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Abstract

The present paper deals with two variables polynomial sets gener-
ated by functions of the form etg(xt)p(yt). Its special case analogous
to Laguerre polynomials have been discussed.
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1. INTRODUCTION

Laguerre polynomials Lgla) (x) possess the generating relation (see Rainville
[8], pp. 130)

oo (@)
e oF1 (= 1+a; — Z ; )t (1.1)

By studying generating relation

oo

=> on(z) t" (1.2)

One arrives at properties held by A (x) (see Rainville [8], p. 132-133)
Motivated by (1.2) an attempt has been made to study two variable
polynomials similar to one given in (1.2) and generated by functions of the

form el (xt)(yt).

2. TWO VARIABLE POLYNOMIAL SETS ANALOGOUS
TO (1.2)

Let us consider the generating relation of the type

¢! p(at) Y(yt) = Y on(z,y) 1" (2.1)
n=0
Let

F = ¢ ¢(xt) P(yt) (22)

Then 9
a—F =te ¢ (2.3)
%—F =tel ¢ (2.4)
= gutad g prye o (25

Eliminating ¢, ¢, ¥ and ¢’ from the four equations (2.2), (2.3), (2.4)
and (2.5), we obtain

0 0 oF
(:B%—i—a)F—tE——tF (2.6)
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Since .
F = glat) vlyt) = 3 oula.y) t"

Equation (2.6) yields

a. a0 n n n\{+4, tn+1
;::O(a:avayay)a x,y)t Zno x,y) nz::oa (z,y)

9
= — Z Unfl(:na y)tn
n=1

from which the next theorem follows.

Theorem 1 :
From

& o(at) Yyt) = 3 onlary) ¢
n=0

it follows that ag(x y) = aayag(x y) =0 and forn > 1,

($% + y@%/) Un(xvy) -n O-Tl(x’y) = _O-nfl(aj’y) (27)

Next, let us assume that the functions ¢ and # in (2.1) have the formal
power - series expansion

=S 2.9

n=0

and -
Yw) =3 5, v (2.9)

n=0

Then (2.1) yields

nO
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oo N n—r

Sy Y e

n=0r=0 s=0
so that
n n—r '}/7-6 ,:L' y
ZZ (2.10)
r=0 s=0 (n—r—s)
Now consider the sum

o0 n n—r 5 tn

S (@ onlag) =3 3y e

n=0 n=0r=0 s=0 —S)

[c. ol N0 o]

- Z Z Z Cntrts Yr Os @ ys LTS

|
n=0r=0s=0 n:

e}

oo o0
=5 S (¢)rss e 05 Zu

r=0s=0

_ Jrts Yr 0s (xt)" (yt)°
Z Z + 1 + t ct+r+s <210)

r=0s=0

We thus arrive at the following theorem:

Theorem 2 :
From

el B(at) Y(u) = 2 oulw9) 11, 0(w) = 5 5, (0) = 5 50"

n
follows that for arbitrary c

t t e
(1—t)°F (”““— y—) = (@nonl@my) " (211)
1—t'1—¢ ~
in which

oo oo
v) = Z Z(c)n+k Y O u" vF (2.12)

n=0 k=0
The role of Theorem 2 is as follows: If a set o, (x,y) has a generating
function of the form €' ¢(xt) 1 (yt), Theorem 2 yields for o, (x,y) another
generating function of the form exhibited in (2.11). For instance, if ¢(u) and
Y (v) are specified ,Fy, the theorem gives for o,(x,y) a class (c arbitrary)

of generating functions involving two variables hypergeometric functions.
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Let us now apply Theorems 1 and 2 to Laguerre polynomials of two
variables L™ (x,y) due to S. F. Ragab [7] defined by

nga’ﬁ) (xv y) =

ntat+ DI(n+pF+1) i (=y)" Lo (@)
n! r"Ta+n—r+1DI(B+r+1)
(2.13)
Where L%a) (z) is the well - known Laguerre polynomials of one variable.
The definition (2.13) is equivalent to the following explicit representa-
tion of L\ (z,y), given by Ragab:

+1 B+1 n n—r et Y
L@ (3 ) — (& In Jrts
n (@ y) Z%;] a—i—l (B+1), 7l s!

(2.14)
Later, the same year Chatterjea [1] gave the following generating func-

tion for L{"? (x,y):

i nl L (2, y)
n—0 (@+1)n(B+ 1)y
(2.15)
We use Theorem 1 to conclude that L(()a’ﬁ ) (z,y) is a constant and, and
forn > 1.

e oF1(—; a+1; —at) oFi(—; B+ 1; —yt) =

9 9 (e} (a+n)(ﬁ+n) a,
(055 + 50 ) B )= L ) = IR 1000,y
(2.16)
In applying theorem 2 to Laguerre polynomials of two variables Lﬁla’ﬁ ) (z,y),

(a
note that o, (z,y) = w and that
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ks n n 1n+k n ..k
0= 2 e an bt Z Z n! k|+k1 + a)) (11—1 ;)k

n=0 k=0 n=0 k=0

=l 1+ a,1+4 F; —u, —v]

Therefore Theorem 2, yields

e . oot yt ® nl (c)n L (z,y)t
(1=1)"% C’HO"H@_E’_ﬁ} _nz::o 1+ ), (1+B)n
(2.17)
a class of generating relations for Lﬁ{’“’ﬂ ) (z,y) due to M.A. Khan and
A K. Shukla [2].

Concluding Remark

Application of the theorems given in this paper have already been shown
in case of Laguerre polynomials of two variables. Thus, this class of product
may be used whenever Laguerre polynomials of two variables occur.
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