
FIXED POINT PARAMETERS FOR
MÖBIUS GROUPS ∗
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Abstract

Let Γn (respectively, Γ∞) be a free group of rank n (respec-
tively, a free group of countable infinite rank). We consider the
space of algebraic representations of the group Γn (respectively,
Γ∞) Hom(Γn, PGL(2,C)) (respectively, Hom(Γ∞, PGL(2,C))).
Inside each of these spaces we consider a couple of open and
dense subsets. These subsets contain non-discrete groups of
Möbius transformations. We proceed to find complex analytic
parameters for these spaces given by fixed points.
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1. Introduction

In [3] we have considered a real parameterization of the Teichmüller
space of a closed Riemann surface. This parameterization is real an-
alytic and given by a collection of fixed points of a particular set of
generators of a Fuchsian group acting on the upper-half plane H. One
of the main ideas used in that paper is a geometric configuration of
axis for a particular set of generators (inequalities of real numbers).
In this note, we produce parameterizations of the deformation space
of finitely generated groups of Möbius transformations by a collection
of fixed points of a particular set of generators. We do not use axis
configurations and it is important to note that, in this general situa-
tion, we work with groups which may not be discrete ones nor Kleinian
groups nor Fuchsian groups (this, including the complex nature of the
parameters, is the main difference with the above work). This pa-
rameterization can be used in particular for describing (fixed points)
complex analytic parameters for the deformation space of a Kleinian
group. We also compute explicit (real analytic) models of some fuch-
sian groups (including an example of genus two). To describe this
parameterization we start with some basic definitions.

A Möbius transformation B is a conformal automorphism of the
Riemann sphere ̂C. In particular, B(z) = az+b

cz+d , where a, b, c, d are
complex numbers satisfying ad − bc 6= 0. There is a natural isomor-
phism between the group of Möbius transformations and the projective
linear group PGL(2,C) given by

B(z) = az+b
cz+d →

(

a b
c d

)

.

For each Möbius transformation B, we denote its set of fixed points
by F (B). If B is neither the identity nor elliptic of order two, we can
define the values a(B), r(B) ∈ F (B) as follows.

(1) If B is Loxodromic, then a(B) and r(B) are the attracting and
repelling fixed points of B.

(2) If B is parabolic, then a(B) = r(B) is its unique fixed point.
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(3) If B is elliptic, then a(B) and r(B) are its fixed points for
which there exists a Möbius transformation H such that H ◦
B ◦H−1(z) = λz, where ‖λ‖ = 1, imaginary part of λ is positive
and H(a(B)) = ∞, H(r(B)) = 0.

The space of infinitely generated marked groups (G,A1, ..., An, ...))
can be identified to the set Hom(Γ∞, PGL(2,C)), where Γ∞ is a free
group of infinite rank. This is a infinite dimensional complex man-
ifold (isomorphic to PGL(2,C)N). Similarly, the space of finitely
generated marked groups (G,A1, ..., An)) can be identified the set
Hom(Γn, PGL(2,C)), where Γn is a free group of rank n. This is
a 3n-dimensional complex manifold (isomorphic to PGL(2,C)n).

Two marked groups (G1, (A1, ..., An, ....)) and (G2, (B1, ..., Bn, ...))
are said equivalent if and only if there is a Möbius transformation
H ∈ PGL(2,C) satisfying H ◦ Ai ◦H−1 = Bi, for i = 1, ..., n, .... The
respective spaces of equivalence classes of marked groups are the (al-
gebraic) deformation spaces Def(Γ∞, PGL(2,C)) (an infinitely com-
plex dimensional space) and Def(Γn, PGL(2,C)) (a complex analytic
space of dimension 3(n− 1)).

The sets F∞ ⊂ Def(Γ∞, PGL(2,C)) and Fn ⊂ Def(Γn, PGL(2,C))
consist of equivalence classes of marked groups [(G, (A1, ..., An, ...))] of
Möbius transformations (non necessarily discrete ones) satisfying the
following.

