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Abstract

The bipartite version of irredundant set, edge-vertex irredundant
set and vertex-edge irredundant set are introduced. Using the bipartite
theory of graph, IRve(G)+γ(G) ≤ |V | and γve(G)+IR(G) ≤ |V | are
proved.
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1. Introduction

All graphs considered here are simple and undirected. [4,5] suggests that
given any problem, say P, on an arbitrary graph G, there is very likely a
corresponding problem Q on a bipartite graphG1, such that a solution for Q
provides a solution for P. The bipartite theory of graphs was introduced in
[4] and a parameter called X−domination number of a bipartite graph was
defined. Let G = (X,Y,E) be a bipartite graph with |X| = p and |Y | = q.
Two vertices u and v in X are X−adjacent if they have a common adjacent
vertex y ∈ Y . Let y ∈ X and ∆Y = max{|NY (u)| : y ∈ X} where the
X−neighbor set NY (u) is defined as NY (u) = {v ∈ X : u and v are X −
adjacent}.

A subset X ⊆ X is an X−dominating set [4] if every x ∈ X − D is
X−adjacent to some vertex in D. The minimum cardinality of a
X−dominating set is called X−domination number and is denoted by
γX(G).

We say a vertex x ∈ X hyper Y−dominates y ∈ Y if y ∈ N(x) or
y ∈ N(NY (x)). A subset S ⊆ X is a hyper Y−dominating set [6] if every
y ∈ Y is hyper Y−dominated by a vertex of S. The minimum cardinality
of a hyper Y-dominating set is called hyper Y−domination number and is
denoted by γhY (G).

Given an arbitrary graph G = (V,E), a vertex u ∈ V (G) ve-dominates
an edge vw ∈ E(G) if (a) u = v or u = w (u incident to vw) or (b) uv
or uw is an edge in G. A subset S ⊆ V (G) is a vertex-edge dominating
set [3] if for all edges e ∈ E(G), there exists a vertex v ∈ S such that v
dominates e. The minimum cardinality of a ve-dominating set of G is called
the vertex-edge domination number and is denoted as γve(G).

An edge e = uv ∈ E(G) ev-dominates a vertex w ∈ V (G) if (i) u = w or
v = w (w is incident to e) or (ii) uw or vw is an edge in G. (w is adjacent
to u or v). A set S ⊆ E(G) is an edge-vertex dominating set [3] if for all
vertices v ∈ V (G), there exists an edge e ∈ S such that e dominates v. The
minimum cardinality of a ev-dominating set of G is called the edge-vertex
domination number and is denoted as γev(G).

Observation: 1. Let G be an arbitrary graph. A vertex u ∈ V (G) ve-
dominates the edge e ∈ E(G) if and only if the edge e ev-dominates the
vertex u ∈ V (G).
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2. Bipartite Construction

The bipartite graph V E(G) constructed from an arbitrary graph G =
(V,E) is defined as in [4]. V E(G) = (V,E, F ) is defined by the edges
F = {(u, e) : e = (u, v) ∈ E}. V E(G) ∼= S(G), where S(G) denotes the
subdivision graph of G.

The bipartite graph EV (G) [4] constructed from an arbitrary graph
G = (V,E) is defined as EV (G) = (E, V, J) where J = {(e, u)(e, v) : e =
(u, v) ∈ E}.

A set S ⊆ V of vertices in a graph G = (V,E) is called a dominating
set [2] if every v ∈ V is either an element of S or is adjacent to an element
of S. The minimum cardinality of a dominating set of a graph G is called
the domination number and is denoted by γ(G).

A set F ⊆ E(G) of edges in a graph G = (V,E) is called an edge dom-
inating set [2] if every e ∈ E(G) is either an element of F or is adjacent to
an element of E − F . The minimum cardinality of an edge dominating set
of a graph G is called the edge domination number and is denoted by γ1(G).

Theorem:2.1 [4] For any graph G,
(a) γX(V E(G)) = γ(G)
(b) γX(EV (G)) = γ1(G).

Theorem:2.2 [6] For any graph G,
(a) γhY (V E(G)) = γve(G)
(b) γhY (EV (G)) = γev(G).

