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Abstract

Stability, boundedness and existence of a unique periodic solution
to certain second order nonlinear delay differential equations is dis-
cussed. By employing Lyapunov’s direct (or second) method, a com-
plete Lyapunov functional is constructed and used to establish suf-
ficient conditions, on the nonlinear terms, that guarantee uniform
asymptotic stability, uniform ultimate boundedness and existence of
a unique periodic solution. Obtained results complement many out-
standing recent results in the literature. Finally, examples are given
to show the effectiveness of our method and correctness of our results.
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1. Introduction

Qualitative behaviour of solutions of various second order differential equa-
tions with and without delay have been extensively discussed in the liter-
ature and are still receiving attention of authors because of their practical
applications. Readers are referred to the books of Burton et al. [5,6], Driver
[8], Hale [11], Kolmanovskii and Myshkis [13], Kuag [15], Lakshmikantham
et. al. [16], Yoshizawa [30,31,32], which contain general results on the
subject matter and the papers of Ademola [1], Ademola et. al. [2,3], Al-
aba and Ogundare [4], Domoshnitsky [9], Grioryan [10], Jin and Zengrong
[12], Kroopnick [14], Ogundare et. al. [17], Ogundare and Afuwape [18],
Ogundare and Okecha [19], Tunç [20]-[24], Wang and Zhu [26], Xu [27],
Yeniçerioğlu [28,29] and the references cited therein.

In [18] the authors discussed boundedness and stability properties of
solutions of

x00 + f(x)x0 + g(x) = p(t, x, x0),

where f, g and p are continuous functions in their respective arguments t, x
and x0. In [20] the author discussed boundedness of solutions to

x00 + c(t, x, x0) + q(t)b(x) = f(t)

where c, b, q and f are continuous functions defined onR+×R2,R,R+ and
R+ respectively. Recently, in [4] the authors studied the second order non
autonomous damped and forced nonlinear ordinary differential equation of
the form

[a(t)x0]0 + b(t)f(x, x0)x0 + c(t)g(x) = p(t, x, x0),

where the functions a, b, c, f, g and p depend only on the arguments dis-
played explicitly.

Finally in [1] the author considered stability, boundedness and exis-
tence of unique periodic solutions to the following second order ordinary
differential equation

[φ(x)x0]0 + g(t, x, x0)x0 + ϕ(t)h(x) = p(t, x, x0)

where φ, g, ϕ, h and p are continuous functions in their respective arguments
on R,R+ ×R2,R+,R and R+ ×R2 respectively.

Unfortunately, the problem of uniform asymptotic stability (when the
function p = 0), uniform boundedness, uniform ultimate boundedness, ex-
istence and uniqueness of periodic solutions to second order nonlinear delay
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differential equation (1.1), where the nonlinear functions g, h and p contain
variable deviating arguments and the second ordered derivative contains a
variable coefficient, is yet to be investigated. The purpose of this paper
therefore is to fill this gap. We will consider

[φ(x(t))x0(t)]0 + g(t, x(t− τ(t)), x0(t− τ(t)))x0(t) + h(x(t− τ(t)))

=p(t,x(t-τ(t)), x0(t− τ(t))),
(1.1)

where φ, g, h, p and τ are continuous functions in their respective arguments,
(i.e. φ, h : R → R, τ : R+ → R+ and g, p : R+ × R2 → R with R :=
(−∞,∞) and R+ := [0,∞)). The primes indicate differentiation with
respect to the independent variable t. If x0(t) = y(t)φ−1(x(t)), φ(x(t)) 6= 0
for all t ≥ 0, then equation (1.1) is equivalent to system of first order delay
differential equations

x0(t) = y(t)φ−1(x(t)),

y0(t) = p(t, x(t− τ(t)), y(t− τ(t))φ−1(x(t− τ(t))))

+
R t
t−τ(t) h

0(x(s))y(s)φ−1(x(s))ds− h(x)

-g(t,x(t-τ(t)), y(t− τ(t))φ−1(x(t− τ(t))))y(t)φ−1(x(t)),
(1.2)

where 0 ≤ τ(t) ≤ α, α > 0 is a constant to be determined later and the
derivatives h0, φ0 and τ 0 exist and continuous for all x and t. The work is
motivated by the recent works in [1,3,4,20]. The obtained results are new,
in fact according to our observation from relevant literature, this is the
first paper on second order delay differential equations where the highest
ordered derivatives contains variable coefficient. In Section 2 we discussed
the basic mathematical tools that will be used in the sequel. In Section 3
the main results are stated and proved while examples are given in Section
4.
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2. Preliminary Results

Consider the following general nonlinear non-autonomous delay differential
equation

