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Abstract

We prove the injectivity of the linearization of the hyper-
bolic Dirichlet to Neumann functional in a “small” compact
neighborhood of the identity element e of an abelian Lie group
G, under some suitable transversality condition.
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1. Introduction and Statement of the Result

Let Ω be a compact manifold of dimension n with smooth boundary
∂Ω and let Met(Ω) denote the set of all Riemannian metrics g on Ω.

We consider the ansitropic wave equation

(1.1)
2gu =

∂2u
∂t2

−∆gu = 0 in Ω× (0, T ),

u = f on Γ = ∂Ω× (0, T ), f ∈ C∞
0

(Γ),

u =
∂u
∂t

= 0 in Ω× {0}.

There is a unique solution to (1.1); hence we may define the hyperbolic
Dirichlet to Neumann map as the linear operator Λg : C∞

0
(Γ) −→

C∞(Γ), given by

(1.2) Λgf = du · νg

∣

∣

∣

Γ
= ∂u

∂νg

∣

∣

∣

∣

Γ

where u is the unique solution to (1.1) and vg is the g-interior unit
normal to ∂Ω. The hyperbolic Dirichlet to Neumann Functional:

(1.3)
Λ: Met(Ω) −→ Op(Γ)

g 7→ Λg ,

where Op(Γ) denotes the space of all linear operators from C∞
0

(Γ) into
C∞(Γ), is known to be invariantly defined on the orbit obtained by
the action over Met(Ω) of the group D of all diffeomorphism ψ of Ω,
each of which restricts to the identity on ∂Ω. A natural conjecture
is that this is the only obstruction to the uniqueness of Λ. From the
point of view of applications, an even more important problem is to
give a method to reconstruct g from Λg .
The elliptic Dirichlet to Neumann map was treated by several au-
thors and is closely related to the physical problem referred as Elec-
trical Impedance Tomography, of determining the conductivity of a
body from measurement of voltage potential and corresponding cur-
rent fluxes at the boundary (see [4]).
For fixed g, we consider the following map:

(1.4) ψ ∈ D
Ag−→ ψ∗

g
∈ Met(Ω)
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It is easy to see that the tangent space TID of D at the identity
mapping I is the vector space Γ0(TΩ) of all smooth vector fields on Ω
which vanish on ∂Ω. On the other hand, the tangent space Tg(Met(Ω))
of Met(Ω) at g is the vector space Γ(S2Ω) of all smooth sections of
symmetric 2-tensors on Ω. We introduce on the spaces Γ0(TΩ) and
Γ(S2Ω) the inner products

(1.5) 〈X,Y 〉 =
∫

Ω
g(X,Y )υg , X, Y ∈ Γ0(TΩ),

(1.6) 〈〈m, l〉〉 =
1
n

∫

Ω

tr(m̂ ◦ l̂)υg , m, l ∈ Γ(S2Ω),

where υg (resp., tr), denote the volume element (resp., the trace)
associated to g and m̂ is the unique linear map defined by

(1.7) g(m̂u, v) = m(u, v) for all u, v ∈ Γ(TΩ).

Considerer as in [3], the formal linearizations of Ag at I and of Λ at
g, respectively :

(1.8) A′
g
[I] := A′

g
: Γ0(TΩ) −→ Γ(S2Ω),

and

(1.9) Λ′
g

: Γ(S2Ω) −→ Op(Γ).

Let (A′
g
)∗ denote the formal adjoint of A′

g
with respect to the inner

products (1.5) and (1.6) and diamg(Ω) the diameter of Ω in the metric
g. In [3], the authors stated the following :
Conjecture 1.1 Let Ω0 ⊂ Ω be a submanifold, m ∈ Γ(S2Ω) have
support in Ω0 i.e., m ∈ Γ0(S

2Ω) and assume that a) Λ′

g
(m) = 0, b)

(A′
g
)∗(m) = 0 and c) diamg(Ω0) < T is sufficiently small that the ex-

ponential map for g is a global diffeomorphism. Then m is identically
zero.

As in [3] we refer to condition b) as the Transversality Condition.
We remind that condition c) is necessary to avoid the appearance of
caustics. The Tranversality Condition replace the harmonic hypothese
used in [4].
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The main results of this paper is:

Theorem 1.1 Conjecture 1.1 holds if G be an abelian Lie group and
Ω is a compact neighborhood of G at the identity element e, and g is
an invariant metric on G and m ∈ Γ0(S

2Ω).