(1) A2
i 6= I, for all i ≥ 1;

(2) (Aj ◦ A1)2 6= I, for all j ≥ 2; and

(3) F (A1) ∩ F (Aj) = ∅, for all j ≥ 2.

Analogously, we define the subsets G∞ and Gn consisting of the
equivalence classes of marked (non necessarily discrete ones) groups
[(G, (A1, ..., An, ...))] of Möbius transformations satisfying the follow-
ing.

(1) A2
i 6= I, for all i ≥ 1;

(2) (Aj ◦ Aj−1 · · ·A2 ◦ A1)2 6= I, for all j ≥ 2; and
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(3) F (A1) ∩ F (Aj) = ∅, for all j ≥ 2.

The sets F∞, G∞, Fn and Gn are open dense subsets of the re-
spective deformation spaces. In particular, they are complex analytic
spaces of the same respective dimensions.

In each class [(G, (A1, ..., An))] in either Fn or Gn (respectively,
[(G, (A1, ..., An, ...))] in either F∞ or G∞), there exists a unique repre-
sentative (G, (A1, ..., An)) (respectively, (G, (A1, ..., An, ...))) normal-
ized by a(A1) = ∞, a(A2) = 0 and a(A2 ◦ A1) = 1. In this way, we
may think of the elements of Fn and Gn (respectively, F∞ and G∞) as
normalized marked groups satisfying the above respective properties.

Using the unique normalized representative, we may construct
functions

Φn : Fn → ̂C×C3n−4,
Ψn : Gn → ̂C×C3n−4,
Φ∞ : F∞ → ̂C×CN ,
Ψ∞ : G∞ → ̂C×CN ,

defined by:

Φn([(G, (A1, ..., An))]) =
(r(A1), ..., r(An), a(A3), ..., a(An), r(A2 ◦ A1), ..., r(An ◦ A1)),

Ψn([(G, (A1, ..., An))]) = (r(A1), ..., r(An), a(A3), ..., a(An), r(A2 ◦
A1), ..., r(An ◦ An−1 · · ·A2 ◦ A1)).

Φ∞([(G, (A1, ..., An, ...))]) =
(r(A1), ..., r(An), ..., a(A3), ..., a(An), ..., r(A2 ◦ A1), ..., r(An ◦ A1), ...),

Ψ∞([(G, (A1, ..., An, ...))]) =
(r(A1), ..., r(An), ..., a(A3), ..., a(An), ..., r(A2 ◦ A1), ..., r(An ◦

An−1 · · ·A2 ◦ A1), ...).

Theorem 1. The functions Φn, Ψn, φ∞ and Ψ∞ are one-to-one com-
plex analytic map.

For each normalized marked group (G, (A1, ..., An, ...)) in either
Fn, Gn, F∞ and G∞, we write down explicit matrices in PGL(2,C)
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representing all the transformations Ai. The entries of such matrices
are rational functions in the corresponding fixed point coordinates
given by the above theorem.

2. A Couple of Applications

2.1. Deformation Spaces of Möbius groups

Let G be a group of Möbius transformations, maybe infinitely gener-
ated. The algebraic deformations of G are defined in similar fashion
as it was done for Γn and Γ∞. More precisely, we consider the space
Hom(G, PGL(2,C)) of representations of G into PGL(2,C). Two
representations are said equivalents if they are conjugate by some
Möbius transformation. The set of equivalence classes
Def(G,PGL(2,C)) is the algebraic deformation space of G. An-
other deformation space associated to G is the quasiconformal de-
formation space. A quasiconformal homeomorphism w : ̂C → ̂C
is called a deformation of G if w ◦ G ◦ w−1 is again a group (nec-
essarily Kleinian) of Möbius transformations. Two deformations of
G, say w1 and w2, are equivalent if there exists a Möbius transfor-
mation A so that w2 ◦ g ◦ w−1

