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Abstract

In this paper we consider the family of quadratic Kolmogo-
roff systems with a center in the real quadrant:

{ .
x = x (1− x− ay)
.
y = y (−1 + ax + y)

,

where 1 < a < ∞.This system has three invariant lines
(the coordinate axes and the line x + y − 1 = 0) and a family
of periodic solutions nested around a center and filling out the
triangle determined by the three invariant lines. Using integra-
bility of this system we reduce the abelian integral representing
the period function and its derivative. The main result is that
the corresponding period function is monotone increasing for
values of the parameter near a = 3.
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1. Introduction

A Kolmogoroff system is given by a planar differential system of the
form

{ .x = xF (x, y)
.y = yG (x, y)

with F,G of C1 class.
This kind of system appears usually in predator-prey models and

so only dynamics on the first quadrant is considered. In this paper
we consider the quadratic Kolmogoroff system:

{ .x = x (1− x− ay)
.y = y (−1 + ax + y)

,(1.1)

where 1 < a < ∞.
A system of this class has a family of periodic solutions nested

around a center at
( 1

1 + a
,

1
1 + a

)

and filling out the triangle formed

by the saddle points (0, 0), (1, 0) and (0, 1). The family of periodic
solutions forms a center period annulus

The function which associates to any closed curve its period, is
called the period function. We are interested in obtaining the global
description of the period function defined on the center period annulus.

In section 2 , we analyze the period function and we prove that it
is monotone increasing for a = 3.

In section 3 we prove, by means of a linear change of coordinates
that system (1.1), in the Bautin’s form is of type B2 for all a > 1
Bautin’s systems and their period functions were defined in [1] by C.
Chicone and M. Jacob where they conjectured that for B2 systems the
period function is globally monotone increasing.

By calculating the first three periodic coefficients for a > 1, we
realize that they are alternatively positive and negative. This result
suggests us that there would exists a value of the parameter a such that
the corresponding system has a period function with critical points.

In general, aside from their intrinsic interest, monotonicity prop-
erties of the period function are important in the question of existence
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and uniqueness of autonomous boundary value problems [2], in the
study of subharmonic bifurcation of periodic oscillations, and in the
analysis of the problem of linearization.

2. The Period Function

System (1.1) has a first integral

H (x, y) = xy (1− x− y)a−1

In fact

dH
dt = Hx

.x +Hy
.y= Hxx (1− x− ay) + Hyy (−1 + ax + y)

= xy (1− x− y)a−2 [(1− y − ax) (1− x− ay) +
(1− x− ay) (−1 + ax + y)]

= 0

for all t ∈ R.
Since H(x, y) = 0 for (x, y) on the invariant triangle x = 0, y = 0,

x + y = 1 and H
( 1

1 + a
,

1
1 + a

)

= (a − 1)(a−1)(a + 1)−(a+1), the

closed orbit γ(E) surrounding the center
( 1

1 + a
,

1
1 + a

)

is defined by

H(x, y) = E, where 0 < E < (a− 1)(a−1)(a + 1)−(a+1).
The period of this orbit is given then by the formula

T (E) =
∫

γ(E)

dx
x(1− x− ay)

.(2.1)

We are interested in the study of T as a function of the energy E.
We observe that for E going from 0 to (a− 1)a−1(a+1)−(a+1), the

closed orbit goes from the polycycle to the center so that a negative

derivative
dT
dE

, indicates an increasing period function.

In order to calculate
dT
dE

, we introduce the change of variables

u = xy and v = 1− x− y.(2.2)
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on a periodic orbit γ(E) : u = Ev1−a and γ(E) can be given by
(x+(v), y−(v)) and (x−(v), y+(v)) where

x+(v) = y+(v) = 1
2(1− v) + 1

2

√

(1− v)2 − 4Ev1−a, vmin < v < vmax

x−(v) = y−(v) = 1
2(1− v)− 1

2

√

(1− v)2 − 4Ev1−a, vmin < v < vmax

(2.3)
and vmin and vmax are zeroes of va−1(1 − v)2 = 4E, with 0 < vmin <
vmax < 1. Using (2.2) the integral T (E) given by (2.1) can be written
in the new coordinates u and v. Since u and v are related to each
other on γ(E), T (E) can be rewritten as an integral in v alone. Using
the simmetry of γ(E) , the integral T (E) becomes

T (E) = 2
vmax
∫

vmin

dv

v
√

(1− v)2 − 4Ev1−a
(2.4)

Now, we consider new a change of variables. Define

h(v) =



















(v − v0)
√

wo−g(v)
(v−v0)2 v 6= v0

0 v = v0

(2.5)

where

g (v) = va−1 (1− v)2 , v0 =
a− 1
a + 1

, w0 = g (v0) = 4
(a− 1)a−1

(a + 1)a+1

Since g has a quadratic maximum at v0, h is a smooth function.
Moreover, it is easy to see that h′(v) > 0, for all vmin < v < vmax, so
h monotone increasing. Setting r = h(v), the integral T (E) can be
simplified to

