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Abstract

In this paper we establish a nonexistence result for an ellip-
tic problem involving the one-dimentional p-Laplacian operator
with asymmetric second member of the equation.
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1. Introduction

Let us to consider the one-dimentional asymmetric problem

(1.1) −∆pu = m1(x) up−1
+ −m2(x) up−1

− in ]0,T[,

where 1<p<∞, ( m1,m2) ∈ (L∞]0,T[)2, u± = max(±u, 0), and -
∆pu = (|u′|p−2u′)′ denotes the one-dimentional p-Laplacian operator
.

In this paper we study the nonexistence of nontrivial solutions for
(1.1) when the pair ( m1,m2) is in some appropriate sense ”between
two consicutive curves of the Fucik spectrum”; we investigate three
situations: The Dirichlet, Neumann and periodic boundary conditions.
We recall that the Fucik spectrum for the corresponding boundary
conditions wich is noted by ΘD (resp.ΘNe ), (resp.Θpe) is defined as
the set of those (µ, ν) ∈ R2 such that the problem

(1.2) −∆pu = µ up−1
+ − ν up−1

− in ]0,T[,

under Dirichlet (resp. Neumann) (resp. periodic) boundary conditions
has a nontrivial solution. Several works have been devoted to the
study of this spectrum and its applications especially in the higher
dimension, cf. [3], [4], [5]. Of particular interest for our purposes are
those of P.Drábek [4] where ΘD is competely determined.

In order to prove our results we use some arguments like the prop-
erty of the nodal set for eigenfunctions and the simplicity of the first
eigenvalue λ1 of the p-Laplacian on W 1,p

0 (cf.[1]) . We will give more
details in the next section.

According to the particular quasilinear case where m1 = m2 , one
should refer to the interesting work of Del Pino, El Gueta and Mana-
sevich [6], the authors establish a similar result by using the Sturm’s
comparaison theorem. I suggest that our envisagement is completely
different from their approach. Finally I beleive the related result for
periodic case is contained in [7], and one should make an appropriate
comparaison.
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2. Statements and proofs.

2.1. Curves of the Fucik spectrum and Dirichlet problem.

In this subsection we shall consider the problems (1.1) and (1.2) under
the Dirichlet bounary conditions u(0) = u(T ) = 0. We start by giving
the result of P.Drábek [4] on the one-dimentional Fucik spectrum of
the p-Laplacian on W 1,p

0 (]0,T[). According to the definition of ΘD

given in the introduction, directly we have ΘD = R ×{λ1}∪{λ1}×R
∪

(

∪∞n=1[C2n ∪ C−
2n+1 ∪ C+

2n+1]
)

; where

C2n =
{

(µ, ν) ∈ R∗
+

2 / n
[

(

λ1
µ

)1/p
+

(

λ1
ν

)1/p
]

= 1
}

C−
2n+1 =















(µ, ν) ∈ R∗
+

2 / n
[

(

λ1
µ

)1/p
+

(

λ1
ν

)1/p
]

+

+ min
(

(

λ1
µ

)1/p
,
(

λ1
ν

)1/p
)

= 1















C+
2n+1 =















(µ, ν) ∈ R∗
+

2 / n
[

(

λ1
µ

)1/p
+

(

λ1
ν

)1/p
]

+

+ max
(

(

λ1
µ

)1/p
,
(

λ1
ν

)1/p
)

= 1















Where λ1 represent the first eigenvalue of the p-Laplacian on
W 1,p

0 (]0,T[). If we represent C2n, C−
2n+1, C

+
2n+1 as the curves ν = f(µ)

so we have the following comparaison:

C2n < C−
2n+1 ≤ C+

2n+1 < C2n+2.

Theorem 2.1. Assume that m1, m2 ∈ L∞(]0, T [) and there
exists (µ1, ν1), (µ2, ν2) ∈ R2 such that (µ1, ν1) ≤

6=
(m1(x),m2(x)) ≤

6=
(µ2, ν2). Then no nontrivial solutions for (1.1) exists, if one of the
following asymptions is true:

1. µ1 = ν1 = λ1, and (µ2, ν2) ∈ C2.

