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Abstract

Given the sequences of real numbers (λi)n
1 , (µi)n−1

1 , satisfy-
ing the interlacing property λi < µi < λi+1, 1 ≤ i ≤ n− 1, we
present a new numerical procedure to construct a spring-mass
system with eigenvalues (λi)n

1 , where the interlaced spectrum
(µi)n−1

1 corresponds to the modified system whose mass mr+1,
1 ≤ r ≤ n − 2, is fixed. The method, which is a modifica-
tion of the fast orthogonal reduction technique, appears to be
computationally less expensive than other in the literature.
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1. Introduction

Inverse problems have important applications in physics and engineer-
ing, in areas such as circuit, control and vibration theory. The vibra-
tion analysis of an structural system is performed as an approximation
to the continuous system obtained by discretizing the mechanical prop-
erties. For an undamped discrete system with n-degrees of freedom
the governing equation is

(Kn − λMn)xn = 0,(1.1)

where the matrices Mn and Kn of order n are the mass matrix and
the stiffness matrix, respectively. The eigenvalues λi of the equation
(1.1) are related with the natural frequencies ωi (λi = ω2

i ) and the
eigenvectors x(i)

n = (x(i)
n,1, x

(i)
n,2, . . . , x(i)

n,n)T , i = 1, 2, ...., n, represent the
vibration modes.

Consider the spring-mass system consisting of n masses mi > 0
connected by n springs of stiffnesses ki > 0, as shown in figure (1).
Here, the mass matrix is Mn = diag{m1,m2, ...,mn} and the stiffness
matrix

Kn =

















k1 + k2 −k2

−k2 k2 + k3 −k3

· · · · ·
−kn−1 kn−1 + kn −kn

−kn kn

















The spring-mass system, denoted by (Mn, Kn), is a real physical
system if mi > 0 and ki > 0, i = 1, 2, ..., n. These properties imply
that Mn and Kn are positive definite matrices. Moreover, as Kn is
also symmetric and tridiagonal, the eigenvalues are real, positive and
distinct.
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The structural properties of the matrices Mn and Kn allow us to
reduce the generalized eigenvalue equation (1.1) to the standard form

(Jn − λiIn) v(i)
n = 0,

where

Jn = B−1
n Kn(Bn)−1, v(i)

n = Bnx(i)
n ,(1.2)

and Bn = diag{m1/2
1 ,m1/2

2 , ..., m1/2
n }. Thus, the matrix Jn is sym-

metric tridiagonal positive definite with the same eigenvalues of the
system (Mn, Kn). We call Jn a Jacobi matrix. Clearly, the relation
(1.2) implies that the diagonal elements of Jn are positive, while the
co-diagonal elements are negative. By the similarity transformation
J ′ = DnJnDn, where Dn = diag{(−1)i , i = 1, 2, . . . , n}, the codiag-
onal elements become positive. Then, without loss of generality we
may assume that Jn has the form

Jn =

















a1 b1

b1 a2 b2

· · · ·
bn−2 an−1 bn−1

· bn−1 an

















,

with ai,bi > 0, i = 1, 2, . . . , n.
The natural frequencies of the system (Mn, Kn) are usually com-

puted by using the matrices Mn and Kn. The problem here is to
identify a system from the natural frequencies. This identification
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problem may be solved in two ways. The first way start with a pair of
matrices (the mass matrix and the stiffness matrix) and then by using
an optimization method, determines the matrices Mn and Kn which
identify the specified spectral data. The second strategy start with
the spectral information to recover the matrices Mn and Kn, directly.

The second procedure have been studied by Gladwell [4], [5], [6]
and others [10], [11], [12]. Krein [8] proved that the matrices Mn and
Kn can be uniquely reconstructed if the following information is given:
The eigenvalues (λi)

n
1 of the original system (Fig 1).

The eigenvalues (µi)
n−1
1 corresponding to the modified system whose

last mass is fixed (Fig 2).
An additional factor. For example, the total mass of the system mT =
n
∑

i=1
mi.

The interlacing property

λ1 < µ1 < λ2 < · · · < µn−1 < λn

is a necessary and sufficient condition for the existence of a real phys-
ical system, where the set (µi)

n−1
1 is called the interlaced spectrum.