Ẋ =
dX

dt
= F (t,Xt), Xt = X(t+ θ), −r ≤ θ < 0, t ≥ 0(2.1)

where F : R+ × CH → Rn is a continuous mapping, F (t+ ω, φ) = F (t, φ)
for all φ ∈ C and for some positive constant ω. We assume that F takes
closed bounded sets into bounded sets in Rn. (C, k · k) is the Banach space
of continuous function ϕ : [−r, 0] → Rn with supremum norm, r > 0; for
H > 0, we define CH ⊂ C by CH = {ϕ ∈ C : kϕk < H, } CH is the open
H−ball in C, C = C([−r, 0],Rn).We shall state the following basic results:

Lemma 2.1. (See [32] pp 206). Suppose that F (t, φ) ∈ C0(φ) and F (t, φ)
is periodic in t of period ω, ω ≥ r, and consequently for any α > 0 there
exists an L(α) > 0 such that φ ∈ Cα implies |F (t, φ)| ≤ L(α). Suppose
that a continuous Lyapunov functional V (t, φ) exists, defined on t ∈ R+,
φ ∈ S∗, S∗ is the set of φ ∈ C such that with |φ(0)| ≥ H (H may be large)
and that V (t, φ) satisfies the following conditions:

(i) a(|φ(0)|) ≤ V (t, φ) ≤ b(kφk), where a(r) and b(r) are continuous,
increasing and positive for r ≥ H and a(r)→∞ as r→∞;

(ii) V̇(2.1)(t, φ) ≤ −c(|φ(0)|), where c(r) is continuous and positive for
r ≥ H.

Suppose that there exists an H1 > 0, H1 > H, such that

hL(γ∗) < H1 −H,(2.2)

where γ∗ > 0 is a constant which is determined in the following way: By
the condition on V (t, φ) there exist α > 0, β > 0 and γ > 0 such that
b(H1) ≤ a(α), b(α) ≤ a(β) and b(β) ≤ a(γ). γ∗ is defined by b(γ) ≤ a(γ∗).
Under the above conditions, there exists a periodic solution of (2.1) of
period ω. In particular, the relation (2.2) can always be satisfied if h is
sufficiently small.

Lemma 2.2. (See [32] pp 188). Suppose that F (t, φ) is defined and con-
tinuous on 0 ≤ t ≤ c, φ ∈ CH and that there exists a continuous Lyapunov
functional V (t, φ, ϕ) defined on 0 ≤ t ≤ c, φ, ϕ ∈ CH which satisfy the
following conditions:
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(i) V (t, φ, ϕ) = 0 if φ = ϕ;

(ii) V (t, φ, ϕ) > 0 if φ 6= ϕ;

(iii) for the associated system

ẋ(t) = F (t, xt), ẏ(t) = F (t, yt)(2.3)

we have V 0(2.3)(t, φ, ϕ) ≤ 0, where for kφk = H or kϕk = H, we

understand that the condition V 0(2.3)(t, φ, ϕ) ≤ 0 is satisfied in the

case V 0 can be defined.

Then, for given initial value φ ∈ CH1 , H1 < H, there exists a unique
solution of (2.1).

Lemma 2.3. (See [32] pp 190). Suppose that a continuous Lyapunov func-
tional V (t, φ) exists, defined on t ∈ R+, kφk < H, 0 < H1 < H which
satisfies the following conditions:

(i) a(kφk) ≤ V (t, φ) ≤ b(kφk), where a(r) and b(r) are continuous, in-
creasing and positive,

(ii) V̇(2.1)(t, φ) ≤ −c(kφk), where c(r) is continuous and positive for r ≥ 0,

then the zero solution of system (2.1) is uniformly asymptotically stable.

Lemma 2.4. (See [5] pp 317). Let V : R+ × C → R be continuous and
locally Lipschitz in φ. If

(i) W0(|Xt|) ≤ V (t,Xt) ≤W1(|Xt|) +W2

Ã
tR

t−r(t)
W3(Xt(s))ds

!
and

(ii) V̇(2.1)(t,Xt) ≤ −W4(|Xt|) + N, for some N > 0 where Wi (i =
0, 1, 2, 3, 4) are wedges.

Then Xt of system 2.1 is uniformly bounded and uniformly ultimately
bounded for bound M.
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3. Main Results

We will start with the following notations, let x(t) = x, y(t) = y, φ(x(t)) =
φ(x), g(t, x(t − τ(t)), x0(t − τ(t)))x0(t) = g(·) and p(t, x(t − τ(t)), x0(t −
τ(t))) = p(·). Let (xt, yt) be any solution of the system (1.2), the continu-
ously differentiable functional used in this investigation is V = V (t, xt, yt)
defined as

2V =

"
a2 + bφ(x)(1 + bφ(x))

#
x2 + (1 + bφ(x))y2 + 2axy

+
R 0
−τ(t)

R t
t+s λy

2(θ)φ−2(x(θ))dθds,
(3.1)

where the function φ is defined in Section 1, a, b, λ are positive constants
and the value of λ will be determined later. Next, we state the main results
as follows.