2 = A ◦ w1 ◦ g ◦ w−1
1 ◦ A−1, for all

g ∈ G. The set of equivalence classes of deformations of G is called
the deformation space of G and denoted by T (G). In each class there
is a unique representative deformation wn satisfying wn(x) = x, for
x ∈ {∞, 0, 1}. In the case that G is a geometrically finite Kleinian
group, then the above two deformation spaces are the same. In gen-
eral, we have T (G) ⊂ Def(G,PGL(2,C)). In [8] the following is
proved.

Theorem (Kra–Maskit). If G is a finitely generated Kleinian
group, then T (G) is biholomorphically equivalent to a domain in Cn.

The proof of such a theorem is a consequence of the existence of
certain points called stratification points. Our coordinates are a kind
of stratification points for Möbius groups (non necessarily discrete ones
and maybe infinitely generated). In particular, we have the following
concerning the above Kra-Maskit’s result. Let G be a Möbius group
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which can be generated by Möbius transformations A1,..., An,...so that
the following hold:

(1) A2
i 6= I, (Aj ◦ A1)2 6= I, for all i ≥ 1 and all j ≥ 2.

(2) F (A1) ∩ F (Aj) = ∅, for all j ≥ 2.

(3) a(A1) = ∞, a(A2) = 0 and a(A2 ◦ A1) = 1.

We denote by ai the attracting fixed point of Ai, ri the repelling
fixed point of Ai, and sk the repelling fixed point of Ak ◦ A1. Then
theorem 1 implies the following:
Corollary 1. If G is a Möbius group finitely generated by Möbius
transformations A1,..., An, so that they satisfy conditions (1), (2)
and (3) as above, then the map Φ : T (G) → ̂C×C3n−4, defined by

Φ([w]) = (wn(r1), ..., wn(rn), wn(a3), ..., wn(an), wn(s2), ..., wn(sn))

turns out to be a one-to-one holomorphic map. Similarly, if G is a
Möbius group infinitely generated by Möbius transformations A1,...,
An,..., so that they satisfy conditions (1), (2) and (3) as above, then
the map Φ : T (G) → ̂C×CN , defined by

Φ([w]) =
(wn(r1), ..., wn(rn), ..., wn(a3), ..., wn(an), ..., wn(s2), ..., wn(sn), ...)

is a one-to-one holomorphic map.

The above is in really true at the level of the algebraic deformation
spaces by theorem 1.

2.2. Models of Teichmüller spaces

Let F < PGL+(2,R) be a finitely generated Fuchsian group acting on
the hyperbolic plane H. A Fuchsian representation of F is a monomor-
phism θ : F → PGL+(2,R) such that there is a quasiconformal home-
omorphism φ : H → H satisfying θ(γ) = φ ◦ γ ◦ φ−1, for all γ ∈ F .
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Two Fuchsian representations θ1 and θ2 are said Fuchsian equivalent
if and only if there exists a Möbius transformation A ∈ PGL(2,R)
such that θ2(γ) = A◦θ1(γ)◦A−1, for all γ ∈ F . The set of equivalence
classes of Fuchsian representations of the Fuchsian group F is called
the Teichmüller space of F and denoted as T (F ). This set is a simply
connected real analytic manifold of dimension 6g− 6 + 2k + 3l, where
H/F is a Riemann surface of genus g with k punctures and l holes
(see [1]). We say that F has signature or type (g, k, l).