2. (µ1, ν1) ∈ C2n, and (µ2, ν2) ∈ C−
2n+1.

3. (µ1, ν1) ∈ C−
2n+1 ∩∆±, and (µ2, ν2) ∈ C+

2n+1 ∩∆±; where

∆+(resp.∆−) = {(µ, ν) ∈ R2 / µ < ν (resp.µ > ν)} .
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4. (µ1, ν1) ∈ C+
2n+1, and (µ2, ν2) ∈ C2n+2.

Remark 2.1. We define the quasilinear problem associated to
(1.1) by substituting m1 and m2 in (1.1) by m , so (1.1) is wraten as

(1.3) −∆pu = m(x)|u|p−2u in ]0,T[.

In this particular case the result of [6] remain included in theorem
2.1.

Proof of theorem 2.1. Suppose that there exists u 6= 0 solution
of (1.1). We apply Anane’s L∞ estimation [2] and Tolksdorf’s regu-
larity [8] we have u ∈ C1(]0,T[); and by using the maximum principle
of Vasquez [9] it easy to see that if u(a) = 0 then u′(a) 6= 0, then we
deduce Z(u) = {x ∈ [0, T] / u(x) = 0} is a finite subset. We take

Z(u) = { x0 = 0 < x1 < ... < xk = T } .

Put ui = u/[xi , xi + 1] , mj,i = mj/[xi , xi + 1] for j = 1, 2 and i =
0, ..., k− 1. Since u is a solution of (1.1) under the Dirichlet boundary
conditions then ui is a nontrivial solution for some eigenvalue problem
with weight like (1.3) with some simple modifications, and by defini-
tion ui does not changing sign, then from this fact we have by using
the simplicity of λ1 :

λ1( m1,i ) = 1 or λ1( m2,i ) = 1, ∀ i = 0, ..., k − 1. More pricisely,
if u/]x0 , x1[ > 0 (this hypothesis will be assumed in all the rest of the
proof; the similar argument could be adapted to the case u/]x0 , x1[ < 0
); then

λ1(m1,2q) = 1 and λ1(m2,2q+1) = 1, ...∀q ≥ 0.

by using (µ1, ν1) ≤ (m1,i(x) , m2,i(x)) ≤ (µ2, ν2) a.e x ∈]0,T[ ∀ i; the
fact that there exists i0, i1 such that (µ1, ν1) < (m1,i0(x) , m2,i0(x)) and
(m1,i1(x) , m2,i1(x)) < (µ2, ν2) on some subsets of positive measures;
and the monotonicity de λ1 we get:
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λ1(µ2/] x2q , x2q + 1 [) ≤
1st

λ1(m1,2q) = 1 ≤
2nd

λ1(µ1/] x2q , x2q + 1 [)

λ1(ν2/] x2q + 1 , x2q + 2 [) ≤
1st

λ1(m2,2q+1) = 1 ≤
2nd

λ1(ν1/] x2q + 1 , x2q + 2 [),

and there exists some integers q such that one of two last firsts (1st)
and one of two last seconds (2nd) inequalitys was stricts.

From [4] and for some positive constant α we get,

λ1(α/]a,b[) =
1
α

(

πp

b− a

)p

; πp = 2(p− 1)p
∫ 1

0

ds

(1− sp)1/p ,

then by using the last inequalitys we obtain :

πp

(µ2)
1/p ≤1st

x2q+1−x2q ≤
2nd

πp

(µ1)
1/p ,

πp

(ν2)
1/p ≤1st

x2q+2−x2q+1 ≤
2nd

πp

(ν1)
1/p ,

and one of those 1st and one of those 2nd last inequalitys was stricts ,
then by according to this point and by sommons in the last inequalitys
from q = 0 to k−1

2 we give

E(k
2 )

[

πp

(µ2)1/p + πp

(ν2)1/p

]

+ ε πp

(µ2)1/p < T < E(k
2 )

[

πp

(µ1)1/p + πp

(ν1)1/p

]

+

+ε πp

(µ1)1/p ,

where ε = 0 if k is even and ε = 1 if not. So we obtain:

E(k
2 )

[

(

λ1
µ2

)1/p
+

(

λ1
ν2

)1/p
]

+ ε
(

λ1
µ2

)1/p
< 1 < E(k

2 )
[

(

λ1
µ1

)1/p
+

(

λ1
ν1

)1/p
]

+

+ε
(

λ1
µ1

)1/p
.