The construction of the system is performed in two parts. Firstly,
the matrix Jn is reconstructed by the adequate use of some standard
tridiagonalization method for symmetric matrices, like Householder
transformations, Givens rotations, or Lanczos method. Once Jn is ob-
tained and considering the relations in (1.2), the second part consists
in to separate the masses and the stiffnesses of Jn. This is possible if
we consider the equation

Kn (1, 1, . . . , 1)T = BnJnBn (1, 1, . . . , 1)T = (k1, 0, . . . , 0)T ,
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where Jn was previously determined. This imply that

Jn

(

m1/2
1 ,m1/2

2 , . . . ,m1/2
n

)T
=

(

k1m
−1/2
1 , 0, . . . , 0

)T
.

Now, if yn = (yn,1, yn,2, · · · , yn,n)T 6= 0 is the solution of the system

Jnyn = (1, 0, . . . , 0)T ,

then

mi = mn

(

yn,i

yn,n

)2

, i = 1, 2, . . . , n− 1.(1.3)

Moreover, if the total mass of the system is known, from (1.3), we
have that the last mass is given by

mn =
mT

1 +
n−1
∑

i=1

(

yn,i
yn,n

)2
.

Hence, the mass matrix Mn is completely determined. Now, we may
use the relations (1.2) to compute the stiffness matrix Kn. In this way,
we may determine the system (Mn, Kn), completely.

The reconstruction of a spring-mass system may also be performed
by using the interlaced spectrum corresponding to a modified system
with different bounds conditions (see [4], [10]). The modified system
considered in this paper consists in to fix any mass of the system
(Mn, Kn), other than the extreme masses. Thus, the problem we study
here may be formulated as follows:

Problem 1. Given the sequences of real numbers (λi)n
1 , (µi)n−1

1 sat-
isfying the interlacing property

λi < µi < λi+1, 1 ≤ i ≤ n− 1

reconstruct a spring-mass system (Mn, Kn) with eigenvalues (λi)n
1 ,

where the interlaced spectrum (µi)n−1
1 corresponds to the modified

system whose mass mr+1, 1 ≤ r ≤ n− 2, is fixed.
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It is clear that if we fix the (r + 1)th mass, the resulting modified
system consists of two spring-mass systems, (Mr, Kr) and (Mp, Kp) ,
with natural frequencies (γi)

r
1 and (νi)

p
1, respectively, where p = n −

r−1. The structural properties of the matrices related to the systems
(Mr, Kr) and (Mp, Kp) allow to partition the matrix Jn in the form:

Jn =







Jr br 0
br ar+1 br+1

0 br+1 Jp





 ,(1.4)

where the Jacobi submatrices Jr and Jp are given by Jr = B−1
r Kr(BT

r )−1

and Jp = B−1
p Kp(BT

p )−1, with Br = diag{m1/2
1 ,m1/2

2 , ..., m1/2
r }, Bp =

diag{m1/2
r+2,

m1/2
r+3, ...,m1/2

p }. As the system (Mn, Kn) can be reconstructed from
the matrix Jn, it is enough to reconstruct Jn from the sets (λi)

n
1 , (γi)

r
1,

and (νi)
p
1 to obtain (Mn, Kn). Thus, the Problem 1 is reduced to:

Problem 2. Given the sequence of real numbers (λi)n
1 , (µi)n−1

1 =
(γi)r

1 ∪ (νi)
p
1 satisfying the interlacing property

λi < µi < λi+1, 1 ≤ i ≤ n− 1(1.5)

reconstruct the matrix Jn of (1.4) such that

σ (Jn) = (λi)n
1 , σ (Jr) = (γi)r

1, σ (Jp) = (νi)
p
1, p = n− r − 1.

The existence and uniqueness of the solution for the Problem 2
have been considered in [1], [3], [7]. Algorithms to compute the solu-
tion Jn are proposed in [6] and [13]. For the tridiagonalization process,
they use the Lanczos algorithm and Householder transformations, re-
spectively. The computational costs in these methods are in general
of order On3.