The Fuchsian group F has a presentation of the form:

F = 〈A∗
1, B

∗
1 ..., A

∗
g, B

∗
g , P

∗
1 , ..., P ∗

k , L∗1, ..., L
∗
l :

∏l
m=1 L∗l−m+1

∏k
j=1 P ∗

k−j+1
∏g

i=1[A∗
g−i+1, B

∗
g−1+1] = I〉,

where [A∗
j , B

∗
j ] denotes the commutator between the hyperbolic trans-

formations A∗
j and B∗

j , the transformations L∗j are also hyperbolic and
the transformations P ∗

j are parabolic. We also may assume:

(1) if g ≥ 1, then a(A∗
1) = ∞, a(B∗

1) = 0 and a(B∗
1A

∗
1) = 1;

(2) if g = 0 and k ≥ 2, then a(P ∗
1 ) = ∞, a(P ∗

2 ) = 0 and a(P ∗
2 P ∗

1 ) =
1;

(3) if g = 0, k = 1, then a(P ∗
1 ) = ∞, a(L∗1) = 0 and a(L∗1P

∗
1 ) = 1;

(4) if g = 0, k = 0, then a(L∗1) = ∞, a(L∗2) = 0 and a(L∗2L
∗
1) = 1.

We can identify the Teichmüller space of F with the set of marked
groups (G, (A1, B1, ..., Ag, Bg, P1, ..., Pk, L1, ..., Ll)) for which:

(1) G is a fuchsian group acting on H of same type as F ;

(2) there is an isomorphism ψ : F → G, so that ψ(A∗
j) = Aj,

ψ(B∗
j ) = Bj, ψ(P ∗

i ) = Pi and ψ(L∗r) = Lr;

(3) if g ≥ 1, then a(A1) = ∞, a(B1) = 0 and a(B1A1) = 1;

(4) if g = 0 and k ≥ 2, then a(P1) = ∞, a(P2) = 0 and a(P2P1) = 1;

(5) if g = 0, k = 1, then a(P1) = ∞, a(L1) = 0 and a(L1P1) = 1;

(6) if g = 0, k = 0, then a(L1) = ∞, a(L2) = 0 and a(L2L1) = 1.
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If we use the function Ψn, with n = 2g + k + l, then theorem 1 im-
plies it is a one-to-one real analytic map into R3n−3. The image is con-
tained inside an algebraic variety defined by (3 + k) real polynomials.
Let us set the following notation aj := a(Aj), bj := r(Aj), cj := a(Bj),
dj := r(Bj), pj := a(Pj), xj := a(Lj), yj := r(Lj), ej := r(AjA1),
fj := r(BjA1), rj := r(PjA1), sj := r(LjA1), qj := r(PjPj−1 · · ·P1),
wj := r(LjLj−1 · · ·L1PkPk−1 · · ·P1) and tj := r(LjLj−1 · · ·L1).

2.3. Signature (g,0,0), g ≥ 2

In this case, the map Q : T (F ) → W ⊂ R6g−3, defined by
Q(G, (A1, B1, ..., Ag, Bg)) = (a, b, c, d, e, f), where

a = (a2, ..., ag)
b = (b1, ..., bg)
c = (c2, ..., cg)
d = (d1, ..., dg)
e = (e2, ..., eg)
f = (f1, ..., fg)

turns out the to be a one-to-one real analytic map into the real affine
variety W defined by three polynomials. These three polynomials are
E11 = 1, E12 = 0 and E22 = 1, where

∏g
j=1[Aj, Bj] is represented by

the matrix (A11, A12, A21, A22).

2.4. Signature (g,k,l), g ≥ 1, l ≥ 1

The map Q : T (F ) → R6g−6+2k+3l, defined by

Q(G, (A1, B1, ..., Ag, Bg, P1, ..., Pk, L1, ..., Ll))
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= (a, b, c, d, e, f, p, r, s, x, y), where

a = (a2, ..., ag)
b = (b1, ..., bg)
c = (c2, ..., cg)
d = (d1, ..., dg)
e = (e2, ..., eg)
f = (f1, ..., fg)
p = (p1, ..., pk)
r = (r1, ..., rk)
s = (s1, ..., sl−1)
x = (x1, ..., xl−1)
y = (y1, ..., yl−1)

turns out the to be a one-to-one real analytic map.

