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Abstract

The equitable total coloring of a graph G is a combination of vertex
and edge coloring whose color classes differs by atmost one. In this
paper, we find the equitable total chromatic number for Sn, Wn, Hn

and Gn.
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1. Introduction

Graphs in this paper are finite, simple and undirected graphs without loops.
The total coloring was introduced by Behzad and Vizing in 1964. A total
coloring of a graph G is a coloring of all elements (i.e,vertices and edges) of
G, such that no two adjacent or incident elements receive the same color.
The minimum number of colors is called the total chromatic number of
G and is denoted by χ00 (G). In 1973, Meyer[7] presented the concept of
equitable coloring and conjectured that the equitable chromatic number of
a connected graph G, is atmost ∆ (G). In 1994, Hung-lin Fu first intro-
duced the concepts of equitable total coloring and equitable total chromatic
number of a graph. Furthermore Fu presented a conjecture concerning the
equitable total chromatic number, χ00= (G) ≤ ∆+ 2.
Let G = (V,E) be a graph with vertex set V (G) and edge set E(G).
Clearly χ00= (G) ≥ ∆ (G) + 1, where ∆(G) is the maximum degree of G.
In 1989, Sanchez Arroyo[8] proved that the problem of determining the
total chromatic number of an arbitrary graph is NP-hard. It is also NP
- Hard to decide χ00= (G) ≤ ∆ (G) + 1 or χ00= (G) ≤ ∆ (G) + 2. Graphs
with χ00= (G) ≤ ∆ (G) + 1 are said to be of Type 1, and graphs with
χ00= (G) ≤ ∆ (G) + 2 are said to be of Type 2. The problem of deciding
whether a graph is Type 1 has been shown NP-Complete in this paper for
Sn, Wn, Hn and Gn.

2. Preliminaries

Definition 2.1. For any integer n ≥ 4, the wheel graph Wn is the n-
vertex graph obtained by joining a vertex v0 to each of the n − 1 vertices
{v1, v2, . . . , vn} of the cycle graph Cn−1.

Definition 2.2. The Helm graph Hn is the graph obtained from a Wheel
graph Wn by adjoining a pendant edge to each vertex of the n− 1 cycle in
Wn.

Definition 2.3. The Gear graph Gn is the graph obtained from a Wheel
graph Wn by adding a vertex to each edge of the n− 1 cycle in Wn.

Definition 2.4. The n- sunlet graph on 2n vertices is obtained by attach-
ing n pendant edges to the cycle Cn and is denoted by Sn.

Definition 2.5. [6] For a simple graph G (V,E), let f be a proper k−total
coloring of G

||Ti|− |Tj || ≤ 1, i, j = 1, 2, . . . , k.
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The partition {Ti} = {Vi ∪Ei : 1 ≤ i ≤ k} is called a k−equitable total
coloring (k−ETC of G in brief), and

χ00= (G) = min {k : there exists a k − ETC of G}

is called the equitable total chromatic number ofG, where ∀x ∈ Ti = Vi∪Ei,
f (x) = i, i = 1, 2, . . . , k.

Following [4], let us denote the Total Coloring Conjecture by TCC.

Conjecture 2.6. [TCC] For any graph G, ∆ (G)+1 ≤ χ00 (G) ≤ ∆ (G)+
2.

Conjecture 2.7. [4][10] For every graphG,G has an equitable total k−coloring
for each k ≥ max{χ00 (G) ,∆ (G) + 2}.

Conjecture 2.8. [4] [ETCC] For every graph G, χ00= (G) ≤ ∆ (G) + 2.

Lemma 2.9. [6] For complete graph Kp with order p,

χ00= (Kp) =

(
p, p ≡ 1 mod 2
p+ 1, p ≡ 0 mod 2.

Lemma 2.10. [10] Let G be a graph consisting of two components G1 and
G2. If G1 and G2 are equitably total k−colorable, then so is G.

Proof. Let
³fT1,fT2, . . . ,fTk´ and ³T1, T2, . . . , Tk´ be equitable total k−colorings

of G1 and G2 repectively, satisfying
¯̄̄fT1 ¯̄̄ ≤ ¯̄̄fT2 ¯̄̄ ≤ . . . ≤

¯̄̄fTk ¯̄̄ and ¯̄̄T1 ¯̄̄ ≤¯̄̄
T2
¯̄̄
≤ . . . ≤

¯̄̄
Tk
¯̄̄
. Then we put

Ti = eTi ∪ T k−i+1, i = 1, 2, . . . , k.

