= 0. Also, if the function t 7→ f(tx) from R into E0 is continuous in
real t for each fixed x ∈ E, then T is linear.

In 1991, Z. Gajda [20] answered the question for the case p > 1, which
was raised by Rassias. This new concept is known as Hyers—Ulam—Rassias
stability of functional equations.

In 1982—1994, J.M. Rassias (see [46]—[53]) solved the Ulam problem for
different mappings and for many Euler—Lagrange type quadratic mappings,
by involving a product of different powers of norms. In addition, J.M. Ras-
sias considered the mixed product—sum of powers of norms control function
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[61]. This concept is known as Ulam—Gavrua—Rassias stability of functional
equations. For more details about the results concerning such problems and
mixed product-sum stability (JMRassias Stability) the reader is referred to
[1, 5, 6, 7, 8, 17, 19, 22, 24, 25, 26, 27, 30, 32, 34, 36, 37, 43, 45, 54, 55] and
[56].

In 1994, a generalization of the Rassias, theorem was obtained by
Gǎvruta as follows [21] (see also [23], [31]).
Suppose (G,+) is an abelian group, E is a Banach space, and that the
so-called admissible control function ϕ : G×G→ R satisfies

ϕ̃(x, y) := 2−1
∞X
n=0

2−nϕ(2nx, 2ny) <∞

for all x, y ∈ G. If f : G→ E is a mapping with

kf(x+ y)− f(x)− f(y)k ≤ ϕ(x, y)

for all x, y ∈ G, then there exists a unique mapping T : G → E such that
T (x+ y) = T (x) + T (y) and kf(x)− T (x)k ≤ ϕ̃(x, x) for all x, y ∈ G.
In [40], Won-Gil Park and Jea Hyeong Bae, considered the following func-
tional equation:

f(2x+ y)+ f(2x− y) = 4(f(x+ y)+ f(x− y))+ 24f(x)− 6f(y). (1.3)

In fact they proved that a function f between real vector spaces X and Y
is a solution of (1.3) if and only if there exists a unique symmetric multi-
additive function B : X ×X ×X ×X −→ Y such that f(x) = B(x, x, x, x)
for all x ∈ X. It is easy to show that the function f(x) = x4 satisfies the
functional equation (1.3), which is called a quartic functional equation and
every solution of the quartic functional equation is said to be a quartic
function (see also [2]).
Let A be an algebra over the real or complex field F and X a left A-module
(respectivelyA-bimodule). An additive map δ : A→ X said to be a module
left derivation (respectively module derivation) if δ(xy) = x.δ(y) + y.δ(x)
(respectively δ(xy) = x.δ(y)+ δ(x).y) holds for all x, y ∈ A where . denotes
the module multiplication on X . Since A is a left A-module (respectively A-
bimodule) with the product of A giving the module multiplication (respec-
tively two module multiplications), the module left derivation (respectively
module derivation) δ : A → A is said to be a ring left derivation (respec-
tively ring derivation) on A. Furthermore, if the identity δ(kx) = kδ(x)
holds for all k ∈ F and all x ∈ A, then δ is a linear left derivation (respec-
tively linear derivation).
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Let us introduce the background of our investigation.
Recently, T. Miura et al. [35] considered the stability of ring derivations on
Banach algebras: Under suitable conditions, every approximate ring deriva-
tion f on a Banach algebra A is an exact ring derivation. In particular,
if A is a commutative semisimple Banach algebra with the maximal ideal
space without isolated points, then f is identically zero. The first stability
result concerning derivations between operator algebras was obtained by P.
Šemrl [62] (see also [4]—[18] and [38]—[44]).
In this paper, we investigate the generalized Hyers—Ulam—Rassias stability
of quartic derivations from a Banach algebra into its Banach modules.

2. Main result

In this section, we assume that A is a commutative Banach algebra and X
a Banach A-module.

Definition 2.1. A mapping δ : A → X is called a quartic derivation if δ
is a quartic function satisfies δ(ab) = δ(a)b4 + a4δ(b) for all a, b ∈ A.

Example 2.2. We take

T =

⎡⎢⎢⎢⎢⎢⎣
0 A A A A
0 0 A A A
0 0 0 A A
0 0 0 0 A
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ .

