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Abstract

In this paper, a fuzzifying matroid is induced respectively from
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fuzzifying matroid and representable fuzzifying matroid are presented
and some properties of them are discussed. In general, a graphic
fuzzifying matriod can not be representable over any field. But when
a fuzzifying matroid is isomorphic to a fuzzifying cycle matroid which
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1. Introduction

In 1935, Whitney presented the definition of matroid and used graphic
matroids and vector matroids as the two fundamental examples of ma-
troids. Graphic matroids and representable matroids form respectively a
fundamental class of matroids, there have been numerous basic problems
associated with these classes, many scholars researched them (see [9, 10],
etc). Moreover, numerous operations and results for graphs and matri-
ces provide the inspiration or motivation for corresponding operations and
results for matroids.

Recently, Shi [7] introduced a new approach to fuzzification of matroids,
namely fuzzifying matroids. His approach to the fuzzification of matroids
preserves many basic properties of crisp matroids, and a fuzzifying matroid
and its fuzzy rank function are one-to-one corresponding. Further Shi [8]
presented the concept of (L,M)-fuzzy matroid which is a wider general-
ization of M -fuzzifying matroids. A (2, [0, 1])-fuzzy matroid is precise a
fuzzifying matroid.

In this paper, we induce a fuzzifying matroid from a fuzzy graph and
fuzzy vector subspace, respectively. The concepts of graphic fuzzifying ma-
troid and representable fuzzifying matroid are introduced and some prop-
erties of them are discussed. In general, a graphic fuzzifying matriod can
not be representable over any field. But when a fuzzifying matroid is iso-
morphic to a fuzzifying cycle matroid which is induced by a fuzzy tree, it
is representable over any field.

2. Preliminaries

Throughout this paper, let D be a finite set, we denote the power set of
D by 2D. For any X ⊆ D, we denote by |X| the cardinality of X. Let X
be a non-empty subset of D, fuzzy sets on X are all the mappings from
X to [0, 1], denote by [0, 1]X . Let A ⊆ [0, 1]X , we shall use the following
notations

ImA = {A(x) : x ∈ X},
A[a] = {x ∈ X : A(x) ≥ a}, ∀a ∈ (0, 1],
A(a) = {x ∈ X : A(x) > a}, ∀a ∈ [0, 1).

Definition 2.1 ([2]). Let V be a vector space over field F . Define a fuzzy
set λ : V → [0, 1], if for any v1, v2 ∈ V and a, b ∈ F , λ(av1 + bv2) ≥
λ(v1) ∧ λ(v2) holds, then the pair (V, λ) is called a fuzzy vector subspace.
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For a fuzzy vector subspace eV = (V, λ), λ[a] and λ(a) are vector sub-
spaces of V [2].

Definition 2.2 ([5]). Let D be a finite set and I ⊆ 2D. If I satisfies the
following statements:

(I1) I is non-empty;
(I2) For any A,B ∈ 2D, A ⊆ B, if B ∈ I, then A ∈ I;
(I3) If A,B ∈ I and |B| > |A|, then there is an element e ∈ B−A such

that A ∪ e ∈ I,
then the pair (D, I) is called a matroid. I is called the independent family
on D and its members are called independent sets.

Shi [8] generated the concept of matroids as follows.

Definition 2.3 ([8]). Let I : 2D → [0, 1] be a mapping. If it satisfies the
following statements:

(FI1) I(∅) = 1;
(FI2) For any A,B ∈ 2D, if A ⊆ B, then I(A) ≥ I(B);
(FI3) If A,B ⊆ 2D and |A| < |B|, then there is e ∈ B − A such that

I(A ∪ e) ≥ I(A) ∧ I(B),
then the pair (D, I) is called a fuzzifying matroid. For each A ∈ 2D, I(A)
can be regarded as the degree which A is an independent set.