3. Irredundant sets

3.1. Vertex-edge irredundant set

A vertex v ∈ S ⊆ V (G) has a private edge e = uw ∈ E(G) (with respect
to a set S), if: 1. v is incident to e or v is adjacent to either u or w, and 2.
for every vertices x ∈ S − {v}, x is not incident to e and x is not adjacent
to either u or w.

A set S is a vertex-edge irredundant set [3] (simply a ve-irredundant
set) if every vertex v ∈ S has a private edge. The vertex-edge irredun-
dance of a graph G is the cardinality of a maximal ve-irredundant set with
minimum number of vertices and is denoted by irve(G). The upper vertex-
edge irredundance number of a graph G is the cardinality of a maximum
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ve-irredundant set of vertices and is denoted by IRve(G).

Theorem: 3.1.1 [3] Every minimal ve-dominating set is a maximal ve-
irredundant set.

3.2. Edge-vertex irredundant set

An edge e = uv ∈ F ⊆ E(G) has a private vertex w ∈ V (G) ( with respect
to a set F ), if: 1. e is incident to w, and 2. for all edges f = xy ∈ F − {e},
f is not incident to w and neither x nor y is adjacent to w.

A set F is an edge-vertex irredundant set [3]( simply a ev-irredundant
set) if every edge e ∈ F has a private vertex. The edge-vertex irredun-
dance of a graph G is the cardinality of a maximal ev-irredundant set with
minimum number of vertices and is denoted by irev(G). The upper edge-
vertex irredundance number of a graph G is the cardinality of a maximum
ev-irredundant set of vertices and is denoted by IRev(G).

Theorem 3.2.1:[3] Every minimal ev-dominating set of G is a maximal
ev-irredundant set.

3.3. Hyper Y− Irredundant set

Let G = (X,Y,E) be a bipartite graph. Let S ⊆ X. A vertex x ∈ S
has a private hyper Y−neighbor y ∈ Y if 1. x is adjacent to y or y ∈
N(NY (x)) and 2. for all vertices x1 ∈ S − {x}, x1 is not adjacent to y and
y /∈ N(NY (x1)).

A set S is hyper Y−irredundant set if every v ∈ S has a private hyper
Y−neighbor. The hyper Y−irredundance number of a graph G is the min-
imum cardinality of a maximal hyper Y−irredundant set of vertices and is
denoted by irhY (G). The upper hyper Y−irredundance number of a graph
G is the maximum cardinality of a maximal hyper Y−irredundant set of
vertices and is denoted by IRhY (G).

Theorem: 3.3.1 A hyper Y−dominating set S is a minimal hyper
Y−dominating set if and only if it is hyper Y−dominating set and hyper
Y−irredundant set.
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Proof: Let S be a hyper Y -dominating set. Then S is a minimal hyper
Y -dominating set if and only if ∀u ∈ S, ∃y ∈ Y which is not hyper Y -
dominated by S − {u}. Equivalently, S is a minimal hyper Y -dominating
set if and only if ∀u ∈ S, u has atleast one private hyper Y -neighbour. Thus
S is minimal hyper Y -dominating set if and only if it is hyper Y -irredundant
set.

Conversely, let S be both hyper Y -dominating and hyper Y -irredundant.

Claim: S is a minimal hyper Y -dominating set.
If S is not minimal hyper Y -dominating set, there exists v ∈ S for which
S − {v} is hyper Y -dominating. Since S is hyper Y -irredundant, v has a
private hyper Y -neighbor of u. By definition u is not hyper Y -adjacent to
any vertex in S − {v}. That is, S − {v} is not hyper Y -dominating set, a
contradiction. Hence, S is a minimal hyper Y -dominating set.

Theorem: 3.3.2 Every minimal hyper Y−dominating set is a maximal
hyper Y−irredundant set.

Proof: Every minimal hyper Y -dominating set S is hyper Y -irredundant
set.

Claim: S is a maximal hyper Y -irredundant set.
Suppose S is not maximal hyper Y -irredundant set. Then there exists a
vertex u ∈ X − S for which S ∪ {u} is hyper Y -irredundant. There exists
atleast one vertex y ∈ Y which is a private hyper Y -neighbor of u with
respect to S∪{u}. That is no vertex in S is hyper Y -adjacent to y. Hence,
S is not a hyper Y -dominating set, a contradiction. Hence, S is a maximal
hyper Y -irredundant set.