Then T is a Banach algebra equipped with the usual matrix-like operations
and the following norm:

k

⎡⎢⎢⎢⎢⎢⎣
0 a1 a2 a3 a4
0 0 a5 a6 a7
0 0 0 a8 a9
0 0 0 0 a10
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ k =
10X
i=1

kaik (ai ∈ A).

It is known that

T ∗ =

⎡⎢⎢⎢⎢⎢⎣
0 A∗ A∗ A∗ A∗
0 0 A∗ A∗ A∗
0 0 0 A∗ A∗
0 0 0 0 A∗
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
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is the dual of T under the following norm

k

⎡⎢⎢⎢⎢⎢⎣
0 f1 f2 f3 f4
0 0 f5 f6 f7
0 0 0 f8 f9
0 0 0 0 f10
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ k = max{kfik; fi ∈ T ∗(i = 1, 2, ..., 10)}.

Let the left module action of T on T ∗ be trivial and let the right module
action of T on T ∗ is defined as follows:

h

⎡⎢⎢⎢⎢⎢⎣
0 f1 f2 f3 f4
0 0 f5 f6 f7
0 0 0 f8 f9
0 0 0 0 f10
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
0 a1 a2 a3 a4
0 0 a5 a6 a7
0 0 0 a8 a9
0 0 0 0 a10
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎣
0 b1 b2 b3 b4
0 0 b5 b6 b7
0 0 0 b8 b9
0 0 0 0 b10
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦i

=
10X
i=1

fi(aibi)

for all fi ∈ A∗, ai, bi ∈ A(i = 1, ..., 10). Then T ∗ is a Banach T -module.
Let ⎡⎢⎢⎢⎢⎢⎣

0 f1 f2 f3 f4
0 0 f5 f6 f7
0 0 0 f8 f9
0 0 0 0 f10
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ ∈ T ∗.
We define δ : T → T ∗ by

δ(

⎡⎢⎢⎢⎢⎢⎣
0 a1 a2 a3 a4
0 0 a5 a6 a7
0 0 0 a8 a9
0 0 0 0 a10
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦) =
⎡⎢⎢⎢⎢⎢⎣
0 f1 f2 f3 f4
0 0 f5 f6 f7
0 0 0 f8 f9
0 0 0 0 f10
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
0 0 a1a2 a3a4 a5a6
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ .

Then we can see that δ is a quartic derivation from T into T ∗.

Now, we investigate the generalized Hyers—Ulam—Rassias stability of
quartic derivations from A into X . For convenience, we use the following
abbreviation for a given mapping f : A→ X ;

Df (x, y) = f(2x+ y) + f(2x− y)− 4[f(x+ y)+ f(x− y)]− 24f(x)+ 6f(y)
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for all x, y ∈ A.

Theorem 2.3. Let f : A → X with f(0) = 0 be a mapping for which
there exists function ϕ : A×A×A×A→ [0,∞) such that

kDf (x, y) + f(zt)− z4f(t)− f(z)t4k ≤ ϕ(x, y, z, t), (2.1)

ϕ̃(x) :=
∞X
i=0

1

16i
ϕ(2ix, 0, 0, 0) <∞, (2.2)

lim
i→∞

1

16i
ϕ(2ix, 2iy, 2iz, 2it) = 0 (2.3)

for all x, y, z, t ∈ A. Then there exists a unique quartic derivation δ : A→ X
such that

kδ(x)− f(x)k ≤ 1

32
ϕ̃(x) (2.4)

for all x ∈ A.