In [2] and [7] is presented the fast orthogonal reduction algorithm,
which reconstruct the matrix Jn from (λi)n

1 and (µi)n−1
1 , where (µi)n−1

1
is the interlaced spectrum corresponding to the submatrix Jn\1. In
section 2, we modify the fast orthogonal reduction algorithm to derive a
new direct numerical procedure to solve Problem 2. This new method
has only a computational cost of order On2. In section 3 we present
some numerical examples which confirm the efficiency of the method.
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2. The algorithm

The basic method in which our proposal is based is the fast orthogonal
reduction method presented by Gragg and Harrow in [7]. The idea is
firstly to construct a bordered diagonal matrix An+1 of the form

An+1 =
[

a0 vT
n

vn Λn

]

,(2.1)

where a0 is a dummy entry, Λn = diag{λ1, λ2, . . . , λn}, and
vn = (v(1)

n,1, v
(2)
n,1, . . . , v

(n)
n,1)T is the first (or last) row of eigenvectors of Jn.

Then, we reduce An+1 to the tridiagonal form by applying a sequence
of orthogonal plane rotations in a particular order.

This orthogonal reduction process is called algorithm of Rutishauser,
which reduce the matrix (2.1) to the tridiagonal form

Jn+1 =
[

a0 eT
1

e1 Jn

]

,

where e1 = (1, 0, . . . , 0)T and Jn is the required Jacobi matrix with
eigenvalues (λi)n

1 . The fast orthogonal reduction method has a com-
putational cost of O(n2) operations, which is increased to O(n3) if we
use Lanczos or Householder transformations. A complete discussion
of the fast orthogonal reduction method can be found in [2], [7].

The idea of our proposal is to construct the submatrices Jr, Jp,
and the elements br, br+1, and ar+1, where p = n − r − 1, by using
an adequate modification of the fast orthogonal reduction algorithm.
Clearly, the diagonal element ar+1 can be computed by

ar+1 =
n

∑

i=1
λi −

r
∑

i=1
γi −

p
∑

i=1
νi.(2.2)

Now let us define the bordered diagonal matrices

Ar+1 =
[

Λr ur

uT
r ar

0

]

, Ap+1 =
[

ap
0 wT

p
wp Λp

]

,(2.3)

where ur = (u(1)
r,r , u

(2)
r,r , . . . , u

(r)
r,r )

T and wp = (w(1)
p,1, w

(2)
p,1, . . . , w

(p)
p,1)T are

respectively, the last and first row of the matrices of eigenvectors of Jr
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and Jp. The submatrices Λr and Λp are diagonal matrices having as
their diagonal entries the eigenvalues of Jr and Jp, respectively. If the
eigenvectors ur and wp are known, then it is possible to apply the fast
orthogonal reduction algorithm to orthogonally reduce the matrices
Ar+1 and Ap+1 to their tridiagonal forms, obtaining in this way the
searched matrices Jr and Jp.

Consider the following notation: In general, Aj\i will denote the
principal submatrix of order (j− 1), obtained from Aj, by deleting its
ith row and column. Pn(λ), Qr(λ), and Sp(λ) will denote the charac-
teristic polynomials of Jn, Jr, and Jp, with p = n− r− 1, respectively,
while Qr\r(λ) and Sp\1(λ) will denote the characteristic polynomials
of Jr\r, and Jp\1, respectively.

By expanding det (λIn − Jn) along its rth row we find that

Pn(λ) = (λ− ar+1)Qr(λ)Sp(λ)− b2
rQr\r(λ)Sp(λ)− b2

r+1Qr(λ)Sp\1(λ).
(2.4)
We know that

Pn(λ) =
∏n

i=1(λ− λi), Qr(λ) =
∏r

i=1(λ− γi), Sp(λ)
=

∏p
i=1(λ− νi)

(2.5)

Setting λ = γi and λ = νi en (2.4) we obtain

Pn(γi) = −b2
rQr\r(γi)Sp(γi), 1 ≤ i ≤ r(2.6)

and

Pn(νi) = −b2
r+1Sp\1(νi)Qr(νi), 1 ≤ i ≤ p,(2.7)

respectively.
Assume that Ur =

[

u(1)
r u(2)

r · · · u(r)
r

]

is the orthogonal matrix of
eigenvectors of Jr. Then UT

r (λIr − Jr)Ur = λIr − Λr, and we have

(λIr − Jr)−1 = Ur(λIr − Λr)−1UT
r .(2.8)
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The left side of (2.8) is