Theorem 2.4 ([8]). Let I : 2D → [0, 1] be a mapping. Then the following
statements are equivalent:

(1) (D, I) is a fuzzifying matroid.
(2) For each a ∈ (0, 1], (D, I[a]) is a matroid.
(3) For each a ∈ [0, 1), (D, I(a)) is a matroid.

Definition 2.5 ([5]). Let D1 and D2 be two finite sets. Suppose that
H1 = (D1, I1) and H2 = (D2, I2) are two matroids. H1 and H2 are iso-
morphic if there exists a mapping ψ : D1 → D2 such that ψ satisfies the
following statements:

(I) ψ is a one-to-one correspondence,
(II) For each X ⊆ D1, X ∈ I1 if and only if ψ(X) ∈ I2,

denoted by H1
∼= H2. The mapping ψ is called an isomorphic mapping

from H1 to H2.

In crisp matroid theory, let G = (E, V ) be a graph, we can induce a
cycle matroid M(G). A set X of edges is independent in M(G) if and only



20 Chun-E Huang

if X does not contain any cycles. A matroid H = (D, I) is graphic if there
exists a graph G such that H ∼= M(G), H is called a graphic matroid.
Similarly, let B be a subset of a vector space V over field F , we can obtain
a vector matroid M [B]. A set X of vectors is independent in M [B] if and
only if X is linear independence in V . H = (D, I) is representable if there
exists a subset B of some vector space such that H ∼=M [B], H is called a
representable matroid.

Theorem 2.6 ([5]). Let H = (D,I) be a matroid. If H is graphic, then
it is representable over any field.

3. Isomorphism of fuzzifying matroids

In this section, we define the isomorphism of fuzzifying matroids and discuss
its properties.

Definition 3.1. Let H1 = (D1, I1) and H2 = (D2, I2) be two fuzzifying
matroids. H1 and H2 are fuzzifying isomorphic if there exists a mapping
ψ : D1 → D2 such that ψ satisfies the following statements:

(FI) ψ is a one-to-one correspondence,

(FII) For each subset X ⊆ D1, I1(X) = I2(ψ(X)),
denoted by H1

∼= H2, ψ is called an isomorphic mapping from H1 to H2.

For a fuzzifying matroid (D, I), (D,I[a]) is a matroid for each a ∈ (0, 1].
By the finiteness of D, then ImI is a finite subsets of [0, 1]. It is easily to
obtain the following.

Lemma 3.2. Let (E, I) be a fuzzifying matroid. Then there exists a finite
sequence 1 ≥ a1 > a2 > · · · > ar > 0 such that

(i) If a, b ∈ (ai+1, ai](1 ≤ i ≤ r − 1), then I[a] = I[b] = I[ai];

(ii) If a ∈ (ai+1, ai] and b ∈ (ai, ai−1](2 ≤ i ≤ r − 1), then I[b] ⊂ I[a].

Theorem 3.3. Let H1 = (D1,I1) and H2 = (D2, I2) be two fuzzifying
matroids. Then the following statements are equivalent:

(1) H1
∼= H2.

(2) For each a ∈ (0, 1], (D1, (I1)[a]) ∼= (D2, (I2)[a]).
(3) For each a ∈ [0, 1), (D1, (I1)(a)) ∼= (D2, (I2)(a)).
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Proof. (1) ⇒ (2) Since H1
∼= H2, then there exists an isomorphic

mapping ψ : D1 → D2 such that I1(X) = I2(ψ(X)) for any X ⊆ D1.

For each a ∈ (0, 1], ∀X ⊆ D1, X ∈ (I1)[a] if and only if I1(X) ≥ a,
i.e. I2(ψ(X)) ≥ a if and only if ψ(X) ∈ (I2)[a]. Thus (D1, (I1)[a]) ∼=
(D2, (I2)[a]).

(2)⇒ (1) Suppose that ImI1 = {a1, a2, · · · , ar}(a1 > a2 > · · · > ar) and
ImI2 = {b1, b2, · · · , bs}(b1 > b2 > · · · > bs). We show that ImI1 = ImI2
as follows. Suppose that there is an element ai ∈ ImI1 \ ImI2, then there
exists 1 ≤ j ≤ s such that bj < ai < bj−1. We have

(I1)[bj ] = (I1)[ai] ∼= (I2)[ai] = (I2)[bj−1] ⊂ (I1)[bj ].

