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Abstract

The aim of this work is to improve the lower bound of the Puppe
inequality. His theorem [15, Theorem 1.1] states that the sum of all
Betti numbers of a well-behaved space X is at least equal to 2n, where
n 1s rank of an n-torus T™ acting almost freely on X.
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1. Introduction

The well-known Halperin conjecture [8, p. 271] about torus actions on
topological spaces is behind many works in mathematics like the Hilali con-
jecture [12] and the inequality of Puppe [15 Theorem 1.1]: If X is a space
on which an n-torus acts, we say the action is almost-free if each isotropy
subgroup is finite. The largest integer n > 1 for which X admits an almost
free n-torus is called the toral rank of X and denoted rk(X). If X does not
admit any almost free torus action, then rk(X) = 0. Unfortunately rk(X)
is not a homotopy invariant and is quite difficult to compute. To obtain
a homotopy invariant, we introduce the rational toral rank, rko(X) that
is, the maximum of rk(Y’) among all finite CW complexes Y in the same
rational homotopy type as X.

Conjecture (The Toral rank conjecture).
If X is simply connected, then dim H*(X; Q) > orko(X),

Conjecture (The Hilali conjecture).
If X is elliptic and simply connected, then dim(m.(X) ® Q) < dim(H*(X;Q)).

Theorem 1.1 (Puppe Inequality).
If X is simply connected, then dim H*(X; Q) > 2rko(X).

In the present paper we give in section 2 an optimised proof of the theo-
rem 1.1, and in section 3 we establish a new theorem with an improvement
of the lower bound of the Puppe inequality.
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2. New proof of the theorem 1.1

Let X be a simply connected topological space with an almost free T7-
action. We denote rko(X) = n and we suppose that n # 0.

The Sullivan minimal model of the classifying space Bpn of the Lie
group T™ is a polynomial ring denoted here R, with the following form:

R = (A(ty, -, tn),0) with deg(t;) = 2.
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The associated Borel fibration [5, p. 53] of this action is:

X—)XTn —>BTn

According to Brown [6], there exists a complex of differential R-modules
(R® H*(X;Q),A) with a quasi-isomorphism of R-modules :

0: (R®(H*(X;Q),A) — Apr(X7n)

Let = {oa, -, ap, apt1,- -+, a2y} be a basis of H*(X, Q) such that:
|| isodd for: 1<i<p
|| is even for : p+1<i<2p

The differential A can be written for i, 1 <i <p

P
Al®a;) =P ®1+ Ztij Qjtp
j=1

where P; is a homogeneous polynomial in (¢, -, ,).

Lets consider the p x p matrix over R, M = (t;j)1<s,j<p, and lets denote

P a1
(2.1) =S ap/M| : | =0}
i=1 a

I is an ideal of R, and we have the following diagram:

(R,0) & (R H*(X,Q),A)
Ip v/
(%.0)
where i is the canonical injection and p is the canonical surjection, 7 is
induced by passing ¢ to the quotient.

By passing to cohomology the diagram hereinabove induces the follow-

ing diagram:

(R0) 5 H(R®H*(X,Q),A)
! T
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i* is injective because if @ € R such that 7*(@) = 0 = i*(a) then

p
a®1 :A<Z aiozl->
=1

p p p
— Z a;P,®1+ Z a; <z:1 tl-jozjﬂ;)

h i—

=1 =1
p p
a; aitij Oéj+p
=1 =1

P P
Then a =3 a; t;; and ) at;; =0 Vi, 1 <i <p.
i=1 i=1

P
= Z a; P ®1+
]

(2

Hence a € I soa = 0.
Therefore dim R < dim H*(X7n; Q) < .
And dim R > n since {f,---,%,} is a free family in R.

In another hand since M is a square matrix of order p over the ring R
then [ is a free R-module of dimension N < p.

We have dim R/I < oo so dim ] = N > n witch implies that
dim H*(X, Q) > 2n.