Theorem 3.1. Further to the basic assumptions on the functions φ, g, h, τ
and p, suppose that a, b, φ0, φ1, α, β, L and M are positive constants such
that

(i) φ0 ≤ φ(x) ≤ φ1, φ
0(x) ≤ 0 for all x;

(ii) a ≤ g(·) for all t ≥ 0, x, y, x(t− τ(t)) and y(t− τ(t));

(iii) bx ≤ h(x) ≤ Lx for all x 6= 0;

(iv) τ(t) ≤ α, τ 0(t) ≤ β, 0 < β < 1 where

α < min

(
bφ0
L

,
2abφ0(1− β)

L[1 + a+ bφ1 + 2(1− β)(1 + bφ1)]

)
;(3.2)

(v) |p(·)| ≤M, 0 < M <∞ for all t ≥ 0, x, y, x(t− τ(t)) and y(t− τ(t));

then the solution (xt, yt) of system (1.2) is uniformly bounded and uni-
formly ultimately bounded.

Remark 1. We observed the following:
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(i) If φ(x) = 1, g(·) = a, h(t − τ(t)) = bx and p(·) = 0, equation (1.1)
reduces to linear constant coefficients differential equation

x00 + ax0 + bx = 0,

and conditions (i) to (v) of Theorem 3.1 specializes to the correspond-
ing Routh-Hurwitz criteria a > 0 and b > 0.

(ii) When φ(x) = 1, τ(t) = 0 and p(·) = f(t), equation (1.1) reduces to a
special case discussed in [20], thus Theorem 3.1 includes and improves
the results in [20].

(iii) Whenever φ(x) = φ(t), g(·) = a(t)f(x, x0), h(x(t− τ(t))) = g(x) and
p(·) = p(t, x, x0), equation (1.1) reduces to that discussed in [4], thus
Theorem 3.1 improves the boundedness results in [4].

(iv) When φ(x) = 1, g(·) = f(x), h(x(t − τ(t))) = g(x) and p(·) =
p(t, x, x0), equation (1.1) becomes that considered in [18], hence our
results extend the results in [18].

(v) If g(·) = g(t, x, x0), h(x(t − τ(t))) = ϕ(t)h(x) and p(·) = p(t, x, x0),
equation (1.1) coincides with (1.1) in [1], thus the results in [1] are
contained in this work.

In what follows we will state and prove a result that would be useful in
the proof of Theorem 3.1 and the subsequent results.

Lemma 3.2. Under the hypotheses of Theorem 3.1 there exist positive
constants D0 = D0(a, b, φ0), D1 = D1(a, b, φ1) and D2 = D2(φ0, λ) such
that

D0(x
2(t)+y2(t)) ≤ V (t, xt, yt) ≤ D1(x

2(t)+y2(t))+D2

Z 0

−τ(t)

Z t

t+s
y2(θ)dθds,

(3.3)

for all t ≥ 0, x and y. Furthermore, there exist positive constants D3 =
D3(a, b, α, β, L, φ1) and D4 = D4(a, b, φ1) such that

V 0(1.2) ≤ −D3(x2(t) + y2(t)) +D4(|x(t)|+ |y(t)|)|p(·)|,(3.4)

for all t ≥ 0, x and y.
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Proof. Let (xt, yt) be any solution of system (1.2), from equation (3.1)
for x = 0 = y, we have V (t, 0, 0) = 0 for all t ≥ 0. Also the functional V
defined in (3.1) can be recast in the form

2V = bφ(x)[1+bφ(x)]x2+bφ(x)y2+(ax+y)2+

Z 0

−τ(t)

Z t

t+s
λy2(θ)φ−2(x(θ))dθds.

(3.5)
In view of condition (i) of Theorem 3.1, φ(x) 6= 0, and the fact thatZ 0

−τ(t)

Z t

t+s
λy2(θ)φ−2(x(θ))dθds ≥ 0,

for all t ≥ 0, x and y, there exists a positive constant δ0 such that

V ≥ δ0(x
2 + y2),(3.6)

for all t ≥ 0, x and y where

δ0 :=
1

2
min

(
bφ0(1 + bφ0) + min{1, a}, bφ0 +min{1, a}

)
.

In addition, from inequality (3.6) we find that

V (t, xt, yt) = 0 if and only if x2 + y2 = 0;(3.7)

V (t, xt, yt) > 0 if and only if x2 + y2 6= 0; and that(3.8)

V (t, xt, yt)→ +∞ as x2 + y2 →∞.(3.9)

Moreover, since φ0 ≤ φ(x) ≤ φ1 for all x and the fact that the inequality
2xy ≤ x2 + y2 holds, there exist positive constants δ1 and δ2 such that

V ≤ δ1(x
2 + y2) + δ2

Z 0

−τ(t)

Z t

t+s
y2(θ)dθds,(3.10)

for all t ≥ 0, x and y, where

δ1 :=
1

2
max{(1 + a)a+ (1 + bφ1)bφ1, 1 + a+ bφ1}

and
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δ2 :=
λ

2φ20
.

