
The total detour monophonic number of a graph

A. P. Santhakumaran
Hindustan Institute of Technology and Science, India

P. Titus
University College of Engineering Nagercoil, India

K. Ganesamoorthy
Coimbatore Institute of Technology, India

Received : December 2015. Accepted : January 2017

Proyecciones Journal of Mathematics
Vol. 36, No 2, pp. 209-224, June 2017.
Universidad Católica del Norte
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Abstract
For a connected graph G = (V,E) of order at least two, a chord

of a path P is an edge joining two non-adjacent vertices of P . A path
P is called a monophonic path if it is a chordless path. A longest
x− y monophonic path is called an x− y detour monophonic path. A
set S of vertices of G is a detour monophonic set of G if each vertex
v of G lies on an x − y detour monophonic path for some x and y
in S. The minimum cardinality of a detour monophonic set of G is
the detour monophonic number of G and is denoted by dm(G). A
total detour monophonic set of a graph G is a detour monophonic set
S such that the subgraph induced by S has no isolated vertices. The
minimum cardinality of a total detour monophonic set of G is the total
detour monophonic number of G and is denoted by dmt(G). A total
detour monophonic set of cardinality dmt(G) is called a dmt-set of
G. We determine bounds for it and characterize graphs which realize
the lower bound. It is shown that for positive integers r, d and k ≥ 6
with r < d there exists a connected graph G with monophonic radius
r, monophonic diameter d and dmt(G) = k. For positive integers a, b
such that 4 ≤ a ≤ b with b ≤ 2a, there exists a connected graph G
such that dm(G) = a and dmt(G) = b. Also, if p, d and k are positive
integers such that 2 ≤ d ≤ p − 2, 3 ≤ k ≤ p and p − d − k + 3 ≥ 0,
there exists a connected graph G of order p, monophonic diameter d
and dmt(G) = k.
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1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph with-
out loops and multiple edges. The order and size of G are denoted by p
and q, respectively. For basic graph theoretic terminology we refer [1, 3].
The distance d(x, y) between two vertices x and y in a connected graph
G is the length of a shortest x − y path in G. An x − y path of length
d(x, y) is called an x − y geodesic. The neighborhood of a vertex v is the
set N(v) consisting of all vertices u which are adjacent with v. A vertex v
is an extreme vertex if the subgraph induced by its neighbors is complete.
Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with V1 ∩ V2 = φ, then
the join G1+G2 is a graph G = (V,E), where V = V1∪V2 and E = E1∪E2
together with all the edges joining vertices of V1 to vertices of V2 and mjKj

denotes mj-copies of the complete graph Kj .

A chord of a path P is an edge joining two non-adjacent vertices of P.
A path P is called a monophonic path if it is a chordless path. A longest
x− y monophonic path is called an x− y detour monophonic path. A set S
of vertices of G is a detour monophonic set of G if each vertex v of G lies
on an x− y detour monophonic path for some x and y in S. The minimum
cardinality of a detour monophonic set of G is the detour monophonic
number of G and is denoted by dm(G). The detour monophonic number of
a graph was introduced in [7] and further studied in [6].

A connected detour monophonic set of G is a detour monophonic set
S such that the subgraph G[S] induced by S is connected. The minimum
cardinality of a connected detour monophonic set of G is the connected
detour monophonic number of G and is denoted by dmc(G). The connected
detour monophonic number of a graph was introduced and studied in [8].

The detour monophonic concepts have interesting applications in Chan-
nel Assignment Problem in radio technologies. Also, there are useful appli-
cations of these concepts to security based communication network design.

For any two vertices u and v in a connected graph G, the monophonic
distance dm(u, v) from u to v is defined as the length of a longest u − v
monophonic path in G. The monophonic eccentricity em(v) of a vertex
v in G is em(v) = max {dm(v, u) : u ∈ V (G)}. The monophonic radius,
radm(G) of G is radm(G) = min {em(v) : v ∈ V (G)} and the monophonic
diameter, diamm(G) of G is diamm(G) = max {em(v) : v ∈ V (G)}. The
monophonic distance was introduced in [4] and further studied in [5].

The following theorems will be used in the sequel.