(λIr − Jr)−1 =
1

Qr(λ)
· adj(λIr − Jr) =

1
Qr(λ)

·











∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
· · · ·
∗ ∗ ∗ Qr\r (λ)











,

while the right side is

Ur(λIr − Λr)−1UT
r =

[

u(1)
r

λ− γ1

u(2)
r

λ− γ2
· · · u(r)

r

λ− γr

]

UT
r .

Comparing the entries in position (r, r) in both sides of (2.8) we find
that

Qr\r(λ)
Qr(λ)

=
r

∑

i=1

[

u(i)
r,r

]2

λ− γi
,

Taking the limit when λ tends to γi, we obtain

Qr\r(γi)
Q′

r(γi)
=

[

u(i)
r,r

]2
, 1 ≤ i ≤ r,(2.9)

where Q′
r(γi) =

r
∏

j=1,j 6=i
(γi − γj). From (2.6) and (2.9), we obtain

b2
r

[

u(i)
r,r

]2
= − Pn(γi)

Sp(γi)Q
′
r(γi)

, 1 ≤ i ≤ r.(2.10)

and
∑r

i=1

(

− Pn(γi)
Sp(γi)Q

′
r(γi)

)

=
∑r

i=1 b2
r

[

u(i)
r,r

]2

= b2
r

∑r
i=1

[

u(i)
r,r

]2

= b2
r

(2.11)

The interlacing property of the eigenvalues (1.5) guarantee that the
right side of (2.10) is always positive. Thus, the equations (2.5), (2.10)
and (2.11) allow us to determine all the elements of the vector ur and
the codiagonal element br.

If Wp =
[

w(1)
p w(2)

p · · · w(p)
p

]

is the matrix of eigenvectors of Jp, the
same procedure leads to
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Sp\1(νi)
S ′

p(νi)
=

[

w(i)
p,1

]2
, 1 ≤ i ≤ r,(2.12)

where S ′
p(νi) =

r
∏

j=1,j 6=i
(νi − νj). From (2.12) and (2.7) we have

b2
r+1

[

w(i)
p,1

]2
= − Pn(νi)

S ′
p(νi)Qr(νi)

, 1 ≤ i ≤ p,(2.13)

and
∑p

i=1

(

− Pn(νi)
Sp(νi)Qr(νi)

)

=
∑p

i=1 b2
r+1

[

w(i)
p,1

]2

= b2
r+1

∑p
i=1

[

w(i)
p,1

]2

= b2
r+1

(2.14)

Hence, from (2.5), (2.13) and (2.14), the first row of the matrix of
eigenvectors of Jp and the codiagonal element br+1 are computed.

The algorithm can be summarized as follows:

Algorithm 1. Given the sequences of real numbers (λi)n
1 , (µi)n−1

1 =
(γi)r

1 ∪ (νi)
p
1, p = n − r − 1, satisfying the interlacing property λi <

µi < λi+1, 1 ≤ i ≤ n− 1, the algorithm produces the matrices Jn, Jr,
and Jp of (1.4) such that σ (Jn) = (λi)n

1 , σ (Jr) = (γi)r
1, σ (Jp) = (νi)

p
1,

p = n− r − 1:

1. Compute ar+1 by (2.2).

2. Find br and br+1 using equations (2.11) and (2.14), respectively.

3. Compute the elements of the vectors ur and wp by (2.10) and
(2.13), respectively.

4. Use the fast orthogonal reduction algorithm to reduce the ma-
trices Ar+1 and Ap+1 of (2.3) to the tridiagonal form Jr+1 and
Jp+1, respectively, to obtain the Jacobi matrix of (1.4).
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This algorithm compute the elements ar+1, br, and br+1, with ap-
proximately O(n2) operations. In step 4, the algorithm produces the
matrices Jr and Jp with about O(r2) and O(p2) operations, respec-
tively. Thus, to compute the whole matrix Jn we need O(n2) opera-
tions. Then this procedure is computationally less expensive than the
algorithms proposed in [6] and [13], which require about O(n3) oper-
ations. Since it updates only a few entries of the matrix in each step
(Householder transformations update all the entries in each step), the
rounding errors has less influence on the process.