3. An improvement of the lower bound of Puppe inequality

3.1. The main theorem

Let X be a simply connected topological space with an almost free T7-
action, such that dim H*(X; C) < oc.
The associated Borel fibration [5, p. 53] of this action is:

X — XTn — BTn

X7 has the Hirsch-Brown minimal model
Dgpn = (H*(Brn; C) ® H*(X;C);d) as a H*(Brn; C)-Module [2, Section
1.3].

We define an increasing filtration F, on H*(X; C) by:

Fi=0

Fy = (d(@)|g(x;,0) " (H*(Bre; C) ® Fya)

The length I(X) of H*(X,C) is defined by :

| =inf{q € N/F,= H*(X,Q)}.
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We use the evaluation at a = (a, -+, @) to define the new space:

Dpn(X)* = C®pg+(Byn;c) D (X)

where the structure of this H*(X; C)-module is defined by the map:
tz‘ g 0 71
we know by [3, theorem 4-1], that for a # (0,---,0) we have:
H*(Drn(X)®,dg) = 0.

The coboundary d,, is given by d evaluated at o € C ([2, p. 26]),

Now for every ¢,0 < ¢ <[, we define A, to be a complement of F;,_; in
F, :
q

Fq = Aq &b Fq,1

The main result of this article is an improvement of the lower bound of
Puppe inequality expressed in the following theorem:

Theorem 3.1. Let X be a stimply connected topological space with an al-
most free T"-action, we denote n = rko(X) for n > 4 we always have
dim H*(X;Q) > 3n —2

The proof of this theorem is based on the following lemma:
Lemma 3.2. Under the same conditions as the theorem above one has:
dim A; > n.

Definition 3.3.[17,vol 1, p. 90] By P" we denote n-dimensional projec-
tive space over C. A projective algebraic variety V is an algebraic subset

of P", that is, the zero-set of some homogeneous polynomials f;, 1 € I, in the
homogeneous coordinates (zo, - - -, xpn) of P™": V = {(xo,- -, zn)|fi(z0, -, 2pn) =
0,i€I}.

Proof of the lemma 3.2 According to Puppe [16, p. 7], we know that
[ >n,and dim A, > 2, for every ¢, 1 < ¢ <1 —1.

Let {a1,---,a,} and {b1,---,bs} be two bases of A; and Ay. For each
1, 1 <1 <r we can write:

cZ(ai) = pib1 + wy;

where p; are homogeneous polynomials on t1, - - -, ¢, and w; is a linear com-
position of by, - -+, bs over Q[t1,- -, t,]. If we suppose that r < n, then the
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algebraic variety V' (p1,---,py) is different from {(0,---,0)}. Hence we can
take a € V(p1,---,pr)\{(0,---,0)} such that:

daby = 0 (because Fy = Ag = ker(d)).

Jaaizwi for1<i<r.

This shows us that the cia— cocyle biis not a zero in H*(Dpn(X)%, dy)
which is absurd.

Proof of the Theorem 3.1 Let’s denote m; = dim 4,,0 < ¢ < [. Then
we have dim H*(X;Q) = Xl: my.

One has: - .
dim H*(X; Q) > mg +my +my + q;qu

>24+n+2(n-1).
>3n — 2.

3.2. Examples

Remark 3.4. The theorem 3.1 gives a measurement of the obstruction of
a manifold to have an almost free T™-action, for example a compact simply
connected manifold M with the sum of it’s Betti numbers < 3n — 2 can’t
have an almost free T"-action.

Example 3.5. The toral rank of the manifold M = (S?"*1)" is equal to
r and the sum of it’s Betti numbers is equal to 2" [8, p. 284], We have
dim H*((S?"*1)% Q) = 16 < 3 x 7 —2 = 19 so (S?*1)* can’t have an
almost free T7-action.

Remark 3.6. In 2012 M. Amann [4, Theorem A] established the following
result:

Theorem A. If an n-torus T acts almost freely on a finite-dimensional
paracompact Hausdorf space X, then dim H*(X;Q) > 2(n + [n/3])
X may be taken to be a finite CW-complex or a compact manifold.
It’s clear that starting from n=7 the theorem 3.1 gives a greater lower
bound than theorem A .
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