The total detour monophonic number of a graph 211

Theorem 1.1. [7] Each extreme vertex of a connected graph G belongs to
every detour monophonic set of G. Moreover, if the set S of all extreme
vertices of G is a detour monophonic set, then S is the unique minimum
detour monophonic set of G.

Theorem 1.2. [7] Let G be a connected graph with a cut-vertex v and
let S be a detour monophonic set of G. Then every component of G − v
contains an element of S.

Theorem 1.3. [8] Each extreme vertex of a connected graph G belongs to
every connected detour monophonic set of G.

Theorem 1.4. [8] Every cut-vertex of a connected graph G belongs to
every connected detour monophonic set of G.

Theorem 1.5. [8] For the complete graph Kp(p ≥ 2), dmc(Kp) = p.

Throughout this paper G denotes a connected graph with at least two
vertices.

2. Total detour monophonic number

Definition 2.1. A total detour monophonic set of a graph G is a detour
monophonic set S such that the subgraph G[S] induced by S has no isolated
vertices. The minimum cardinality of a total detour monophonic set of G
is the total detour monophonic number of G and is denoted by dmt(G). A
total detour monophonic set of cardinality dmt(G) is called a dmt-set of G.

Obviously, any connected detour monophonic set of G is a total detour
monophonic set of G.

Example 2.2. For the graphG in Figure 2.1, it is clear that S = {v1, v4, v5}
is a minimum detour monophonic set of G so that dm(G) = 3. It is
easily verified that the set S1 = {v1, v2, v4, v5} is a minimum total de-
tour monophonic set of G so that dmt(G) = 4. Also, it is clear that
S2 = {v1, v2, v3, v4, v5} is a minimum connected detour monophonic set of
G and so dmc(G) = 5. Thus the detour monophonic number, total detour
monophonic number and connected detour monophonic number of a graph
all different.
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Figure 2.1: G

It was shown in [2] that determining the monophonic number of a graph
is an NP-hard problem. Since every total detour monophonic set of G is
a monophonic set, determining the total detour monophonic number of a
graph is also an NP-hard problem.

Definition 2.3. A vertex v of a connected graph G is called a support
vertex of G if it is adjacent to an end-vertex of G.

Theorem 2.4. Each extreme vertex and each support vertex of a con-
nected graph G belongs to every total detour monophonic set of G. If the
set S of all extreme vertices and support vertices form a total detour mono-
phonic set, then it is the unique minimum total detour monophonic set of
G.

Proof. Since every total detour monophonic set of G is a detour mono-
phonic set of G, by Theorem 1.1, each extreme vertex belongs to every
total detour monophonic set of G. Since a total detour monophonic set of
G contains no isolated vertices, it follows that each support vertex of G also
belongs to every total detour monophonic set of G. Thus, if S is the set of
all extreme vertices and support vertices of G, then dmt(G) ≥ |S|. On the
other hand, if S is a total detour monophonic set of G, then dmt(G) ≤ |S|.
Therefore dmt(G) = |S| and S is the unique minimum total detour mono-
phonic set of G. 2

Corollary 2.5. For the complete graph Kp(p ≥ 2), dmt(G) = p.

Theorem 2.6. Let G be a connected graph with cut-vertices and let S be
a total detour monophonic set of G. If v is a cut-vertex of G, then every
component of G− v contains an element of S.

Marisol Martínez
fig2-1
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Proof. Since every total detour monophonic set of G is a detour mono-
phonic set of G, the result follows from Theorem 1.2. 2

Theorem 2.7. For a connected graphG of order p, 2 ≤ dm(G) ≤ dmt(G) ≤
dmc(G) ≤ p.

Proof. Any detour monophonic set of G needs at least two vertices and
so dm(G) ≥ 2. Since every total detour monophonic set ofG is also a detour
monophonic set of G, it follows that dm(G) ≤ dmt(G). Also, since every
connected detour monophonic set of G is a total detour monophonic set of
G, it follows that dmt(G) ≤ dmc(G). Since V (G) is a connected detour
monophonic set of G, it is clear that dmc(G) ≤ p. Hence 2 ≤ dm(G) ≤
dmt(G) ≤ dmc(G) ≤ p. 2

Corollary 2.8. LetG be a connected graph. If dmt(G) = 2, then dm(G) =
2.