This is a constriction. Thus ImI1 = ImI2 = {a1, a2, · · · , ar}. By
Lemma 3.2, we can obtain two nest sets of matroids as follows.

{∅} ⊆ (I1)[a1] ⊂ (I1)[a2] ⊂ · · · ⊂ (I1)[ar] ⊆ 2D1 ,

{∅} ⊆ (I2)[a1] ⊆ (I2)[a2] ⊂ · · · ⊂ (I2)[ar] ⊆ 2D2 .

Let ψa1 : µ[a1] → λ[a1] be an isomorphic mapping from (I1)[a1] to (I2)[a1].
We can obtain an isomorphic mapping ψa2 from (I1)[a2] to (I2)[a2] such that
ψa2(A) = ψa1(A) for each A ∈ (I1)[a1]. Further we can obtain an isomorphic
mapping ψa3 from (I1)[a3] to (I2)[a3] such that ψa3(A) = ψa2(A) for each
A ∈ (I1)[a2]. Analogously we can obtain an isomorphic mapping ψar from
(I1)[ar ] to (I2)[ar ] such that ψar(A) = ψar−1(A) for each A ∈ (I1)[ar−1]. By
decomposition theorem of fuzzy sets, we can obtain ∀A ∈ 2D1 ,

I1(A) =
W{a ∈ (0, 1] : A ∈ (I1)[a]}

=
W{a ∈ (0, 1] : ψa(A) ∈ (I2)[a]}

= I2(ψa(A)) = I2(ψar(A)).

Thus I1 ∼= I2 and ψar is precise the corresponding isomorphic mapping.
2

4. Graphic and representable fuzzifying matroids

In this section, the definitions of graphic fuzzifying matroid and repre-
sentable fuzzifying matroid are introduced and some properties of them
are discussed. The relation between graphic fuzzifying matroids and repre-
sentable fuzzifying matroids are considered.
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Let G = (V,E) be a graph with finite node sets V and edge sets E ⊆
V × V . δ and µ are fuzzy sets from V and V × V to [0, 1], respectively.
Then eG = (G, δ, µ) is called a fuzzy graph if

µ(x, y) ≤ δ(x) ∧ δ(y), for any x, y ∈ V.

A fuzzy graph eG = (G, δ, µ) is connected if the corresponding graph G is
connected. When G is a tree, fuzzy graph (G, δ, µ) is also called a fuzzy
tree.

In this paper, let G be a simple graph and δ(x) ≡ 1, we denote a fuzzy
graph by eG = (G,µ).

In the following, we can obtain a fuzzifying matroid from a fuzzy graph.

Theorem 4.1. Let eG = (G,µ) be a fuzzy graph with G = (V,E). Define
a mapping IeG : 2E → [0, 1] such that for each A ⊆ E,

IeG(A) =_
{a ∈ (0, 1] : A ⊆ µ[a]andA does not contain any cycles}.

Then (E, IeG) is a fuzzifying matroid.
Proof. By the definition of IeG, it is easy to prove it satisfies (FI1) and
(FI2), we show that (FI3) holds as follows. If A,B ∈ 2E and |B| > |A|,
in order to prove that

W
e∈B−A

IeG(A ∪ e) ≥ IeG(A) ∧ IeG(B), we suppose
that IeG(A) ∧ IeG(B) 6= 0. Take any b ∈ (0, 1] and b ≤ IeG(A) ∧ IeG(B),
then IeG(A) ≥ b and IeG(B) ≥ b. By the definition of IeG and the finity of
µ[a](a ∈ (0, 1]), there exist a1 ≥ b and a2 ≥ b such that A ⊆ µ[a1] ⊆ µ[b],
B ⊆ µ[a2] ⊆ µ[b] and A,B do not contain any cycles. Then in subgraph µ[b],
there exists an edge e ∈ B−A such that A∪ e does not contain any cycles.
Thus IeG(A ∪ e) ≥ b. Therefore

W
e∈B−A

IeG(A ∪ e) ≥ b. By the arbitrariness

of b, we have
W

e∈B−A
IeG(A ∪ e) ≥ IeG(A) ∧ IeG(B). 2

In above Theorem, the pair ( eG, IeG) is called the fuzzifying cycle matroid
of eG, denoted MF ( eG).