Theorem:3.3.3 For any graph G,

(a) irhY (V E(G)) = irve(G)

(b) irhY (EV (G)) = irev(G).

Proof: Let S be a irhY−set of V E(G) = (X,Y,E). Every x ∈ S has a
private hyper Y−neighbor y ∈ Y . x is adjacent to y or y ∈ N(NY (x)) and
for all vertices x1 ∈ S − {x}, x1 is not adjacent to y and y /∈ N(NY (x1)).
In graph G, x ∈ S ⊆ V is incident with y ∈ E or x is adjacent to either u
or v where y = uv and for every x1 ∈ S − {x}, y ∈ E is not incident with
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x1 and x1 is not adjacent to either u or v. S is a vertex edge irredundant
set.

irev(G) ≤ |S| = irhY (V E(G)).

Let U be a irve−set of G. Every vertex v ∈ S has a private edge e = uw
with respect to U . Equivalently, v is incident with e or v is adjacent to
either u or w and for every x ∈ U − {v}, x is not incident with e and x is
not adjacent to either u or w. In V E(G), every v ∈ S has private hyper
Y−neighbor e. Therefore, U ⊆ X is a hyper Y−irredundant set of V E(G).
Hence, irhY (V E(G)) ≤ |U | = irve(G).

Similarly (b) can be proved.

3.4. X-Irredundant set

Let G = (X,Y,E) be a bipartite graph.Let S ⊆ X . Let u ∈ S . A vertex
v is a private X-neighbor of u with respect to S if u is the only point of S,
X-adjacent to v.

A set S is X-irredundant set if every u ∈ S has a private X-neighbor.
The X-irredundance number of a graph G is the cardinality of a maximal
X-irredundant set of vertices with minimum cardinality and is denoted by
irX(G) . The upper X-irredundance number of a graph G is the cardinality
of a X-irredundant set of vertices with maximum cardinality and is denoted
by IRX(G).

Theorem:3.4.1 A X-dominating set S is a minimal X-dominating set if
and only if it is X-dominating and X-irredundant.

Proof: Let S be a X-dominating set. Then S is a minimal X-dominating
set if and only if for every u ∈ S there exists v ∈ X−(S−{u}) which is not
X-dominated by S − {u}. Equivalently, S is a minimal X-dominating set
if and only if ∀u ∈ S, u has atleast one private X-neighbor with respect to
S. Thus S is minimal X-dominating set if and only if it is X-irredundant.

Conversely, Let S is both X-dominating and X-irredundant.

Claim: S is a minimal X-dominating set.

If S is not a minimal X-dominating set, then there exists v ∈ S for
which S − {v} is X-dominating. Since S is X-irredundant, v has a private
X-neighbor of with respect to S say u (u may be equal to v). By definition,
u is not X-adjacent to any vertex in S − {v}. Therefore, S − {v} is not a
X-dominating set, a contradiction. Hence, S is a minimal X-dominating
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set.

Theorem:3.4.2 Every minimalX-dominating set is a maximalX-irredundant
set.

Proof: Every minimal X-dominating set S is X-irredundant set.

Claim: S is a maximal X-irredundant set.

Suppose S is not a maximal X-irredundant set. Then there exists a
vertex u ∈ X − S for which S ∪ {u} is X-irredundant. Therefore, there
exists atleast one vertex x which is a private X-neighbor of u with respect
to S ∪ {u}. Hence, no vertex in S is X-adjacent to x. Thus S is not X-
dominating set, a contradiction. Hence, S is maximal X-irredundant set.

A vertex v is a private neighbor of a vertex u in a set S ⊆ V (G) with
respect to S if N [v] ∩ S = {u}. The private neighbor set of u ∈ S with
respect to S is defined as pn[u, S] = {v : N [v] ∩ S = {u}}. A set S is
called irredundant set [2] if for every vertex u ∈ S, pn[u, S] 6= φ. The
irredundance number of agraph G is the cardinality of a maximal irredun-
dant set with minimum number of vertices and is denoted by ir(G). The
upper irredundance number of a graph G is the cardinality of a maximum
irredundant set of vertices and is denoted by IR(G).