Inequalities (3.6) and (3.10) established the inequality (3.3) with δ0, δ1
and δ2 equivalent to D0,D1 and D2 respectively.

Next, the differentiation of the functional V defined by equation (3.1)
with respect to the independent variable t along the solution path of system
(1.2) after simplification is

V0(1.2) = −
P2

j=1Wj+
P4

j=3Wj+τ(t)φ−2(x)y2+[ax+(1+ bφ(x))y]p(·)

− [1− τ 0(t)]λ
Z t

t−τ(t)
φ−2(x(θ))y2(θ)dθ(3.11)

where

W1 :=
a
2
h(x)
x x2 + bg(·)y2;

W2 :=
a
4
h(x)
x x2 + a[g(·)− a]φ−1(x)xy + 1

2φ
−1(x)[g(·)− a]y2

+ a
4
h(x)
x x2 + (1 + bφ(x))

"
h(x)
x − b

#
xy + 1

2φ
−1(x)[g(·)− a]y2;

W3 :=
1
2φ
0(x)y[b(2b+ φ−1(x))x2 + bφ−1(x)y2]; and

W4 := [ax+ (1 + bφ(x))y]
R t
t−τ(t) h

0(x(s))y(s)φ−1(x(s))ds.

Now from conditions (ii) and (iii) of Theorem 3.1, we find that

W1 ≥
1

2
ab(x2 + y2),

for all t ≥ 0, x and y. Using conditions (i), (ii) and (iii) of Theorem 3.1 in
W2 we have

W2 ≥
a

4

"
bx2 +

4

φ1
(g(·)− a)xy +

2

aφ1
(g(·)− a)y2

#

+
1

4

"
abx2 + 4(1 + bφ0)

Ã
h(x)

x
− b

!
xy +

2

φ1
(g(·)− a)y2

#
,(3.12)

for all t ≥ 0, x and y. Employing estimates

"
4

φ1

Ã
g(·)−a

!#2
<

b

aφ1

Ã
g(·)−a

!
and

"
4(1+bφ0)

Ã
h(x)

x
−b
!#2

<
ab

φ1

Ã
g(·)−a

!
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inequality (3.12) becomes

W2 ≥
a

4

"√
b|x|−

q
2a−1φ−11 (g(·)− a)|y|

#2

+
1

4

"√
ab|x|−

q
2φ−11 (g(·)− a)|y|

#2
≥ 0,

for all t ≥ 0, x and y. Moreover, from hypothesis (i) and let y > 0 it follows
from W3 that

y

"
b(2b+ φ−1(x))x2 + bφ−1(x))y2

#
≥ (2b+ φ−11 )x

2 + bφ−11 y2 ≥ 0

(3.13)

for all t ≥ 0, x and y. Using inequality (3.13) and φ0(x) ≤ 0 for all x in W3,
we obtain

W3 ≤ 0
for all t ≥ 0, x and y. Finally, φ0 ≤ φ(x) ≤ φ1 for all x, h

0(x) ≤ L for all x
and the inequality xy ≤ 1

2(x
2 + y2) imply that

W4 ≤
aL

2φ0
τ(t)x2 +

L

2φ0
(1 + bφ1)τ(t)y

2 +
L

2φ0
(1 + a+ bφ1)

Z t

t−τ(t)
y2(θ)dθ,

for all t ≥ 0, x and y. Inserting estimate Wj (j = 1, · · · , 4) in equation
(3.11), we obtain

V0(1.2) ≤ −ab
2 (x

2+y2)−
"
[1−τ 0(t)]φ−21 λ− L

2φ0
(1+a+bφ1)

# R t
t−τ(t) y

2(θ)dθ

+

"
L
2φ0
(1 + bφ1) + φ−21 λ

#
τ(t)y2 + aL

2φ0
τ(t)x2 +

"
a|x|+ (1 + bφ1)|y|

#
|p(·)|

(3.14)

for all t ≥ 0, x and y. Furthermore, τ(t) ≤ α, τ 0(t) ≤ β, β ∈ (0, 1) and
choose

λ := 2−1(1− β)−1φ−10 φ21L(1 + a+ bφ1) > 0(3.15)
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there exist positive constants δ3 and δ4 such that

V 0(1.2) ≤ −δ3(x2 + y2) + δ4(|x|+ |y|)|p(·)|,(3.16)

for all t ≥ 0, x and y where

δ3 :=
1

2
min

(
a

Ã
b− αL

φ0

!
, ab− L

φ0

"
1 + bφ1 + (1− β)−1(1 + a+ bφ1)

#
α

)

(3.17)

and

δ4 := max{a, 1 + bφ1}.
Inequality (3.16) satisfies the inequality (3.4) with δ3 and δ4 equivalent

to D3 and D4 respectively. This completes the proof of Lemma 3.2 2 Next,
we will give the prove of Theorem 3.1, using some of the estimates of Lemma
3.2.