The next example shows that distinct fuzzy graphs may induce same
fuzzifying cycle matroid and their corresponding graphs may not be iso-
morphic.

Example 4.2. Let fG1 = (G1, µ), fG2 = (G2, µ) be fuzzy graphs with cor-
responding graphs of figure 1. We can easily obtain MF (fG1) = MF (fG2).
But obviously G1 is not isomorphic to G2. 2
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Similarly, we can induce a fuzzifying matroid by a fuzzy vector subspace.

Theorem 4.3. Let eV = (V, λ) be a fuzzy vector subspace and U be a
subset of V . We define a mapping IU : 2U → [0, 1] such that for each
A ⊆ U ,

IU (A) =
_
{a ∈ (0, 1] : A ⊆ λ[a] and A is linearly independent }

Then (U, IU ) is a fuzzifying matroid induced by U .

The proof is similar to that of Theorem 4.1.
The pair (eV , IU ) is called the fuzzifying vector matroid induced by U ,

denoted by MF [U ].

Definition 4.4. Let H = (D, I) be a fuzzifying matroid. If there exists a
fuzzy graph eG = (G,µ) such that H ∼=MF ( eG), then H is called a graphic
fuzzifying matroid, we also say that H is graphic.

Definition 4.5. Let H = (D, I) be a fuzzifying matroid. If we can find a
subset U of some fuzzy vector subspace eV = (V, λ) such that H ∼=MF [U ],
then H is called a representable fuzzifying matroid, we also say that H is
representable.

Theorem 4.6. Let I : 2E → [0, 1] be a mapping. Then the following
statements are equivalent:

(1) H = (D, I) is a graphic fuzzifying matroid;
(2) For each a ∈ (0, 1], (D[a], I[a]) is a graphic matroid;
(3) For each a ∈ [0, 1), (D(a), I(a)) is a graphic matroid.
where

D[a] = {e ∈ D : ∃A ∈ I[a] such that e ∈ A},
D(a) = {e ∈ D : ∃A ∈ I(a) such that e ∈ A}.
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Proof. (1) ⇒ (2) By Theorem 2.4, (D, I[a]) is a matroid for each a ∈
(0, 1]. Then (D[a], I[a]) is a matroid for each a ∈ (0, 1]. Since H is a graphic

fuzzifying matroid, then there exists a fuzzy graph eG = (G,µ) such that
H ∼=MF ( eG). Suppose that ψ : D→ E(G) is the one-to-one correspondence
such that I(A) = IeG(ψ(A)) for any A ∈ 2D. For each a ∈ (0, 1], µ[a] is
a subgraph of G, we denote the cycle matroid M(µ[a]) by (E(µ[a]), Ia).
Define a mapping ϕ : D[a] → E(µ[a]) by

ϕ(x) = ψ(x), ∀x ∈ D[a],

then ϕ is a one-to-one correspondence. In the following, we show that
(D[a], I[a]) ∼= M(µ[a]). We need to prove that X ∈ I[a] if and only if
ϕ(X) ∈ Ia. Since H ∼=MF [ eG] and the finite numbers of subgraph of G, we
have
∀X ∈ I[a] ⇒ I(X) ≥ a

⇒ IeG(ϕ(X)) ≥ a

⇒ W{b ∈ (0, 1] : ϕ(X) ⊆ µ[b]andϕ(X)does not contain

any cycles ≥ a
⇒ ∃b ≥ asuch thatϕ(X) ⊆ µ[b]andϕ(X)does not

contain any cycles.
⇒ ϕ(X) ⊆ µ[b] ⊆ µ[a]andϕ(X)does not contain any cycles.
⇒ ϕ(X) ∈ Ia.