We are able to obtain an generalization Cardozo-Mendoza Theorem
1.1 [3] as corollary of Theorem 1.1.

Corollary 1.1 Conjecture 1.1 holds if Ω is a bounded domain of IRn,
and g is a metric on IRn and m ∈ Γ0(S

2Ω).

Corollary 1.2 Conjecture 1.1 holds if Ω is a bounded domain of the
Torus T n, and g is an invariant metric on T n and m ∈ Γ0(S

2Ω).

Corollary 1.3 Conjecture 1.1 holds if Ω is a bounded domain of the
product IRn × Tm and g is an invariant metric on IRn × Tm and m ∈
Γ0(S

2Ω).

Remark 1.1 In [3], the authors proved that Conjecture 1.1 holds if
Ω is a bounded domain of IRn, n ≥ 2 and g is the Euclidean metric.
They also proved the conjecture when n=2 and g is near the Euclidean
metric in the C3-topology. In [1] they prove that Conjecture 1.1 holds
if Ω is a bounded domain of the hyperbolic space (resp.,n-sphere) and
g is the canonical metric in this spaces. In [2], the authors proved the
uniqueness conjecture for the case when the manifold is a sufficiently
small bounded domain of IR3, under suitable geometric conditions and
the metric g is C3-close to Euclidean metric. We shall make use of
the invariant formulas for A′

g
, (A′

g
)∗ and Λ′

g
proved in Section 2 [3].

2. Proof of Theorem 1.1

Let G be an abelian Lie group, and Lie(G) the algebra formed by
the set of all left invariant vector fields on G, and Ω is a compact
neighborhood of G at the identity element e, and Γ0(S

2Ω) denote the
vector space of all smooth sections of symmetric 2-tensors on G which
are supported on Ω.
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Proof of Theorem 1.1 Let x ∈ Ω, v ∈ Lie(G). The geodesic
with initial tangent vector (x, v) ∈ TG ∼= G × Lie(G) is given by
γ(t) = x exp(tv). Since x ∈ Ω there exists an element A ∈ Lie(G)
such that x = exp(A).

Let {Eµ}µ=1,...,n a orthonormal frame field in Γ(TG) then we can de-
fine a orthonormal system {Ẽµ , Vµ}µ=1,...,n in Γ(TTG) as follows. We
consider the diagram

TG
Ẽµ,Vµ−→ TTG

π ↓ ↓ π

G
Eµ−→ TG

where Ẽµ(x, v) = (x, v, Eµ , 0) and Vµ(x, v) = (x, v, 0, Eµ .)
Let x = (x1 , ..., xn) the canonical coordinates system (of the first kind)
of G around the identity e associated to the orthonormal frame field
{Eµ}µ=1,...,nand v = (v1 , ..., vn) the canonical coordinates of Lie(G).
Now we consider the function Ft : TG −→ IR defined by

Ft(x, v) = m(x exp(tv))(v, v)

and the operator

L =
n

∑

µ=1
ẼµVµ ∈ End(C∞(TG)).

We obtain

(2.1) LFt = (−t)∆gFt + 2
n

∑

µ,β=1

vµEβmµβ(γ),

where ∆g denotes the Laplace-Beltrami operator associated to the
metric g and mµβ = m(Eµ , Eβ).

On the other hand, the Transversality Condition satisfied by m means
that

(2.2) E1(mµ1) + ... + En(mµn) = 0 , µ = 1, ..., n

Using (2.1) and (2.2) we conclude that
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(2.3) LFt = (−t)∆gFt .
We define

(2.4) Hk(x, v) =
∫ ∞

−∞
(−t)kFt(x, v) dt,

for all k = 0,1,...
Using (2.3), it is easy to show that

(2.5) LHk = ∆gHk+1 , k = 0, 1, 2, ...

If we fix v, since m is supported in Ω, it follows that Hk(·, v) for all k
= 1,2,... vanish on a non-empty open subset of G. From Proposition
3.1 in [3], H0 = 0 and hence H1, and in fact all Hk are harmonic
functions. Therefore Hk is identically zero for all k = 0,1,2,... .
Observe that t → Ft is supported in some closed interval [a, b] contain-
ing zero. Since the subalgebra generated by the family of functions
{(−t)k}k=0.1... is dense in C([a, b], IR), we obtain that t → Ft is iden-
tically zero. If we take t = 0 and recall that m is symmetric, we
conclude that m is identically zero.
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