It is easy to see that (T1, T2, . . . , Tk) is an equitable total k−coloring of G.
2

In the following section, we determine the equitable total chromatic
number of Sn, Wn, Hn and Gn.

3. Main Results

Theorem 3.1. For Sunlet graph Sn with n ≥ 3 , χ00= (Sn) = 4.
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Proof. Let Sn be the sunlet graph on 2n vertices and 2n edges.

Let V (Sn) = {v1, v2, v3, . . . , vn}
[
{u1, u2, u3, . . . , un} and

E (Sn) = {ei : 1 ≤ i ≤ n− 1}
[
{en}

[
{e0i : 1 ≤ i ≤ n}

where ei is the edge vivi+1 (1 ≤ i ≤ n− 1) , en is the edge vnv1 and e0i is
the edge viui (1 ≤ i ≤ n).

We define an equitable total coloring f , such that f : S → C where
S = V (Sn) ∪E (Sn) and C = {1, 2, 3, 4}. The order of coloring is followed
by coloring the pendant vertices first followed by pendant edges, rim ver-
tices and rim edges respectively. In this total coloration, C(ui) means the
color of the ith pendant vertex ui, C(ei) means the color of the i

th rim edge
ei and C(e0i) means the color of the i

th pendant edge e0i. While coloring,
when the value mod 4 is equal to 0 it should be replaced by 4.

Case 1: n ≡ 0(mod 4)

f (ui) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if i ≡ 1(mod 4)
2, if i ≡ 2(mod 4) for 1 ≤ i ≤ n
3, if i ≡ 3(mod 4)
4, if i ≡ 0(mod 4)

f
¡
e0i
¢
= {C(ui) + 1}(mod 4), for 1 ≤ i ≤ n

f (vi) = {C(e0i) + 1}(mod 4), for 1 ≤ i ≤ n

f (ei) = C(ui), for 1 ≤ i ≤ n

Case 2: n ≡ 1(mod 4)

f (ui) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if i ≡ 1(mod 4)
2, if i ≡ 2(mod 4) for 1 ≤ i ≤ n− 2
3, if i ≡ 3(mod 4)
4, if i ≡ 0(mod 4)

f (un−1) = 1

f (un) = 4
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f
¡
e0i
¢
= {C(ui) + 1}(mod 4), for 1 ≤ i ≤ n− 2

f
¡
e0n−1

¢
= 2

f
¡
e0n
¢
= 3

f (vi) = {C(e0i) + 1}(mod 4), for 1 ≤ i ≤ n− 2

f (vn−1) = 4

f (vn) = 2

f (ei) = C(ui), for 1 ≤ i ≤ n

Case 3: n ≡ 2(mod 4)

f (ui) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if i ≡ 1(mod 4)
2, if i ≡ 2(mod 4) for 1 ≤ i ≤ n− 1
3, if i ≡ 3(mod 4)
4, if i ≡ 0(mod 4)

f (un) = 4

f
¡
e0i
¢
=

(
{C(ui) + 1}(mod 4), for 1 ≤ i ≤ n− 1
3, for i = n

f (vi) =

(
{C(e0i) + 1}(mod 4), for 1 ≤ i ≤ n− 1
2, for i = n

f (ei) = C(ui), for 1 ≤ i ≤ n

Case 4: n ≡ 3(mod 4)

f (ui) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if i ≡ 1(mod 4)
2, if i ≡ 2(mod 4) for 1 ≤ i ≤ n− 1
3, if i ≡ 3(mod 4)
4, if i ≡ 0(mod 4)
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f (un) = 4

f
¡
e0i
¢
=

(
{C(ui) + 1}(mod 4), for 1 ≤ i ≤ n− 1
3, for i = n

f (vi) =

(
{C(e0i) + 1}(mod 4), for 1 ≤ i ≤ n− 1
1, for i = n

f (ei) = C(ui), for 1 ≤ i ≤ n

Based on the above mehod of coloring, we observe that Sn is equi-
tably total colorable with 4 colors, such that its color classes are T (Sn) =
{T1, T2, T3, T4}. Clearly these color classes T1, T2, T3, T4 are independent
sets of Sn with no vertices and edges in common and satisfies ||Ti|− |Tj || ≤
1, for i 6= j. For example consider the case n ≡ 0(mod 4) (See Figure 1),
in this |T1| = |T2| = |T3| = |T4| = n which implies ||Ti|− |Tj || ≤ 1, for i 6= j
and so it is equitably total colorable with 4 colors. Hence χ00= (Sn) ≤ 4.
Since ∆ = 3 , we have χ00= (Sn) ≥ χ00 (Sn) ≥ ∆ + 1 (= 4). Therefore
χ0= (Sn) = 4. Similarly this is true for all other cases. Hence f is an
equitable total 4-coloring of Sn. 2
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Algorithm : Equitable total coloring of Sunlet graph