Conversely, ∀ϕ(X) ∈ Ia, it implies ϕ(X) ⊆ µ[a] and ϕ(X) does not
contain any cycles, we have IeG(ϕ(X)) ≥ a, i.e. IeG(ψ(X)) ≥ a, I(X) ≥ a,
it follows that X ∈ I[a]. Thus (D[a], I[a]) is graphic.

(2)⇒ (1) If (D[a], I[a]) is a graphic matroid for each a ∈ (0, 1], then H
is a fuzzifying matroid. We show that H is graphic as follows.

Since H is a fuzzifying matroid, then there exists a finite sequence
1 ≥ a1 > a2 > · · · > ar > 0. By Lemma 3.2, we can obtain a nest set of
matroids as follows

{∅} ⊆ I[a1] ⊂ · · · ⊂ I[ar ] ⊆ 2E.

Since (D[a1], I[a1]) is graphic, then there is a graph G[a1] such that
(D[a1], I[a1]) ∼=M(G[a1]). We can obtain a graph G[a2] such that
(D[a2], I[a2]) ∼= M(G[a2]) and G[a1] 6⊆ G[a2]. Analogously we can obtain a
graph G[ar] such that (D[ar ], I[ar]) ∼= M(G[ar ]) and G[ar−1] ⊂ G[ar]. Thus
we obtain a sequence

G[a1] ⊂ G[a2] ⊂ · · · ⊂ G[ar].
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Define a fuzzy set µ : G[ar] → [0, 1] by

µ(e) =
_
{a ∈ (0, 1] : e ∈ G[a]}.

Thus we obtain a fuzzy graph eG = (G[ar ], µ). We prove that H
∼=

MF (G[ar ]) as follows. We denote the cycle matroid of G[ai](0 ≤ i ≤ r) by
M(G[ai]) = (E(G[ai]),Iai). Since (D[a1],I[a1]) ∼=M(G[a1]), then there exists
an isomorphic mapping ψa1 : D[a1] → E(G[a1]). By (D[a2], I[a2]) ∼=M(G[a2])
and I[a1] 6⊆ I[a2], we can obtain that an isomorphic mapping ψa2 such
that ψa2(X) = ψa1(X) for any X ∈ I[a1]. Analogously we can obtain an
isomorphic mapping ψar such that ψar(X) = ψar−1(X) for any X ∈ I[ar ].

Define a one-to-one mapping ψ : D[ar ] → E(G[ar ]) such that ψ(X) =
ψar(X) for any X ∈ I[ar]. For any X ⊆ D[ar], we can obtain

I(X) =
W{a ∈ (0, 1] : X ∈ I[a]}

=
W{a ∈ (0, 1] : ψa(X) ∈ Ia}

=
W{a ∈ (0, 1] : ψar(X) ∈ Ia}

=
W{a ∈ (0, 1] : ψ(X) ∈ Ia}

=
W{a ∈ (0, 1] : ψ(X) ⊆ G[a] = µ[a]andψ(X)does not contains
any cycles

= IeG(ψ(X))
Thus (D[ar ], I) is a graphic fuzzifying matroid. Let A = {A ⊆ D :

I(A) = 0}. Adding all members of A to D[ar ], we obtain the set D. In
order to build the one-to-one correspondence between D and a fuzzy graph,
we only need to add some edges such that their values of µ are zero. By
above analysis, we obtain that H is graphic.

Similarly, we can prove that (1)⇔ (3). 2
By Theorem 2.4 and Theorem 2.6, it is easy to obtain the following.

Corollary 4.7. Let H = (D,I) be a fuzzifying matroid. If H is graphic,
then the following statements hold:

(1) For each a ∈ (0, 1], (D[a], I[a]) is representable over any field;
(2) For each a ∈ [0, 1), (D(a), I(a)) is representable over any field.