For any non-trivial path of order at least 4, the detour monophonic
number is 2 and the total detour monophonic number is 4. This shows
that the converse of the Corollary 2.8 need not be true.

Remark 2.9. The bounds in Theorem 2.7 are sharp. For the complete
graph G = K2, dmt(G) = 2 and for the complete graph Kp, dmt(Kp) = p.
For the graph G given in Figure 2.1, dm(G) = 3, dmt(G) = 4, dmc(G) = 5
and p = 8 so that 2 < dm(G) < dmt(G) < dmc(G) < p. Hence all the
parameters in Theorem 2.7 are distinct.

Theorem 2.10. For any non-trivial tree T , the set of all end-vertices and
support vertices of T is the unique minimum total detour monophonic set
of G.

Proof. Since the set of all end-vertices and support vertices of T forms
a total detour monophonic set, the result follows from Theorem 2.4. 2

Now we proceed to characterize graphs G for which the lower bound in
Theorem 2.7 is attained.

Theorem 2.11. For any connected graph G, dmt(G) = 2 if and only if
G = K2.
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Proof. If G = K2, then dmt(G) = 2. Conversely, let dmt(G) = 2. Let
S = {u, v} be a minimum total detour monophonic set of G. Then uv is an
edge. It is clear that a vertex different from u and v cannot lie on a u− v
detour monophonic path and so G = K2. 2

Theorem 2.12. Let G be a connected graph with at least 2 vertices. Then
dmt(G) ≤ 2 dm(G).

Proof. Let S = {v1, v2, . . . , vk} be a minimum detour monophonic set
of G. Let ui ∈ N(vi) for i = 1, 2, . . . , k and let T = {u1, u2, . . . , uk}. Then
S ∪ T is a total detour monophonic set of G so that dmt(G) ≤ |S ∪ T | ≤
2k = 2 dm(G). 2

Theorem 2.13. If G = Cp or G = K2+H (p ≥ 3), where H is a graph of
order p− 2, then dmt(G) = 3.

Proof. First, suppose that G = Cp. It is easily verified that any three
consecutive vertices of Cp is a minimum total detour monophonic set of Cp

and so dmt(G) = dmt(Cp) = 3. Next, suppose that G = K2+H, where H
is a graph of order p− 2. Let V (K2) = {u1, u2}. Then for any vertex v of
H, the set S = {v, u1, u2} is a minimum total detour monophonic set of G
and so dmt(G) = 3. 2

Theorem 2.14. For the complete bipartite graph G = Kr,s(2 ≤ r ≤ s),

dmt(G) =

(
3 if 2 = r ≤ s
4 if 3 ≤ r ≤ s.

Proof. Let U = {u1, u2, . . . , ur} and W = {w1, w2, . . . , ws} be the
bipartition of G. We prove this theorem by considering four cases.
Case 1. 2 = r = s. Then G is the cycle C4 and by Theorem 2.13,
dmt(G) = 3.

Case 2. 2 = r < s. Then the minimum total detour monophonic set of
G is obtained by choosing the two elements from U and any one element
from W and so dmt(G) = 3.

Case 3. 3 ≤ r ≤ s. If 3 = r = s, then any minimum total detour
monophonic set of G is of the following forms: (i) U ∪ {wj} for some
j(1 ≤ j ≤ 3), (ii) W ∪ {ui} for some i(1 ≤ i ≤ 3), or (iii) a set containing
any two elements from each of U and W. If 3 = r < s, then any minimum
total detour monophonic set of G is either U ∪ {wj} for some j(1 ≤ j ≤ s),
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or any set containing any two elements from each of U and W. Hence in
both cases, we have dmt(G) = 4.

Case 4. 4 ≤ r ≤ s. Then any minimum total detour monophonic set of G
contains any two elements from each of U and W, and hence dmt(G) = 4.
2

Theorem 2.15. If G = K1 +
S
mjKj , where j ≥ 2,

P
mj ≥ 2, then

dmt(G) = p− 1.