Proof. Letting z = t = y = 0 in (2.1), we get

k 1
16

f(2x)− f(x)k ≤ 1

32
ϕ(x, 0, 0, 0) (2.5)

for all x ∈ A. By induction, we have

k 1
16n

f(2nx)− f(x)k ≤ 1

32

n−1X
i=0

1

16i
ϕ(2ix, 0, 0, 0) (2.6)

for all x ∈ A. In order to show that functions δn(x) =
1
16n f(2

nx) form
a Convergent sequence, we used Cauchy convergence criterion. In deed,
replace x by 2mx in (2.6) and result divide by 16m, where m is an arbitrary
positive integer, we find that

k 1

16n+m
f(2n+mx)− 1

16m
f(2mx)k ≤ 1

32

m+n−1X
i=m

1

16i
ϕ(2ix, 0, 0, 0) (2.7)

for all x ∈ A. By (2.2) and since X is complete then by n→∞, limn→∞ δn(x)
exists for all x ∈ A.
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Let m = 0 and n→∞ in (2.7), we have

kδ(x)− f(x)k ≤ 1

32

∞X
i=0

1

16i
ϕ(2ix, 0, 0, 0) =

1

32
ϕ̃(x)

such that δ is defined δ : A→ X by δ(x) = limn→∞
1
16n f(2

nx) for all x ∈ A.
Letting z = t = 0 and replacing x, y by 2nx, 2ny, respectively, in the in-
equality (2.1), we get

kDf (2
nx, 2ny)k ≤ ϕ(2nx, 2ny, 0, 0)

for all x, y ∈ A, that is,

k 1
16n

Df (2
nx, 2ny)k ≤ 1

16n
ϕ(2nx, 2ny, 0, 0)

for all x, y ∈ A. Passing the limit n→∞, we have

Dδ(x, y) = 0

for all x, y ∈ A. Hence δ is a quartic functional equation. On the other
hand, letting x = y = 0 and replacing z, t by 2nz, 2nt, respectively, in (2.1),
we obtain

kf(22nzt)− 16nzf(2nt)− f(2nz)16ntk ≤ ϕ(0, 0, 2nz, 2nt)

for all z, t ∈ A. Hence

k 1

162n
f(22nzt)− 1

16n
zf(2nt)− f(2nz)

1

16n
tk ≤ 1

162n
ϕ(0, 0, 2nz, 2nt)

for all z, t ∈ A. Passing the limit n→∞, we obtain

δ(zt) = z4δ(t) + δ(z)t4

for all z, t ∈ A.
Now, suppose there exists a function δ0 : A→ X with

Dδ0(x, y) = 0

for all x, y ∈ A and

kδ0(x)− f(x)k ≤ 1

32
ϕ̃(x)

for all x ∈ A.
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We have kδ(x) − δ0(x)k = 1
16n kδ(2nx) − δ0(2nx)k = 1

16n (kδ(2nx) −
f(2nx)k+ kδ0(2nx)− f(2nx)k) ≤ 1

16

P∞
i=n

1
16i

ϕ(2ix, 0)
for all x ∈ A. Passing the limit n → ∞, we obtain δ(x) = δ0(x) for all
x ∈ A. 2

Now, we establish the Ulam—Gavruta—Rassias stability of quadratic
derivations as follows:

Corollary 2.4. Let p > 0, qj > 0, (j = 1, 2, 3, 4) and θ be positive real
numbers with

Max{p,
4X

j=1

qj} < 4.

If f : A→ X with f(0) = 0 is a mapping such that

kDf (x, y) + f(zt)− z4f(t)− f(z)t4k

≤ θ(kxkp + kykp + kzkp + ktkp + kxkq1kykq2kzkq3ktkq4)
for all x, y, z, t ∈ A, then there is a unique quartic derivation δ : A → X
such that

kδ(x)− f(x)k ≤ θ

32− 2p+1 kxk
p

for all x ∈ A.

Proof. The proof follows from Theorem 2.1 taking

ϕ(x, y, z, t) := θ(kxkp + kykp + kzkp + ktkp + kxkq1kykq2kzkq3ktkq4)

for all x, y, z, t ∈ A. 2

Moreover, we investigate the superstability of quartic derivations as
follows:

Corollary 2.5. Let qj > 0, (j = 1, 2, 3, 4) with
P4

j=1 qj < 4, and θ be
positive real numbers. If f : A→ X with f(0) = 0 is a mapping

kDf (x, y) + f(zt)− z4f(t)− f(z)t4k ≤ θ(kxkq1kykq2kzkq3ktkq4)

for all x, y, z, t ∈ A, then f is a quartic derivation.
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Proof. It follows from Theorem 2.1 by putting