Theorem 4.8. LetH = (D, I) is a representable fuzzifying matroid. Then
the following statements hold:

(1) For each a ∈ (0, 1], (D[a], I[a]) is a representable matroid;
(2) For each a ∈ [0, 1), (D(a), I(a)) is a representable matroid.
where

D[a] = {e ∈ D : ∃A ∈ I[a] such that e ∈ A},
D(a) = {e ∈ D : ∃A ∈ I(a) such that e ∈ A}.
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Proof. (1) By Corollary 2.4, we have I[a] is a matroid for each a ∈ (0, 1].
Since H is a representable fuzzifying matroid, there exists a fuzzy vector
subspace eV = (V, λ) and U ⊆ V such that H ∼= MF [ eU ]. Suppose that
ψ : D → U is the one-to-one correspondence such that I(A) = IeV (ψ(A))
for any A ∈ 2D. For each a ∈ (0, 1], λ[a] is a subspace of V , we denote the
vector matroid M [λ[a]] = (λ[a], Ia). Define a mapping ϕ : D[a] → λ[a] by

ϕ(x) = ψ(x), ∀x ∈ D[a],

then ϕ is a one-to-one correspondence. In the following, we show that
I[a] ∼= M [λ[a]]. We need to prove that X ∈ I[a] if and only if ϕ(X) ∈ Ia.
Since H ∼=MF [U ] and the finity of levels of λ, we have

∀X ∈ I[a] ⇒ I(X) ≥ a
⇒ IeG(ϕ(X)) ≥ a

⇒ W{b ∈ (0, 1] : ϕ(X) ⊆ µ[b]andϕ(X)is linear independent
≥ a

⇒ ∃b ≥ asuch thatϕ(X) ⊆ µ[b]andϕ(X)is linear
independent

⇒ ϕ(X) ⊆ µ[b] ⊆ µ[a]andϕ(X)is linear independent
⇒ ϕ(X) ∈ Ia.

Conversely, ∀ϕ(X) ∈ Ia, it implies ϕ(X) ⊆ λ[a] and ϕ(X) does not
contain any cycles, we have IeG(ϕ(X)) ≥ a, i.e. IeG(ψ(X)) ≥ a, then
I(X) ≥ a, it means X ∈ I[a]. Thus (D[a], I[a]) is representable.

Similarly, we can prove (2) holds. 2

Theorem 4.9. Let H = (D, I) be a graphic fuzzifying matroid. Then
there is a connected fuzzy graph eG such that H ∼=MF ( eG).
Proof. Since H is a graphic fuzzifying matroid, then there is a fuzzy
graph eG0 = (G0, µ) such that H ∼= MF ( eG0). If eG0 is not a connected
fuzzy graph, it implies G0 is not connected. We suppose that G0 have k
connected components, denote G1, G2, · · · ,Gk. We choose an vertex vi from
each connected component Gi, and identify v1, v2, · · · , vk as a new vertex,
then form a new graph G. Obviously, we have E(G) = E(G0) and G is
connected. Thus eG = (G,µ) is a new fuzzy graph. ∀X ⊆ E(G0), X does
not contain any cycles of G0 if and only if X does not contain any cycles of
G. By Theorem 4.1, we have H ∼=MF ( eG). 2

In crisp matroid theory, a graphic matriod is representable over any
field. However, the next example shows that not all graphic fuzzifying
matroids are representable over any field.
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Example 4.10. Let E = {a, b, c}. Define a mapping I : 2E → [0, 1] by

I(A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, A = {∅},
1
2 , A ∈ {{a}, {b}, {a, b}},
1
3 , A ∈ {{c}, {a, c}, {c, b}},
0, A = {a, b, c}.

Then

I[r] =

⎧⎪⎨⎪⎩
{{∅}, {a}, {b}, {c}, {a, b}, {a, c}, {c, b}, }, r ∈ (0, 13 ],
{{∅}, {a}, {b}, {a, b}}, r ∈ (13 ,

1
2 ],

{∅}, r ∈ (12 , 1].