Proof. Let G = K1 +
S
mjKj , where j ≥ 2 and

P
mj ≥ 2. It is clear

that G has exactly one cut-vertex which is not the support vertex and all
the remaining vertices are extreme vertices. Hence by Theorem 2.4, we
have dmt(G) = p− 1. 2

3. Some realization results on the total detour monophonic
number

For any connected graph G, radm(G) ≤ diamm(G). It is shown in [4]
that every two positive integers a and b with a ≤ b are realizable as the
monophonic radius and monophonic diameter, respectively, of some con-
nected graph. This theorem can also be extended so that the total detour
monophonic number can be prescribed when radm(G) < diamm(G).

Theorem 3.1. For positive integers r, d and k ≥ 6 with r < d, there
exists a connected graph G such that radm(G) = r, diamm(G) = d and
dmt(G) = k.

Proof. We prove this theorem by considering two cases.

Case 1. r = 1. Then d ≥ 2. Let Cd+2 : v1, v2, . . . , vd+2, v1 be a cycle of
order d + 2. Let G be the graph obtained by adding k − 3 new vertices
u1, u2, . . . , uk−3 to Cd+2 and joining each of the vertices
u1, u2, . . . , uk−3, v3, v4, . . . , vd+1 to the vertex v1. The graph G is shown in
Figure 3.1. It is easily verified that 1 ≤ em(x) ≤ d for any vertex x in G
and em(v1) = 1, em(v2) = d. Then radm(G) = 1 and diamm(G) = d.
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Figure 3.1: G

Let S = {u1, u2, . . . , uk−3, v2, vd+2, v1} be the set of all extreme vertices and
support vertex of G. By Theorem 2.4, S is a subset of any total detour
monophonic set of G. It is clear that S is the total detour monophonic set
of G and so dmt(G) = k.
Case 2. r ≥ 2. Let C : v1, v2, . . . , vr+2, v1 be a cycle of order r + 2
and let W = K1 + Cd+2 be the wheel with V (Cd+2) = {u1, u2, . . . , ud+2}.
Let H be the graph obtained from C and W by identifying v1 of C and
the central vertex K1 of W . If d is odd, then add k − 6 new vertices
w1, w2, . . . , wk−6 to the graph H and join each wi(1 ≤ i ≤ k − 6) to the
vertex v1 and obtain the graph G of Figure 3.2. It is easily verified that
r ≤ em(x) ≤ d for any vertex x in G and em(v1) = r and em(u1) = d.
Thus radm(G) = r and diamm(G) = d. Let S = {w1, w2, . . . , wk−6, v1}
be the set of all extreme vertices and support vertex of G. By Theorem
2.4, every total detour monophonic set of G contains S. It is clear that
S is not a total detour monophonic set of G. Also, S ∪ {x1, x2, x3, x4}
where xj(1 ≤ j ≤ 4) ∈ V (G) − S, is not a total detour monophonic set of
G. Let T = S ∪ {u1, u2, u3, v2, v3}. It is easily verified that T is a total
detour monophonic set of G and so dmt(G) = k. If d is even, then add
k − 5 new vertices w1, w2, . . . , wk−5 to the graph H and join each wi(1 ≤
i ≤ k − 5) to the vertex v1 and obtain the graph G. Similar to the above
argument, T 0 = {w1, w2, . . . , wk−5, v1, v2, v3, u1, u d+4

2
} is a minimum total

detour monophonic set of G and so dmt(G) = k. 2

Marisol Martínez
fig3-1
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Figure 3.2: G

Problem 3.2. For any three positive integers r, d and k ≥ 6 with r = d
does there exist a connected graph G with radm(G) = r, diamm(G) = d
and dmt(G) = k?

Theorem 3.3. If p, d and k are positive integers such that 2 ≤ d ≤ p− 2,
3 ≤ k ≤ p and p− d− k + 3 ≥ 0, then there exists a connected graph G of
order p, monophonic diameter d and dmt(G) = k.

Proof. We prove this theorem by considering two cases.
Case 1. d = 2. First, let k = 3. Let P3 : v1, v2, v3 be the path of order
3. Now, add p− 3 new vertices w1, w2, ..., wp−3 to P3. Let G be the graph
obtained by joining each wi(1 ≤ i ≤ p − 3) to v1 and v3. The graph G is
shown in Figure 3.3. Then G has order p and monophonic diameter d = 2.
Clearly S = {v1, v2, v3} is a minimum total detour monophonic set of G so
that dmt(G) = k = 3.