T (E) = 2
√

w0−4E
∫

−
√

w0−4E

dr

h′(h−1(r))(h−1(r))
3−a
2
√

(w0−4E)−r2
(2.6)
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This form of the integral suggests the substitution r =
√

w0 − 4E sin θ.
We obtain

T (E) = 2
π
2
∫

−π
2

dθ

h′(h−1(
√

w0−4E sin θ))(h−1(
√

w0−4E sin θ))
3−a
2

(2.7)

In this form the integral can be derivated to obtain

dT
dE = 4√

w0−4E

π
2
∫

−π
2

h′′(h−1(
√

w0−4E sin θ))(h−1(
√

w0−4E sin θ)+ 3−a
2 h′(h−1(

√
w0−4E sin θ))3

h′(h−1(
√

w0−4E sin θ))3(h−1(
√

w0−4E sin θ))
5−a
2

sin θdθ(2.8)

Now, a straightforward calculation proves the

Theorem : The period function is monotone increasing in a neigh-
borhood of a = 3

Proof : If a = 3 in (2.8) , we obtain

dT
dE = 4√

1
16−4E

π
2
∫

−π
2

h′′(h−1(
√

1
16−4E sin θ))

(h′(h−1(
√

1
16−4E sin θ)))3

sin θdθ

We have h′(v) > 0 and h′′(v) sin θ < 0 for all θ in
[

−π
2
,
π
2

]

( here

we have put v = h−1





√

1
16
− 4E sin θ



 for simplicity of notation ).

In fact

h′′(v) =























−4(v− 1
2 )4(2v2−2v−1)√
1
16−v2(1−v)2

for v ≤ 1
2

4(v− 1
2 )4(2v2−2v−1)√
1
16−v2(1−v)2

for v > 1
2

and [vmin, vmax] = [
1
2
−

√

1− 8
√

E
2

,
1
2

+

√

1− 8
√

E
2

] ⊂ [v1, v2] for

v1, v2 =
1
2
±
√

3
2

, the roots of 2v2 − 2v − 1 = 0. Then h′′(v) > 0
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for vmin < v < 1
2 and h′′(v) < 0 for

1
2

< v < vmax. It follows

that h′′(v) sin θ ≤ 0 for all θ in
[

−π
2
,
π
2

]

, because h is monotone
increasing.

This proves that

dT
dE < 0 for all 0 < E < 1

64 .

Remark : Since T (E) is a continuous function on the param-
eter a, we can assert that T (E) is monotone increasing for a in a
neighborhood of a = 3.

3. The Period Function near the center

In this section we compute the first period constants of system (1.1),
using the results of [3] , [4] .

First, using the change of variables

X = x− 1
1+a ; Y = y − 1

1+a

we carry the center to the origin

{ .
X = − 1

1+aX − a
1+aY − aXY −X2

.
Y = a

1+aX + 1
1+aY + aXY + Y 2(3.1)

Bringing the linear part of (3.1) to the Jordan form we obtain






.u = −
√

a−1√
a+1v − a

√
a2 − 1uv

.v =
√

a−1√
a+1u−

√
a2 − 1u2 − (a2 + a− 2)uv +

√
a2 − 1v2(3.2)

where

u = 1
aY ; v = − 1√

a2−1
X − 1

a
√

a2−1
Y
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with a rescaling of time t =
√

a+1√
a−1T , the system is transformed into

{ .x = −y − a(a + 1)xy
.y = x− (a + 1)x2 − (a + 2)

√
a2 − 1xy + (a + 1)y2(3.3)

where we returned to the initial notations. (3.3) has the general form
{ .x = −y + Axy

.y = x−Bx2 + Cxy + By2(3.4)

which is a special class of Bautin’s center B2. Systems can be expressed
in the complex plane

.z = zi + z 2
[

C
4 − (A

4 + B
2 )i

]

+
.z 2

[

−C
4 + (A

4 −
B
2 )i

]

and in this form we can compute the first four periodic coefficients

p0 = 2π ; p2 = π
2 [A2 − 4AB + 4B2 + C2]

p4 = 2π
768

[

(C2 + (A + 2B)2)(C2 + (A− 2B)2)− 4
3(C

2 + (A− 2B)2)2
]

p6 = π
19906560(C

2 + (A− 2B)2)(1296(C2 + (A + 2B)2)2−

4104(−C(C3−3C(A+2B)2)+(A−2B)(3C2(A+2B)−(A+2B)3))+

14976(C2 + (A + 2B)2(C2 + (A− 2B)2 + 33808(C2 + (A− 2B)2))

and for (3.3)

p0 = 2π ; p2 = π
6a(1 + a)(2 + a)2

p4 = − π
288a

2(1 + a)2(2 + a)2(16 + 16a + a2)
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p6 = π
311040a

2(1+a)3(2+a)2(−8208+63512a+143440a2+98040a3+
25294a4 + 2003a5)

Remark : The sign of the first period constants are

p2 > 0 ; p4 < 0 and p6 > 0 for all a > 1
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Universidad de la Sant́isima Concepción
Casilla 297 - V
Concepción

and

Myrna Wallace C.
Departamento de Matemática
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