Input: n, the number of vertices of Sn
Output: Equitably total colored Sn

Initialize Sn with 2n vertices, the rim vertices by v1, v2, v3, . . . , vn and
pendant vertices by u1, u2, u3, . . . , un.

Initialize the adjacent edges on the rim by e1, e2, e3, . . . , en and pendant
edges by e01, e

0
2, e

0
3, . . . , e

0
n.

Let f be the coloring of vertices and edges in Sn such that f : S →
{1, 2, 3, 4} where S = V (Sn) ∪E (Sn).

Apply the coloring rules of Theorem 3.1 for each of the following cases
if (n ≡ 0 mod 4)

Marisol Martínez
fig-1
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for i = 1 to n
{
e0i = {C(ui) + 1}(mod 4);
vi = {C(e0i) + 1}(mod 4);
ei = C(ui);
}
end for
if (n ≡ 1 mod 4)
for i = 1 to n− 2
{
if (i = n− 1)
ui = 1;
if (i = n)
ui = 4;
e0i = {C(ui) + 1}(mod 4);
if (i = n− 1)
e0i = 2;
if (i = n)
e0i = 3;
vi = {C(e0i) + 1}(mod 4);
if (i = n− 1)
vi = 4;
if (i = n)
vi = 2;
}
end for
for i = 1 to n
{
ei = C(ui);
}
end for
if (n ≡ 2 mod 4)
for i = 1 to n− 1
{
if (i = n)
ui = 4;
e0i = {C(ui) + 1}(mod 4);
if (i = n)
e0i = 3;
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vi = {C(e0i) + 1}(mod 4);
if (i = n)
vi = 2;
}
end for
for i = 1 to n
{
ei = C(ui);
}
end for
if (n ≡ 3 mod 4)
for i = 1 to n− 1
{
if (i = n)
ui = 4;
e0i = {C(ui) + 1}(mod 4);
if (i = n)
e0i = 3;
vi = {C(e0i) + 1}(mod 4);
if (i = n)
vi = 1;
}
end for
for i = 1 to n
{
ei = C(ui);
}
end for
return f ;

Theorem 3.2. For Wheel graph Wn with n ≥ 4, χ00= (Wn) = n.

Proof. The Wheel graph Wn consists of n vertices and 2(n− 1) edges.

Let V (Wn) = {v0}
[
{vi : 1 ≤ i ≤ n− 1} and

E (Wn) = {ei : 1 ≤ i ≤ n− 1}
[
{e0i : 1 ≤ i ≤ n− 1}

where ei is the edge v0vi (1 ≤ i ≤ n− 1) and e0i is the edge vivi+1 (1 ≤ i ≤ n− 1).
We define an equitable total coloring f , such that f : S → C where

S = V (Wn) ∪ E (Wn) and C = {1, 2, . . . , n}. In this coloration, C(ei)
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means the color of the ith edge ei and when the value mod n is equal to 0
it is replaced by n. The equitable total coloring is obtianed by coloring the
vertices and edges as follows:

f (v0) = 1

f (v1) = n

f (vi) = i, for 2 ≤ i ≤ n− 1

f (ei) = i+ 1, for 1 ≤ i ≤ n− 1

f
¡
e0i
¢
=

(
{C(ei) + 2}(mod n), for 1 ≤ i ≤ n− 2
3, for i = n− 1

It is clear from the above rule of coloring Wn is equitably total col-
orable with n colors. The color class of Wn are grouped as T (Wn) =
{T1, T2, . . . , Tn}, which are independent sets with no vertices and edges in
common and ||Ti|− |Tj || ≤ 1, for any i 6= j. For example consider the case
n = 7 (See Figure 2), for which |T1| = |T2| = 2 and |T3| = |T4| = |T5| =
|T6| = |T7| = 3, such that it satisfies the condition ||Ti|− |Tj || ≤ 1, for
i 6= j. So it is equitably total colorable with n colors. Hence χ00= (Wn) ≤ n.
Further, since ∆ = n − 1 , we have χ00= (Wn) ≥ χ00 (Wn) ≥ ∆ + 1 (= n).
Therefore χ00= (Wn) = n. Similarly it holds the inequality ||Ti|− |Tj || ≤ 1 if
i 6= j for all other values of n ≥ 4. Hence χ0= (Wn) = n. 2
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Algorithm : Equitable total coloring of Wheel graph