Marisol Martínez
fig3-2
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Figure 3.3: G

Now, let 4 ≤ k ≤ p. Let Kp−1 be the complete graph with the vertex set
{w1, w2, ..., wp−k+1, v1, v2, ..., vk−2}. Now, add the new vertex x to Kp−1
and let G be the graph obtained by joining x with each vertex wi(1 ≤ i ≤
p− k + 1). The graph G is shown in Figure 3.4. Then G has order p and
monophonic diameter d = 2. Let S = {v1, v2, ...vk−2, x} be the set of all
extreme vertices of G. By Theorem 2.4, every total detour monophonic set
of G contains S. It is clear that S is a detour monophonic set of G. Since
the induced subgraph G[S] has an isolated vertex, dmt(G) ≥ k. For any
vertex v ∈ {w1, w2, . . . , wp−k+1}, it is clear that S∪{v} is a minimum total
detour monophonic set of G and so dmt(G) = k.

Figure 3.4: G

Case 2. 3 ≤ d ≤ p−2. First, let k = 3. Let Cd+2 : v1, v2, ..., vd+2, v1 be the
cycle of order d+2. Add p−d−2 new vertices w1, w2, ..., wp−d−2 to C and
join each vertex wi(1 ≤ i ≤ p−d−2) to both v1 and v3, thereby producing

Marisol Martínez
fig3-3
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the graph G of Figure 3.5. Then G has order p and monophonic diameter
d. It is clear that S = {v3, v4, v5} is a minimum total detour monophonic
set of G and so dmt(G) = 3 = k.

Figure 3.5: G

Now, let k ≥ 4. Let Pd : v0, v1, ..., vd−1 be a path of order d. Add p−d new
vertices w1, w2, ..., wp−d−k+3, u1, u2, ..., uk−3 to Pd and join w1, w2, ..., wp−d−k+3
to both v0 and v2; and join u1, u2, ..., uk−3 to vd−1, thereby producing the
graph G of Figure 3.6.

Figure 3.6: G

ThenG has order p and monophonic diameter d. Let S = {u1, u2, ..., uk−3,
vd−1} be the set of all end-vertices and support vertex of G. By Theorem
2.4, every total detour monophonic set of G contains S. It is clear that S
is not a total detour monophonic set of G. Also, for any x /∈ S, S ∪ {x} is

Marisol Martínez
fig3-5
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not a total detour monophonic set of G. It is easily seen that S ∪ {v0, v1}
is a minimum total detour monophonic set of G and so dmt(G) = k. 2

In view of Theorems 2.13, 2.14 and 3.3, we leave the following problem
as an open question.

Problem 3.4. Characterize graphs G for which dmt(G) = 3.

In view of Theorem 2.7, we have the following realization result.

Theorem 3.5. If a, b and p are positive integers such that 4 ≤ a ≤ b ≤
p, then there exists a connected graph G of order p, dmt(G) = a and
dmc(G) = b.

Proof. We prove this theorem by considering four cases.

Case 1. 4 ≤ a = b = p. Let G = Kp. Then by Corollary 2.5 and Theorem
1.5, we have dmt(G) = dmc(G) = p.

Case 2. 4 ≤ a < b < p. Let Pb−a+3 : u1, u2, . . . , ub−a+3 be a path of order
b− a+ 3. Add p− b+ a− 3 new vertices v1, v2, . . . , vp−b, w1, w2, . . . , wa−3
to Pb−a+3 and join v1, v2, . . . , vp−b with both u1 and u3; and also join each
of wi(1 ≤ i ≤ a − 3) with ub−a+3, thereby producing the graph G of
Figure 3.7. Then G has order p. Let S = {w1, w2, . . . , wa−3, ub−a+3} be
the set of all extreme vertices and support vertex of G. By Theorem 2.4,
every total detour monophonic set of G contains S. It is clear that for any
x /∈ S, S∪{x} is not a total detour monophonic set of G. Since S∪{u1, u2}
is a total detour monophonic set of G, we have dmt(G) = a.