By using the hypothesis 2) (for exemple) of therem 2.1; the defi-
nition of C2n, C−

2n+1 and the last inequalitys it was easy to see that
n < E(k

2 ) < n + 1; wich gives a contradiction. The same conclu-
sion will be established if we consider the hypothesis 1) or 3) or 4) of
theorem 2.1. 2



48 A. Anane and A. Dakkak

2.2. Neumann Problem.

In this subsection we shall consider the problems (1.1) and (1.2) under
the Neumann bounary conditions u′(0) = u′(T ) = 0 .

Theorem 2.2. Assume that m1, m2 ∈ L∞(]0, T [) and there
exists (µ1, ν1), (µ2, ν2) ∈ R2 such that (µ1, ν1) ≤

6=
(m1(x),m2(x)) ≤

6=
(µ2, ν2). Then no nontrivial solutions for (1.1) exists, if one of the
following asymptions is true:

1. µ1 = ν1 = 0, and (µ2, ν2) ∈ C1.

2. (µ1, ν1) ∈ Cn, and (µ2, ν2) ∈ Cn+1 (n ≥ 1).

Where Cn =
{

(µ, ν) ∈ R∗
+

2 / n
[

(

λ1
µ

)1/p
+

(

λ1
ν

)1/p
]

= 2
}

.

Proof. Suppose that there exists u 6= 0 solution de (1.1). Then by
according to the beginning of the proof of theorem 2.1 we get u(0) 6= 0,
u(T ) 6= 0 and Z(u) is a finite subset. Let Z(u) = {x1 < ... < xk} .
We define

u(x) = u(−x) if −x1 ≤ x ≤ 0,
u(x) = u(x) if 0 ≤ x ≤T,
u(x) = u(2T−x) if T≤ x ≤ 2T-xk ,

and the analogous definition for m1 and m2. It easy to see that u is
a solution of a Dirichlet problem like (1.3) with domain ]−x1, 2T−xk[
and weights (m1, m2).

Without loss of generaliy we can assume that u/]0 , x1[ > 0; and in
order to simplify this proof we shall us simply the following hypothesis
(of therem 2.2):

µ1 < m1(x) < µ2 and ν1 < m1(x) < ν2 a.e x ∈]0, T[.

We proceed as in the proof of theorem 2.1, then we obtain:

1. πp

(µ2)1/p < 2x1 < πp

(µ1)1/p
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2. πp

(µ2)1/p < x2 − x1 < πp

(µ1)1/p ....

k. πp

(ν2)1/p < xk−xk-1 < πp

(ν1)1/p if k is even ; πp

(µ2)1/p < xk−xk-1 < πp

(µ1)1/p

if not

k+1. πp

(µ2)1/p < 2T−2xk < πp

(µ1)1/p if k is even ; πp

(ν2)1/p < 2T−2xk <
πp

(ν1)1/p if not.

We multiply the equations 2 to k by 2 and we sum from 1 to k +1,
wich gives:

k
[

πp

(µ2)
1/p +

πp

(ν2)
1/p

]

< 2T < k
[

πp

(µ1)
1/p +

πp

(ν1)
1/p

]

,

so

k





(

λ1

µ2

)1/p

+
(

λ1

ν2

)1/p


 < 2 < k





(

λ1

µ1

)1/p

+
(

λ1

ν1

)1/p


 ;

since (µ1, ν1)∈ Cn, and (µ2, ν2) ∈ Cn+1 then it was easy to see that
n < k < n + 1, wich gives a contradiction. 2

Corollary 2.1. The one-dimensional Fucik spectrum for the p-
Laplacian with Neumann boundary conditions is: ΘNe = R ×{0} ∪
{0} ×R ∪

(

∪∞n=1Cn

)

.
So we deduce the usuel one-dimensional spectrum for the p-Laplacian

with Neumann boundary conditions is given by :
σNe(−∆p) = {npλ1 / n ≥ 0} .