(E, I[r]) is a matroid for each r ∈ (0, 1], thus (E,I) is a fuzzifying matroid.
Let eG = (G,µ) be a fuzzy graph of figure 2.
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We can check that (E,I) ∼= MF ( eG). Thus (E, I) is a graphic fuzzifying
matriod.

Suppose that there exists a fuzzy vector subspace eV = (V, λ) and U ⊆ V
such that MF ( eG) ∼=MF [U ]. By Theorem 4.1 and Theorem 4.3, we obtain
that U consists of three elements which are linear dependent, and any two
elements of them are linear independent. Let U = {v1, v2, v3}, by Definition
3.1, Theorem 4.1 and Theorem 4.3, then there always exists a vector such
that its value in λ is precise 1

3 . Without loss of generality, we assume that
λ(v1) =

1
3 . Since v1 is the linear combination of v2 and v3, it follows that

1

3
= λ(v1) ≥ λ(v2) ∧ λ(v3) =

1

2
.

This is a contradiction. Thus (E, I) is not representable.
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Next, we consider the conditions that a graphic fuzzifying matroid is
representable over any field.

Lemma 4.11 ([3]). Let V be a vector space with basis B = {βα}α∈Γ (Γ
is an index set) and µ0 ∈ (0, 1] is a constant. We suppose that {µα}α∈Γ ⊆
(0, 1] are any set of constants which satisfy µ0 ≥ µα for all α ∈ Γ. We
construct a function µ : V → [0, 1] in the following way. Any z 6= 0, z ∈ V

can be uniquely written as z =
NP
i=1

aiβαi with ai 6= 0. We define

µ(z) = ∧Ni=1µ(βαi) = ∧Ni=1µαi and µ(0) = µ0.

Then eV = (V, µ) is a fuzzy vector subspace.

Theorem 4.12. Let H = (D,I) be a fuzzifying matroid. If H ∼=MF ( eG),
where eG = (G,µ) is a fuzzy tree, then H is representable over any field F .

Proof. Let m and n be the edge-number and vertex-number of eG.
Without loss of generality, we suppose that n > 0. Since F is a field,
we suppose that 1 and 0 are its multiplicative and additive unit-element,
respectively. Assume that V (n, F ) denotes the n dimension vector space
on F . We suppose further that Ei is the following family:

Ei = {ei ∈ V (n, F ) | only the ith value of ei is 1 , the others are zero }.

We show that how to obtain a fuzzy vector subspace eV such that the
fuzzifying matroid induced by eV is isomorphic to H.

Step 1 Suppose that the vertex set V (G) = {v1, v2, ..., vn}.
Step 2 Suppose a mapping φ : E(G) → V (n, F ), such that for each

edge e = vivj(let i ≤ j), φ(e) = ej − ei.

Step 3 Let B = {φ(e) : e ∈ E(G)}, V = hBi where hBi is the spanning
subspace by B.

In crisp matroids, we know for any subset X of E(G), X does not con-
tain any cycles in eG if and only if the vector family of φ(X) is independent
on V .

Since eG is a fuzzy tree, then the vectors of B are linear independent
on hBi. By Lemma 4.11, we can obtain a fuzzy vector subspace eV =
(hBi, λ). By Theorem 4.1 and Theorem 4.3, we obtain that MF ( eG) ∼=
MF (eV ). Therefore H is representable. 2
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5. Conclusions

In this paper, we induce respectively a fuzzifying matroid from a fuzzy
graph and a fuzzy vector subspace, introduce the concepts of graphic fuzzi-
fying matroid and representable fuzzifying matroid, and obtain some prop-
erties of them. We give an example to show that not all graphic fuzzifying
matriods can be representable over any field. But when a fuzzifying ma-
troid is isomorphic to a fuzzifying cycle matroid which is induced by a fuzzy
tree, we prove that it is a representable over any field.
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