Input: n, the number of vertices of Wn

Output: Equitably total colored Wn

Initialize Wn with n vertices, the center vertices by v0 and rim vertices
by v1, v2, v3, . . . , vn−1.

Initialize the adjacent edges on the center by e1, e2, e3, . . . , en−1 and ad-
jacent edges on the rim by e01, e

0
2, e

0
3, . . . , e

0
n−1.

Let f be the coloring of vertices and edges in Wn such that f : S →
{1, 2, . . . , n} where S = V (Wn) ∪E (Wn).

Apply the coloring rules of Theorem 3.2 for each of the following cases

for i = 0 to n− 1
{
if (i = 0)
vi = 1;
if (i = 1)
vi = n;
else
vi = i;
}

Marisol Martínez
fig-2
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end for

for i = 1 to n− 1
{
ei = i+ 1;
if (i = n− 1)
e0i = 3;
else
e0i = {C(ei) + 2}(mod n);
}
end for
return f ;

Theorem 3.3. For Helm graph Hn with n ≥ 4, χ00= (Hn) = n.

Proof. The Helm graph Hn consists of 2n − 1 vertices and 3(n − 1)
edges.

Let V (Hn) = {v0}
[
{vi : 1 ≤ i ≤ n− 1}

[
{ui : 1 ≤ i ≤ n− 1} and

and E (Hn) = {ei : 1 ≤ i ≤ n − 1}S{e0i : 1 ≤ i ≤ n − 2}S{e0n−1}S{e00i :
1 ≤ i ≤ n− 1}
where ei is the edge v0vi (1 ≤ i ≤ n− 1) , e0i is the edge v0vi+1 (1 ≤ i ≤ n− 2),
e0n−1 is the edge vn−1v1 and e00i is the edge viui (1 ≤ i ≤ n− 1).

Define a function f : S → C where S = V (Hn) ∪ E (Hn) and C =
{1, 2, . . . , n}. The equitable total coloring pattern is as follows:

f (v0) = 1

f (v1) = n− 1

f (v2) = n

f (vi) = i− 1, for 3 ≤ i ≤ n− 1

f (ei) = i+ 1, for 1 ≤ i ≤ n− 1

f
¡
e0i
¢
=

(
i+ 3(mod n), for 1 ≤ i ≤ n− 2
3, for i = n− 1



An Algorithmic Approach to Equitable Total Chromatic Number of...319

f
¡
e00i
¢
=

(
i+ 4(mod n), for 1 ≤ i ≤ n− 2
4, for i = n− 1

f
¡
u0i
¢
= i, for 1 ≤ i ≤ n− 1

With this pattern we can equitably total color the graph Hn with n
colors. The color classes of Hn are grouped as T (Hn) = {T1, T2, . . . , Tn}
which are independent sets and satisfies the condition ||Ti|− |Tj || ≤ 1,
i 6= j. For example consider the case n = 7 (See Figure 3), for which
|T1| = |T2| = |T3| = |T7| = 4 and |T4| = |T5| = |T6| = 5. This implies
||Ti|− |Tj || ≤ 1, for i 6= j and so it is equitably total colorable with n
colors. Hence χ00= (Hn) ≤ n. Since ∆ = n − 1 , we have χ00= (Hn) ≥
χ00 (Hn) ≥ ∆+ 1 (= n). Therefore χ00= (Hn) = n. Similarly this is true for
all other values of n ≥ 4. Hence χ00= (Hn) = n. 2

Marisol Martínez
fig-3
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Algorithm : Equitable total coloring of Helm graph

Input: n, the number of vertices of Hn

Output: Equitably total colored Hn

Initialize Hn with 2n−1 vertices, the center vertices by v0, the rim ver-
tices by v1, v2, v3, . . . , vn−1 and the pendant vertices by u1, u2, u3, . . . , un−1.