ϕ(x, y, z, t) := θ(kxkq1kykq2kzkq3ktkq4)

for all x, y, z, t ∈ A.
2

Theorem 2.6. Let p1+p2 < 4, q1+q2 < 8 and θ be positive real numbers.
If f : A→ X is a mapping

kDf (x, y) + f(zt)− z4f(t)− f(z)t4k ≤ θ(kxkp1kykp2 + kzkq1ktkq2) (2.8)

for all x, y, z, t ∈ A, then there is a unique quartic derivation δ : A → X
such that

kδ(x)− f(x)k ≤ θ

34 − 3p1+p2 kxk
p1+p2 (2.9)

for all x ∈ A.

Proof. In the inequality (2.8), let y = x = z = t = 0, then 23kf(0)k ≤ 0.
Hence f(0) = 0. Letting y = z = t = 0 in (2.8), we see that 2f(x) = 24f(x)
for all x ∈ A. In the inequality (2.8), put z = t = 0 and replace y with x.
Then we obtain

kf(3x)− 81f(x)k ≤ θkxkp1+p2 (2.10)

for all x ∈ A. Hence

kf(3x)
81

− f(x)k ≤ θ

81
kxkp1+p2 (2.11)

for all x ∈ A. By using the induction, we can get that

kf(3
nx)

81n
− f(x)k ≤ θkxkp1+p2

81

n−1X
i=0

3i(p1+p2)

81i
(2.12)

for all x ∈ A. It follows from p1 + p2 < 4 that the sequence { 1
81n f(3

nx)} is
Cauchy sequence and so it is convergent since X is complete. Thus we can
define a function δ : A→ X given by

δ(x) := lim
n→∞

1

81n
f(3nx) (2.13)

for all x ∈ A. In (2.12), passing the limit n→∞, we obtain the inequality
(2.9). The proof of the uniqueness of δ, is similar to the proof of Theorem
2.1. 2
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Theorem 2.7. Let p1+p2 > 4, q1+q2 > 8 and θ be positive real numbers.
If f : A → X is a mapping satisfying (2.8), then there is a unique quartic
derivation δ : A→ X such that

kf(x)− δ(x)k ≤ θ3−(p1+p2)

1− 34−(p1+p2) kxk
p1+p2 (2.14)

for all x ∈ A.

Proof. It follows from (2.10) that

kf(x)− 81f(x
3
)k ≤ θ

3p1+p2
kxkp1+p2 (2.15)

for all x ∈ X . By using the induction, we can get that

kf(x)− 81nf( x
3n
)k ≤ θkxkp1+p2

81

nX
i=1

81i

3i(p1+p2)
(2.16)

for all x ∈ A. It follows from p1 + p2 > 4 that the sequence 81nf( x3n )} is
Cauchy sequence and so it is convergent since X is complete. Thus we can
define a function δ : A→ X given by

δ(x) := lim
n→∞

81nf(
x

3n
)

for all x ∈ A. The rest of the proof is similar to the proof of Theorem 2.3.
2

Theorem 2.8. Let f : A → X with f(0) = 0 be a mapping for which
there exists function ϕ : A×A×A×A→ [0,∞) such that

kDf (x, y) + f(zt)− z4f(t)− f(z)t4k ≤ ϕ(x, y, z, t), (2.17)

ϕ̃(x) :=
∞X
i=1

16iϕ(2−ix, 0, 0, 0) <∞, (2.18)

lim
i→∞

162iϕ(2−ix, 2−iy, 2−iz, 2−it) = 0 (2.19)

for all x, y, z, t ∈ A. Then there exists a unique quartic derivation δ : A→ X
such that

kf(x)− δ(x)k ≤ 1

32
ϕ̃(x) (2.20)

for all x ∈ A.
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Proof. It follows from (2.5) that

kf(x)− 16f(2−1x)k ≤ 2−1ϕ(2−1x, 0, 0, 0) (2.21)

for all x ∈ A. In (2.21), multiply the both sides by 16 and replace x with
2−1x, we have

k16f(2−1x)− 162f(2−2x)k ≤ 2−116ϕ(2−2x, 0, 0, 0) (2.22)