Proof of Theorem 3.1 Let (xt, yt) be any solution of system (1.2). From
inequalities (3.10) and (3.10) hypothesis (i) of Lemma 2.4 holds. Further-
more, using assumption (v) of Theorem 3.1 in estimate (3.16), noting that
|x| < 1 + x2, there exist positive constants δ5 and δ6 such that

V 0(1.2) ≤ −δ5(x2 + y2) + δ6(3.18)

where δ5 := δ3−δ4M with δ4M choosing sufficiently small and δ6 := 2δ4M.
Inequality (3.18) satisfies condition (ii) of Lemma 2.4. Thus by Lemma 2.4
the solution (xt, yt) of system (1.2) is uniformly bounded and uniformly
ultimately bounded. This completes the proof of Theorem 3.1. 2

Next, if the forcing term p(·) of equation (1.1) is replaced by a function
p1(t) where p1(t) is defined on R

+, we obtain a special case of equation
(1.1) as

[φ(x)x0]0 + g(·)x0 + h(x(t− τ(t))) = p1(·).(3.19)

Equation (3.19) is equivalent to system of first order equations

x0 = yφ−1(x),

y0 = p1(t) +
R t
t−τ(t) h

0(x(s))y(s)φ−1(x(s))ds− h(x)− g(·)yφ−1(x),
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(3.20)

where the functions g, h and φ are defined in Section 1. We obtain the
following result.

Theorem 3.3. If assumptions (i) to (iv) of Theorem 3.1 hold and assump-
tion (v) is replaced by boundedness of the function p1(t), then the solution
(xt, yt) of system (3.20) is uniformly bounded and uniformly ultimately
bounded.

Proof. Let (xt, yt) be any solution of system (3.20), the remaining part
of the prove is similar to the proof of Theorem 3.1 hence it is omitted. This
completes the proof of Theorem 3.3. 2

Furthermore, if the function p(·) of equation (1.1) is replaced by p2(t, x, x0)
defined on R+ ×R2, we have the following equation

[φ(x)x0]0 + g(·)x0 + h(x(t− τ(t))) = p2(t, x, x
0).(3.21)

Equation (3.21) can be written as system of first order differential equations

x0 = yφ−1(x),

y0 = p2(t, x, x
0) +

R t
t−τ(t) h

0(x(s))y(s)φ−1(x(s))ds− h(x)− g(·)yφ−1(x),
(3.22)

and we have following result.

Theorem 3.4. If the forcing term p2 of system (3.22) is bounded and
assumptions (i) to (iv) of Theorem 3.1 hold, then the solution (xt, yt) of
system (3.22) is uniformly bounded and uniformly ultimately bounded.

Proof. Let (xt, yt) be any solution of system (3.22), the remaining part
of the prove is similar to the proof of Theorem 3.1 hence it is omitted. This
completes the proof of Theorem 3.4. 2

Next, if p(·) of equation 1.1 is zero we have the following special case

[φ(x)x0]0 + g(·)x0 + h(x(t− τ(t))) = 0.(3.23)

Equation (3.23) as system of first order differential equations are as follow
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x0 = yφ−1(x),

y0 =
R t
t−τ(t) h

0(x(s))y(s)φ−1(x(s))ds− h(x)− g(·)yφ−1(x),
(3.24)

and we have following result.

Theorem 3.5. If assumptions (i) to (iv) of Theorem 3.1 hold, then the
trivial solution of system (3.24) is uniformly asymptotically stable.

Proof. Let (xt, yt) be any solution of system (3.24), from equation (3.1)
we have V (t, 0, 0) = 0 for all t ≥ 0. Moreover, the inequalities (3.6) and
(3.10) satisfy condition (i) of Lemma 2.3. Also if p(·) = 0, estimate (3.16)
becomes

V 03.21 ≤ −δ3(x2 + y2)(3.25)

for all t ≥ 0, x and y where δ3 is defined in (3.17). Inequality (3.25) establish
assumption (ii) of Lemma 2.3, hence by Lemma 2.3 the trivial solution of
system (3.24) is uniformly asymptotically stable. This completes the proof
of Theorem 3.5. 2

Next, we will state and proofs existence and uniqueness results of the
solutions of system (1.2).

Theorem 3.6. If assumptions of Theorem 3.1 hold, then there exists a
periodic solution of system 1.2 of period ω.