Initialize the 3(n− 1) edges, the adjacent edges on the center by
e1, e2, e3, . . . , en−1, the adjacent edges on the rim by e01, e

0
2, e

0
3, . . . , e

0
n−1 and

the pendant edges by e001, e
00
2, e

00
3, . . . , e

00
n−1.

Let f be the coloring of vertices and edges in Hn such that f : S →
{1, 2, . . . , n} where S = V (Hn) ∪E (Hn).

Apply the coloring rules of Theorem 3.3 for each of the following cases

for i = 0 to n− 1
{
if (i = 0)
vi = 1;
if (i = 1)
vi = n− 1;
if (i = 2)
vi = n;
else
vi = i− 1;
}
end for

for i = 1 to n− 1
{
ui = i;
ei = i+ 1;
if (i = n− 1)
e0i = 3;
else
e0i = i+ 3(mod n);
if (i = n− 1)
e00i = 4;
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else
e00i = i+ 4(mod n);
}
end for
return f ;

Theorem 3.4. For Gear graph Gn with n ≥ 4, χ00= (Gn) = n.

Proof. The Gear graph Gn consists of 2n−1 vertices and 3(n−1) edges.
Let V (Gn) = {v0}

S{vi : 1 ≤ i ≤ n−1}S{v0i : 1 ≤ i ≤ n−1} and E (Gn) =
{ei : 1 ≤ i ≤ n− 1}S{e0i : 1 ≤ i ≤ n− 1}S{e00i : 1 ≤ i ≤ n− 2}S{e00n−1}
where ei is the edge v0vi (1 ≤ i ≤ n− 1) , e0i is the edge viv0i (1 ≤ i ≤ n− 1),
e00i is the edge v

0
ivi+1 (1 ≤ i ≤ n− 2) and e0n−1 is the edge v

0
n−1v1.

Define a function f : S → C where S = V (Gn) ∪ E (Gn) and C =
{1, 2, . . . , n}. The coloring pattern is as follows:

f (v0) = 1

f (vi) =

(
i+ 2(mod n), for 1 ≤ i ≤ n− 2
2, for i = n− 1

f
¡
v0i
¢
= i+ 1, for 1 ≤ i ≤ n− 1

Marisol Martínez
fig-4
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f (ei) = i+ 1, for 1 ≤ i ≤ n− 1

f
¡
e0i
¢
=

(
C(ei) + 2(mod n), for 1 ≤ i ≤ n− 2
1, for i = n− 1

f
¡
e00i
¢
= i, 1 ≤ i ≤ n− 1

Based on the above procedure, the graph Gn is equitably total colored
with n colors and by sustituting differnet values for n, it is inferred that
no adjacent vertices and edges receives the same color. The color classes
can be classified as T (Gn) = {T1, T2, . . . , Tn} and satisfies ||Ti|− |Tj || ≤ 1,
for any i 6= j. For example consider the case n = 7 (See Figure 4), for
which |T1| = |T2| = |T3| = |T7| = 4 and |T4| = |T5| = |T6| = 5. This
implies ||Ti|− |Tj || ≤ 1, for i 6= j and so it is equitably total colorable
with n colors. Hence χ00= (Gn) ≤ n. Further, since ∆ = n − 1 , we have
χ00= (Gn) ≥ χ00 (Gn) ≥ ∆+ 1 (= n). Therefore χ00= (Gn) = n. 2

Algorithm : Equitable edge coloring of Gear graph

Input: n, the number of vertices of Gn

Output: Equitably edge colored Gn

Initialize Gn with 2n − 1 vertices, the center vertices by v0, the rim
vertices by v1, v2, v3, . . . , vn−1 and v01, v

0
2, v

0
3, . . . , v

0
n−1.

Initialize the 3(n− 1)edges, the adjacent edges on the center by

e1, e2, e3 . . . , en−1, the adjacent edges on the rim by e01, e
0
2, e

0
3, . . . , e

0
n−1 and

e001, e
00
2, e

00
3, . . . , e

00
n−1.

Let f : S → {1, 2, . . . , n} where S = V (Gn) ∪E (Gn).

Apply the coloring rules of Theorem 3.4 for each of the following cases

for i = 0 to n
{
if (i = 0)
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vi = 1;
if (i = n− 1)
vi = 2;
else
vi = i+ 2;
}
end for

for i = 1 to n− 1
{
v0i = i+ 1;
ei = i+ 1;
if (i = n− 1)
e0i = 1;
else
e0i = [C(ei) + 2](mod n);
e00i = i;
}
end for
return f ;
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