3. Numerical Results

In this Section we present two numerical examples to show the accu-
racy of the algorithm given in Section 2. The data used correspond to
the eigenvalues of a known Jacobi matrix Jn, so that the reconstructed
matrix can be compared with Jn. To this end, we define ea = ‖a−a‖∞

‖a‖∞
,

and eb = ‖b−b‖∞
‖b‖∞

, where a, b are the vectors whose components are di-

agonal and codiagonal elements of Jn, and a, b are the obtained after
the algorithm 3 is applied.

Table 1 shows the numerical results obtained when we recover a
Jacobi matrix Jn of order n = 6 with diagonal elements ai = 2.0
and codiagonal elements bi = 1.0. The exact eigenvalues of Jn, Jr,
and Jp are gives by λk = 2 − 2 cos

(

kπ
n+1

)

, γk = 2 − 2 cos
(

kπ
r+1

)

, and

νk = 2− 2 cos
(

kπ
n−p−1

)

, respectively. The same example is considered
in Table 2, for n = 20. The obtained relative errors confirm a better
accuracy than the examples presented in ([13]).
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Table 1
n r p ai bi ea eb

6 2 3 2.00000000 1.00000000 5.0× 10−7 1.0× 10−7

2.00000000 1.00000000
2.00000100 0.99999990
2.00000000 1.00000000
2.00000000 1.00000000
2.00000000

6 3 2 2.00000000 1.00000000 5.0× 10−7 1.0× 10−7

2.00000000 1.00000000
2.00000000 0.99999990
2.00000100 1.00000000
2.00000000 1.00000000
2.00000000

6 4 1 2.00000000 1.00000000 5.0× 10−7 1.0× 10−7

2.00000000 1.00000000
2.00000000 1.00000000
2.00000000 0.99999990
2.00000000 1.00000000
2.00000100
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Table 2
n r p ai bi ai bi ea eb

20 16 3 2.00000100 1.000000 2.00000000 0.99999990 1.0× 10−6 1.0× 10−6

2.00000000 0.99999940 1.99999900 1.00000000
1.99999900 1.00000000 2.00000100 1.00000000
2.00000000 1.00000000 2.00000000 1.00000000
2.00000000 1.00000000 2.00000000 1.00000000
2.00000000 0.99999990 2.00000000 0.99999990
2.00000100 1.00000100 2.00000000 1.00000000
2.00000000 1.00000100 2.00000000 1.00000000
2.00000200 0.99999990 2.00000000 1.00000000
2.00000000 0.99999960 2.00000000

20 12 7 2.00000100 1.00000100 2.00000100 1.00000000 1.0× 10−6 1.0× 10−6

2.00000000 0.99999990 2.00000000 1.00000000
2.00000100 0.99999980 2.00000000 1.00000000
2.00000000 1.00000000 2.00000000 1.00000000
2.00000000 1.00000000 2.00000000 0.99999990
2.00000000 0.99999990 2.00000000 1.00000000
2.00000000 0.99999990 2.00000000 1.00000000
2.00000000 0.99999970 2.00000000 0.99999990
2.00000000 0.99999980 2.00000000 1.00000000
1.99999800 1.00000000

20 10 9 2.00000200 1.00000000 2.00000000 1.00000000 1.0× 10−6 1.0× 10−6

2.00000000 0.99999940 2.00000000 0.99999990
2.00000000 0.99999970 2.00000000 1.00000000
1.99999800 1.00000000 1.99999900 0.99999950
2.00000000 1.00000000 2.00000000 0.99999980
2.00000000 1.00000000 2.00000000 0.99999960
2.00000100 1.00000000 2.00000100 1.00000000
2.00000000 0.99999980 2.00000100 1.00000000
2.00000000 1.00000000 2.00000100 1.00000100
2.00000000 0.99999980 2.00000000
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