Proof. Let (xt, yt) be any solution of system (1.2), from inequali-
ties (3.6), (3.10) and estimate (3.9), assumption (i) of Lemma 2.1 hold.
Moreover, using hypothesis (v) of Theorem 3.6 and inequality |x| + |y| ≤
21/2(x2 + y2)1/2 in estimate (3.16) there exist positive constants δ7 and δ8
such that

V 0(1.2) ≤ −δ7(x2 + y2) ≤ 0(3.26)

for all t ≥ 0, x and y provided that

(x2 + y2)1/2 ≥ δ8
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where δ7 :=
1
2δ3 and δ8 := 2

3/2δ−13 M. Inequality (3.26) satisfies assumption
(ii) of Lemma 2.1, thus by Lemma 2.1 the periodic solution of system (1.2)
exists and is of period ω. This completes the proof of Theorem 3.6. 2

Theorem 3.7. If assumptions of Theorem 3.1 are satisfied, then there
exists a unique solution of system (1.2).

Proof. Let (xt, yt) be any solution of system (1.2), in view of estimates
(3.6), (3.7), (3.9) and (3.26), assumptions of Lemma 2.2 hold, thus by
Lemma 2.2 solution of system (1.2) is unique. This completes the proof of
Theorem 3.7. 2

4. Examples

Example 4.1. Consider the second order delay differential equation

"
4(1 + ex)

(3 + 4ex)
x0
#0
+

"
2 + t2 + x2(t− τ(t)) + x02(t− τ(t))

1 + t2 + x2(t− τ(t)) + x02(t− τ(t))

#
x0+

"
2 + x2(t− τ(t))

1 + x2(t− τ(t))

#
×

x(t− τ(t)) =
2 + t2 + cos[x(t− τ(t))] + cos[x0(t− τ(t))]

2[t2 + cos[x(t− τ(t))] + cos[x0(t− τ(t))]]
.(4.1)

Equation (4.1) is equivalent to

x0 =
(3 + 4ex)

4(1 + ex)
y,

y0 =
2 + t2 + cos[x(t− τ(t))] + cos[y(t− τ(t))φ−1(x(t− τ(t)))]

2[t2 + cos[x(t− τ(t))] + cos[y(t− τ(t))φ−1(x(t− τ(t)))]]

+

Z t

t−τ(t)

2 + x2(s) + x4(s)

(1 + x2(s))2
ds− x(2 + x2)

1 + x2

−
"
2 + t2 + x2(t− τ(t)) + y2(t− τ(t))φ−2(x(t− τ(t)))

1 + t2 + x2(t− τ(t)) + y2(t− τ(t))φ−2(x(t− τ(t)))

#
×

y(t− τ(t))φ−1(x(t− τ(t))).(4.2)

Comparing systems (1.2) and (4.2) we find that:
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(i) The function

φ(x) =
4(1 + ex)

(3 + 4ex)
= 1 +

1

3 + 4ex
.

Since

0 ≤ 1

3 + 4ex
≤ 1

for all x, it follows that

1 = φ0 ≤ φ(x) ≤ φ1 = 2

for all x. Furthermore,

φ0(x) =
−4ex

(3 + 4ex)2
≤ 0

for all x. The paths of φ(x) and its derivative, φ0(x), are shown in
Figure 1

Figure 1. Functions φ(x(t)), and φ0(x(t))

(ii) The function

g(·) = 2 + t2 + x2(t− τ(t)) + y2(t− τ(t))φ−2(x(t− τ(t)))

1 + t2 + x2(t− τ(t)) + y2(t− τ(t))φ−2(x(t− τ(t)))

= 1 +
1

1 + t2 + x2(t− τ(t)) + y2(t− τ(t))φ−2(x(t− τ(t)))

Marisol Martínez
fig-1
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Since the fraction

1

1 + t2 + x2(t− τ(t)) + y2(t− τ(t))φ−2(x(t− τ(t)))
≥ 0

for all t ≥ 0, x(t− τ(t)) and y(t− τ(t)), it follows that

g(·) ≥ a = 1

for all t ≥ 0, x(t− τ(t)) and y(t− τ(t)).

(iii) The function

h(x) :=
x(2 + x2)

1 + x2
= x+

x

1 + x2

or
h(x)

x
= 1 +

1

1 + x2
.

Since

0 ≤ H(x) =
1

1 + x2
≤ 1

for all x it follows that

1 = b ≤ h(x)

x
≤ L = 2

for all x 6= 0.