for all x ∈ A. From two inequalities (2.21) and (2.22), we get

kf(x)− 162f(2−2x)k ≤ 2−1ϕ(2−1x, 0, 0, 0) + 2−116ϕ(2−2x, 0, 0, 0) (2.23)

for all x ∈ A. Continuing this way, we get

kf(x)− 16nf(2−nx)k ≤ 1

32

nX
i=1

16iϕ(2−ix, 0, 0, 0) (2.24)

for all x ∈ A. For any positive integer m, multiply the both sides by 16m

and replace x by 2−mx in (2.24), then we have

k16mf(2−mx)− 16n+mf(2−(n+m)x)k ≤ 1

32

nX
i=1

16i+mϕ(2−(i+m)x, 0, 0, 0)

(2.25)
for all x ∈ A. Passing the limit m → ∞, the sequence {16nf(2−nx)} is a
Cauchy sequence in X . By the completeness ofX , the sequence {16nf(2−nx)}
converges and so we can define a function δ : A→ X given by

δ(x) = lim
n→∞

16nf(2−nx)

for all x ∈ A. The rest of the proof is similar to the proof of Theorem 2.1.
2

Corollary 2.9. Let p > 0, qj > 0, (j = 1, 2, 3, 4) and θ be positive real
numbers with

Min{p,
4X

j=1

qj} > 4.

If f : A→ X with f(0) = 0 is a mapping such that

kDf (x, y) + f(zt)− z4f(t)− f(z)t4k
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≤ θ(kxkp + kykp + kzkp + ktkp + kxkq1kykq2kzkq3ktkq4)
for all x, y, z, t ∈ A, then there is a unique quartic derivation δ : A → X
such that

kδ(x)− f(x)k ≤ θ

32− 2p+1 kxk
p

for all x ∈ A.

Proof. The proof follows from Theorem 2.5 taking

ϕ(x, y, z, t) := θ(kxkp + kykp + kzkp + ktkp + kxkq1kykq2kzkq3ktkq4)

for all x, y, z, t ∈ A. 2
Also, we obtain a superstability result for quartic derivations as follows:

Corollary 2.10. Let qj > 0, (j = 1, 2, 3, 4) with
P4

j=1 qj > 4, and θ be
positive real numbers. If f : A→ X with f(0) = 0 is a mapping

kDf (x, y) + f(zt)− z4f(t)− f(z)t4k ≤ θ(kxkq1kykq2kzkq3ktkq4)

for all x, y, z, t ∈ A, then f is a quartic derivation.

In the following example, we show that the superstability of quartic
derivations does not hold in general case.

Example 2.11. Let x, y, z, t ∈ X be fixed. We define f : A → X by
f(a) := a4x− xa4 + y for all a ∈ A,

ϕ(a, b, c, d) := kDf (x, y)− z4f(t)− f(z)t4k = kykk24 + z4 + t4k.

Then we have

∞X
i=0

ϕ(2ia, 0, 0, 0)

16i
=

∞X
i=0

kykk24 + z4 + t4k
16i

=
16

15
kykk24 + z4 + t4k,

lim
n→∞

1

16n
ϕ(2na, 2nb, 2nc, 2nd) = 0

for all a, b, c, d ∈ A. Hence δ(a) = limn→∞
f(2na)
16n = a4x − xa4 for all ∈ A.

On the other hand we have

δ(ab) = (ab)4x− x(ab)4 = a4b4x− xa4b4,
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a4δ(b) + δ(a)b4 = a4(b4x− xb4) + (a4x− xa4)b4 = a4b4x− xa4b4.

Thus
δ(ab) = a4δ(b) + δ(a)b4

for all a, b ∈ A. Furthermore,

δ(2a+ b)+ δ(2a− b) = [(2a+ b)4x− x(2a+ b)4] + [(2a− b)4x− x(2a− b)4].

On the other hand we have

4[δ(a+ b) + δ(a− b)] + 24δ(a)− 6δ(b)
= 4[((a+ b)4x− x(a+ b)4) + ((a− b)4x− x(a− b)4)]
+ 24[a4x− xa4]− 6[b4x− xb4].

Then δ is quartic, that is, Dδ(a, b) = 0 for all a, b ∈ A.
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