Figure 3.7: G

Let S1 = {w1, w2, . . . , wa−3, u3, u4, . . . , ub−a+3} be the set of all extreme
vertices and cut-vertices of G. By Theorems 1.3 and 1.4, every connected

Marisol Martínez
fig3-7
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detour monophonic set of G contains S1. It is clear that for any x /∈ S1, S1∪
{x} is not a connected detour monophonic set of G. Let S01 = S1∪{u1, u2}.
It is easily verified that S01 is a connected detour monophonic set of G and
so dmc(G) = b.
Case 3. 4 ≤ a = b < p. Let P3 : v1, v2, v3 be a path of order 3. Let H be
the graph obtained from P3 by adding p− a new vertices w1, w2, . . . , wp−a
to P3 and join each wi(1 ≤ i ≤ p − a) to v1 and v3. Also, add a − 3
new vertices u1, u2, u3, . . . , ua−3 to H and join each ui(1 ≤ i ≤ a − 3)
with v2, thereby producing the graph G in Figure 3.8 of order p. Let
S = {u1, u2, . . . , ua−3, v2} be the set of all extreme vertices and support
vertex of G. By Theorems 2.4, 1.3 and 1.4, every total detour monophonic
set and every connected detour monophonic set of G contains S. It is clear
that for any x /∈ S, S ∪ {x} is not a total detour monophonic set of G.
Since S ∪ {v1, v3} is a connected detour monophonic set of G and also a
total detour monophonic set of G, we have dmc(G) = dmt(G) = a.

Figure 3.8: G

Case 4. 4 ≤ a < b = p. Let Pb−a+3 : u1, u2, . . . , ub−a+3 be a path of order
b− a+ 3. Add a− 3 new vertices v1, v2, . . . , va−3 to Pb−a+3 and join each
vi(1 ≤ i ≤ a−3) with ub−a+3, thereby producing the graph G in Figure 3.9
of order p = b. Let S = {u1, v1, v2, . . . , va−3, u2, ub−a+3} be the set of all
extreme vertices and support vertices of G. By Theorem 2.4, every total
detour monophonic set of G contains S. It is clear that S is the total detour
monophonic set of G and so dmt(G) = a.

Marisol Martínez
fig3-8
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Figure 3.9: G

It is clear that V (G) is the set of all extreme vertices and cut-vertices
of G. Then by Theorems 1.3 and 1.4, V (G) is the connected detour mono-
phonic set of G and so dmc(G) = b = p. 2

Theorem 3.6. For positive integers a, b such that 4 ≤ a ≤ b with b ≤ 2a,
there exists a connected graph G such that dm(G) = a and dmt(G) = b.

Proof. Case 1. 4 ≤ a = b. Then the complete graph Ka has the
desired properties.
Case 2. 4 ≤ a < b. Let b = a+k, where 1 ≤ k ≤ a. For k = 1, the starK1,a

has the desired properties. Now, let k ≥ 2. Let Ci : xi, yi, zi, wi, xi (1 ≤ i ≤
k − 1) be “k − 1” copies of C4. Let H be the graph formed by identifying
the vertices xi from Ci (1 ≤ i ≤ k − 1) and let x be the identified vertex.
Let G be the graph obtained from H by adding a − k + 1 new vertices
v1, v2, . . . , va−k+1 and joining each vi(1 ≤ i ≤ a− k+1) with x. The graph
G is shown in Figure 3.10. Let S = {v1, v2, . . . , va−k+1} be the set of all
extreme vertices of G. By Theorem 1.1, every detour monophonic set of
G contains S. It is clear that S1 = S ∪ {z1, z2, . . . , zk−1} is the detour
monophonic set of G and so dm(G) = a.

Figure 3.10: G

Marisol Martínez
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Let S0 = S ∪ {x} be the set of all extreme vertices and support ver-
tex of G. By Theorem 2.4, every total detour monophonic set of G con-
tains S0. Also, by Theorem 2.6, every total detour monophonic set of
G contains at least one vertex from each V (Ci) − {x}. Hence S00 =
S0 ∪ {y1, z1, y2, z2, . . . , yk−1, zk−1} is a minimum total detour monophonic
set of G so that dmt(G) = b. 2
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