Remark 2.2. If (µ, ν) ∈ C1 then lim
µ → +∞

ν(µ) = λ1
2p > 0; (here 0

represent the first eigenvalue of the p-Laplacian with Neumann bound-
ary conditions). In [3] the authors show that there exists a connection
between this asymptotic behaviour of C1 and the antimaximum prin-
ciple; but if the dimension is larger then 2 and p = 2 so we have C1

is asymptotic to 0 (cf.[5]). In the Dirichlet case the first curve of the
Fucik spectrum is always asymptotic to λ1.
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2.3. Periodic Problem.

In this subsection we shall consider the problems (1.1) and (1.2) under
periodic bounary conditions: u(0)− u(T ) = u′(0)− u′(T ) = 0.

Theorem 2.3. Assume that m1, m2 ∈ L∞(]0, T [) and there ex-
ists (µ1, ν1), (µ2, ν2) ∈ R2 such that (µ1, ν1) ≤

6=
(m1(x),m2(x)) ≤

6=
(µ2, ν2) a.e x ∈]0,T[. Then no nontrivial solutions for (1.1) exists, if
one of the following asymptions is true:

1. µ1 = ν1 = 0, and (µ2, ν2) ∈ ˜C1.

2. (µ1, ν1) ∈ ˜Cn, and (µ2, ν2) ∈ ˜Cn+1 (n ≥ 1).

Where ˜Cn =
{

(µ, ν) ∈ R∗
+

2 / n
[

(

λ1
µ

)1/p
+

(

λ1
ν

)1/p
]

= 1
}

.

Proof. Suppose that there exists u 6= 0 solution of (1.1) . Put
Z(u) = {x1 < ... < xk} . We define:

ũ(x) = u(x+T) if xk−T≤ x ≤ 0,
ũ(x) = u(x) if 0 ≤ x ≤T,
ũ(x) = u(2T−x) if T≤ x ≤T + x1

and the analogous definition for m̃1 and m̃2. It easy to see that ũ is
a nontrivial solution for a Dirichlet problelm like (1.3) with domain
]xk−T , T+x1[ and weights ( m̃1, m̃2).

In order to simplify this proof we shall assume

0 < x1 < xk <T, (µ1, ν1) < (m1(x),m2(x)) < (µ2, ν2) a.e, and
u/]0 , x1[ > 0.

In the fact that u′(0) − u′(T ) = 0 we obtain that k is even , so
by a similar arguments of the proof of theorem 2.2 and by using the
hypothesis 2) of theorem 2.3 we get:

1. πp

(µ2)1/p <T+x1 − xk < πp

(µ1)1/p
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2. πp

(µ2)1/p < x2 − x1 < πp

(µ1)1/p ....

k. πp

(ν2)1/p < xk − xk-1 < πp

(ν1)1/p

k+1. πp

(µ2)1/p <T+x1 − xk < πp

(µ1)1/p

we multiply the equations 2 to k by 2 and we sum from 1 to k + 1, we
have

k
2





(

λ1

µ2

)1/p

+
(

λ1

ν2

)1/p


 < 1 <
k
2





(

λ1

µ1

)1/p

+
(

λ1

ν1

)1/p


 ;

Since (µ1, ν1)∈ ˜Cn, and (µ2, ν2) ∈ ˜Cn+1 then it easy to see that
n < k

2 < n + 1 wich gives a contradiction because k is even. 2

Corollary 2.2. The one-dimensional Fucik spectrum for the p-
Laplacian with periodic boundary conditions is: Θpe = R ×{0} ∪
{0} ×R ∪

(

∪∞n=1
˜Cn

)

.
So we deduce the usuel one-dimensional spectrum for the p-Laplacian

with periodic boundary conditions is given by :
σpe(−∆p) = {(2n)pλ1 / n ≥ 0} .
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