Figure 2. The behaviour of the functions h(x)/x,H(x) and |h0(x)|

Marisol Martínez
fig-2
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Furthermore, the derivative of the function h with respect to x is

h0(x) =
2 + x2 + x4

(1 + x2)2
= 1 +

1− x2

(1 + x2)2
,

Noting that
1− x2

(1 + x2)2
≤ 1

for all x, it follows that

h0(x) = 1 +
1− x2

(1 + x2)2
≤ 2

and
|h0(x)| ≤ L = 2

for all x. The behaviour of the functions h(x)/x,H(x) and h0(x) are
shown in Figure 4

(iv) Using estimates (i) to (iii) of Example 4.1 with β = 1
2 , inequality (3.2)

and equation (3.15) become

α < min

(
1

2
,
1

22

)
=
1

22
and λ = 32 > 0

respectively.

(v) The function

p(·) = 2 + t2 + cos[x(t− τ(t))] + cos[y(t− τ(t))φ−1(x(t− τ(t)))]

2[t2 + cos[x(t− τ(t))] + cos[y(t− τ(t))φ−1(x(t− τ(t)))]]

=
1

2
+

1

t2 + cos[x(t− τ(t))] + cos[y(t− τ(t))φ−1(x(t− τ(t)))]

It is not difficult to show that

|p(·)| ≤M =
3

2

for all t ≥ 0, x(t− τ(t)) and y(t− τ(t)).
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From items (i) to (v) of Example 4.1, the assumption of Theorem 3.1,
Theorem 3.6 and Theorem 3.7 hold, thus by Theorem 3.1, Theorem 3.6
and Theorem 3.7 the solution (xt, yt) of system (4.2).

(i) is uniformly bounded and uniformly ultimately bounded;

(ii) possess a periodic solution of period ω; and

(iii) is unique.

Also, if p(·) = 0 in system (4.2), items (i) to (iv) of Example 4.1 are
equivalent to hypotheses (i) to (iv) of Theorem 3.5, then by Theorem 3.5
the trivial solution of system 4.2 is uniformly asymptotically stable.

Example 4.2. Consider also, the second order delay differential equation"
5 + 6e(2x+1)

2 + 3e(2x+1)
x0
#0
+

3 + cos[tx(t− τ(t))] + cos[x0(t− τ(t))]

2[1 + cos[tx(t− τ(t))] + cos[x0(t− τ(t))]]

+
4x(t− τ(t)) + 7x3(t− τ(t)) + x(t− τ(t)) cos(2x(t− τ(t)))

2 + 7x2(t− τ(t))

=
3 + 4t+ 2|x(t− τ(t))|+ 2|x0(t− τ(t))|
1 + 2t+ |x(t− τ(t))|+ |x0(t− τ(t))| .(4.3)

Equation (4.3) in its equivalent form is

x0 =
2 + 3e(2x+1)

5 + 6e(2x+1)
y,

y0 =
3 + 4t+ 2|x(t− τ(t))|+ 2|y(t− τ(t))φ−1(x(t− τ(t)))|
1 + 2t+ |x(t− τ(t))|+ |y(t− τ(t))φ−1(x(t− τ(t)))|

+

Z t

t−τ(t)

(7x2 − 2) cos 2x+ 2(7x2 + 2)(x sin 2x− 7x2 − 2)
(7x2 + 2)2

(s)ds

−4x+ 7x
3 + x cos 2x

2 + 7x2

− 3 + cos [tx (t− τ (t))] + cos
£
y (t− τ (t))φ−1 (x (1− τ))

¤
2 [1 + cos [tx (1− τ (t))] + cos [y (t− τ (t))φ−1 (x (t− τ (t)))]]

.(4.4)

Comparing system (1.2) with system (4.4), we find that
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(i) the function

φ(x) :=
5 + 6e(2x+1)

2 + 3e(2x+1)
= 2 +

1

2 + 3e(2x+1)
.

Let

Φ(x) :=
1

2 + 3e(2x+1)
.

It is not difficult to show that

2 = φ0 ≤ φ(x) ≤ φ1 = 3

for all x. Moreover,

φ0(x) = − 6e2x+1

(2 + 3e(2x+1))2
≤ 0

for all x. The behaviour of the functions φ(x) and φ0(x) are shown in
Figure 3

(ii) the function

g(·) := 3 + cos[tx(t− τ(t))] + cos[y(t− τ(t))φ−1(x(t− τ(t))]

2[1 + cos[tx(t− τ(t))] + cos[y(t− τ(t))φ−1(x(t− τ(t))]]

=
1

2
+

1

1 + cos[tx(t− τ(t))] + cos[y(t− τ(t))φ−1(x(t− τ(t))]

from where we obtain

g(·) ≥ a =
1

2
,

for all t ≥ 0, x(t− τ(t)) and y(t− τ(t)).
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Figure 3. The behaviour of the functions Φ(x), φ(x) and φ0(x).

(iii) the function

h(x) :=
4x+ 7x3 + x cos 2x

2 + 7x2
= 2x+

x cos 2x

2 + 7x2
.