Theorem:3.4.3 For any graph G,
(a) irX(V E(G)) = ir(G)
(b) irX(EV (G)) = ir1(G)

Proof: Let S be a irX set of V E(G) = (X,Y,E1) . Every v has a private
X-neighbor u. Equivalently, v is X-adjacent to u and no other vertex in
S is X-adjacent to u. In G, v ∈ S is the only vertex adjacent to u and no
other vertex in S is adjacent to u . Therefore, S is an irredundant set of
G.

ir(G) ≤ |S| = irX(V E(G)).

Let U be an ir− set of G. For every vertex v ∈ U , pn[v, U ] 6= φ .
Every vertex v ∈ U has at least one private neighbor with respect to u. In
V E(G), that is every vertex v ∈ U has at least one private X-neighbor.
Therefore, U is an X-irredundant set. Hence, irX(V E(G)) ≤ |U | = ir(G).
Hence, irX(V E(G)) = ir(G).
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(b) Let S be an irX set of EV (G) = (X,Y,E1). Every e has a private
X-neighbor f . Equivalently, e is X-adjacent to f and no other vertex in S
is X-adjacent to f . In G, e ∈ S is the only edge adjacent to f and no other
edge in S is adjacent to f . Therefore, S is an edge irredundant set of G.
Hence, ir1(G) ≤ |S| = irX(EV (G)).

Let U be a ir1− set of G. For every edge e ∈ U , pn[e, U ] 6= φ. Hence,
every edge e ∈ U has at least one private neighbor. That is, in EV (G),
every vertex e ∈ U has at least one private X-neighbor. Therefore, U is an
X-irredundant set in EV (G). Thus, irX(EV (G)) ≤ |U | = ir1(G). Hence,
irX(EV (G)) = ir1(G).

4. Main Result

For any graph G, IRve(G) + γ(G) ≤ |V | and γve(G) + IR(G) ≤ |V | are
proved using bipartite theory of graphs, which are open problem in [3].

Theorem:4.1 Let G = (X,Y,E) be a bipartite graph with NY (x) 6= φ for
every x ∈ X. Then IRhY (G) + γX(G) ≤ |X|.

Proof: Let S be a IRhY set of G. Then, S is a maximal hyper Y -
irredundant set. Therefore, S is a hyper Y -irredundant set. That is every
x ∈ S has a private hyper Y-neighbor y ∈ Y . Then x is adjacent to y or
y ∈ N(NY (x)) and for all vertices x1 ∈ S − {x}, x1 is not adjacent to y
and y /∈ N(NY (x)).

Case(i): x is adjacent with y.

Since NY (v) 6= φ, x has X-neighbours. Let z be any X-neighbour of
x. Suppose z ∈ S. Then z is not adjacent to y and y /∈ N(NY (z)). But
y ∈ N(NY (x)), since x is a X-neighbour of z, a contradiction. Therefore,
any X-neighbour of x is in X − S.

Case(ii): y ∈ N(NY (x)).

Vertices in N(y) are in X−S. Then N(y) ⊆ X−S. Other wise, we get
a contradiction to y ∈ Y is a private hyper Y -neighbor of x ∈ S. Hence,
for every x ∈ S there exists x1 ∈ X−S such that x and x1 are X-adjacent.
That is, X − S is a X-dominating set. Therefore, γX(G) ≤ |X − S| =
|X|− IRhY (G). Hence, IRhY (G) + γX(G) ≤ |X|.
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Corollary: 4.2 For any graph G,
(a)IRve(G) + γ(G) ≤ |V |

(b) IRev(G) + γ1(G) ≤ |E|.

Theorem:4.3 Let G = (X,Y,E) be a bipartite graph with NY (x) 6= φ for
every x ∈ X then IRX(G) + γhY (G) ≤ |X|.

Proof: Let S be a IRX set of G. Every element x ∈ S has a private
X-neighbor. Consider the set X − S. Since X − S is a X-dominating set
elements of Y are either adjacent to X−S or adjacent to vertices which are
X-adjacent to elements ofX−S . Therefore, X−S is a hyper Y -dominating
set. Therefore, γhY ≤ |X − S| = |X|− IRX . Hence, IRX + γhY ≤ |X|.

Corollary: 4.4 For any graph G ,

(a) γve(G) + IR(G) ≤ |V |

(b) γev(G) + IR1(G) ≤ |E| .
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