This can be recast in the form

h(x)

x
= 2 +

cos 2x

2 + 7x2
= 2 +H(x),

where

H(x) =
cos 2x

2 + 7x2
.

It is not difficult to show that

−1
2
≤ H(x) ≤ 1

2

for all x. It follows that

3

2
= b ≤ h(x)

x
≤ L =

5

2

for all x 6= 0. In addition,

|h0(x)| ≤ L =
5

2

Marisol Martínez
fig-3
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for all x. Alternatively,

h0(x) =
(7x2 − 2) cos 2x+ 2(7x2 + 2)(x sin 2x− 7x2 − 2)

(7x2 + 2)2

= 2− (7x
2 − 2) cos 2x+ 2x(7x2 + 2)x sin 2x

(7x2 + 2)2

It follows that

|h0(x)| ≤ L =
5

2

for all x. The behaviour of the functions h(x)/x,H(x) and |h0(x)| are
shown in Figure 3

Figure 4. The behaviour of the functions h(x)/x,H(x) and |h0(x)|.

(iv) From items (i) - (iii) of Example 4.2, choose β = 1
2 inequality 3.2

and equation (3.15) become

α < min

(
6

5
,
6

175

)
=

6

175
, and λ = 270 > 0

respectively.

(v) Finally, the function

p(·) := 3 + 4t+ 2|x(t− τ(t))|+ 2|y(t− τ(t))φ−1(x(t− τ(t)))|
1 + 2t+ |x(t− τ(t))|+ |y(t− τ(t))φ−1(x(t− τ(t)))|

Marisol Martínez
fig-4
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= 2 +
1

1 + 2t+ |x(t− τ(t))|+ |y(t− τ(t))φ−1(x(t− τ(t)))|

where we obtain

|p(·)| ≤M = 3

for all t ≥ 0, x(t− τ(t)) and y(t− τ(t)).

From items (i) to (v) of Example ??, assumptions of Theorem 3.1, Theorem
3.6 and Theorem 3.7 hold, thus by Theorem 3.1, Theorem 3.6 and Theorem
3.7 the solution (xt, yt) of system (4.4)

(i) is uniformly bounded and uniformly ultimately bounded;

(ii) possess a periodic solution of period ω; and

(iii) is unique.

Also, if p(·) = 0 in system (4.4), items (i) to (iv) of Example 4.2 satisfy
the assumptions of Theorem 3.5, then by Theorem 3.5 the trivial solution
of system 4.4 is uniformly asymptotically stable.
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[25] Tunç, C. Uniformly stability and boundedness of solutions of second
order nonlinear delay differential equations. Appl. Comput. Math. 10,
No. 3, pp. 449 - 462, (2011).

[26] Wang, F. and Zhu, H. Existence, uniqueness and stability of periodic
solutions of a duffing equation under periodic and anti-periodic eigen-
values conditions. Taiwanese Journal of Mathematics Vol. 19, No. 5,
pp. 1457 - 1468, October (2015) DOI:10.11650/tjm.19.2015.3992

[27] Xu, An Shi. Boundedness and stability of solutions to second-order
delay and non delay differential equations. (Chinese) Chinese Ann.
Math. Ser. A 9, No. 5, 615—622, (1988).

[28] Yeniçerioğlu, A. F. The behavior of solutions of second order delay dif-
ferential equations. J. Math. Anal. Appl. 332, pp. 1278 - 1290, (2007).

[29] Yeniçerioğlu, A. F. Stability properties of second order delay integro-
differential equations. Computers and Mathematics with Applications
56, pp. 3109-3117, (2008).

[30] Yoshizawa, T. Liapunov’s function and boundedness of solutions,
Funkcial. Ekvac. 2, pp. 95-142, (1959).

[31] Yoshizawa, T. Stability theory and existence of periodic solutions
and almost periodic solutions, Spriger-Verlag, New York. Heidelberg.
Berlin, (1975).

[32] Yoshizawa, T. Stability theory by Liapunov’s second method, The
Mathematical Society of Japan, (1966).

[33] Zhu, Y. F. On stability, boundedness and existence of periodic solution
of a kind of third order nonlinear delay differential system, Annals of
Diff. Equations Vol. 8, No. 2, pp. 249-259, (1992).

A. T. Ademola
Department of Mathematics,
Obafemi Awolowo University,
Ile-Ife,
Nigeria
e-mail : atademola@oauife.edu.ng



282 A. T. Ademola, P. O. Arawomo and A. S. Idowu

P. O. Arawomo
Department of Mathematics,
University of Ibadan,
Ibadan,
Nigeria
e-mail : womopeter@gmail.com

and

A. S. Idowu
Department of Mathematics,
University of Ilorin,
Ilorin,
Nigeria
e-mail : asidowu@gmail.com