2.5. Signature (g,k,0), g ≥ 1, k ≥ 1

The map Q : T (F ) → W ⊂ R6g−5+2k, defined by
Q(G, (A1, B1, ..., Ag, Bg, P1, ..., Pk)) = (a, b, c, d, e, f, q, r), where

a = (a2, ..., ag)
b = (b1, ..., bg)
c = (c2, ..., cg)
d = (d1, ..., dg)
e = (e2, ..., eg)
f = (f1, ..., fg)
q = (q1, ..., qk−1)
r = (r1, ..., rk−1)

turns out the to be a one-to-one real analytic map into the real affine
variety W defined by a polynomial E = 0, where E is defined by
the following observation. The above data determines uniquely the
transformations P1,..., Pk−1. Since the transformation Pk is the inverse
of the compositions of these transformations and it is parabolic, then
the polynomial corresponds to have square of the trace of Pk equal to
4.
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2.6. Signature (0,k,0), k ≥ 4

The map Q : T (F ) → W ⊂ R2k−5, defined by Q(G, (P1, ..., Pk)) =
(p, q), where

p = (p3, ..., pk)
q = (q2, ..., qk−2)

turns out the to be a one-to-one real analytic map into the affine real
variety defined by one polynomial obtained in the same way as in the
case above.

2.7. Signature (0,k,l), k ≥ 2, l ≥ 1

The map Q : T (F ) → R2k+3l−6, defined by Q(G, (P1, ..., Pk, L1, ..., Ll)) =
(p, q, w, x, y), where

p = (p3, ..., pk)
q = (q2, ..., qk)
w = (w1, ..., wl−2)
x = (x1, ..., xl−1)
y = (y1, ..., yl)

turns out the to be a one-to-one real analytic map.

2.8. Signature (0,1,l), l ≥ 2

The map Q : T (F ) → R3l−4, defined by Q(G, (P1, L1, ..., Ll)) =
(w, x, y), where

w = (w1, ..., wl−2)
x = (x2, ..., xl−1)
y = (y1, ..., yl)

turns out the to be a one-to-one real analytic map.

2.9. Signature (0,0,l), l ≥ 3

The map Q : T (F ) → R3l−6, defined by Q(G, (L1, ..., Ll)) = (t, x, y),
where

t = (t2, ..., tl−2)
x = (x3, ..., xl)
y = (y1, ..., yl−1)
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turns out the to be a one-to-one real analytic map.

Remarks. In the last section we do more explicit computations for
types (0, 4), (1, 1) and (2, 0).We obtain parameter spaces related to the
ones given by Maskit in [4], [5], [6] and Min in [9]. We must remark
that Min’s parameters use multipliers and ours (also Maskit’s ones)
only use fixed points. Unfortunately, our parameters look more diffi-
cult to Maskit’s ones. Application to the Schottky space and noded
Riemann surfaces can be found in [2].

For infinitely generated Fuchsian groups, we may also use the re-
sults in this note to construct models of the respective Teichmüller
spaces.

3. Proof of Theorem 1

In this section we prove theorem 1. For this, we need the following
lemmas.

Lemma 1. ̂Φ2 : F2 → ̂C×C2 is one-to-one.

Lemma 2. Let A and A be two Möbius transformations such that,
F (A)∩F (B) = ∅. If A, a(B), r(B) and r(B ◦A) are known, then the
transformation B is uniquely determined.

Proof of Theorem 1. The proof is a direct consequence of lemmas
1 and 2 as follows.

(1) Lemma 1 implies that A1 and A2 are uniquely determined. Now,
apply Lemma 2 to the pair A = A1 and B = Aj to obtain Aj

uniquely, for every j ≥ 3. The complex analyticity of the map
Φn and Φ∞ follows easily from the explicit matrix description of
the generators in PGL(2,C).
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(2) Apply Lemma 1 to obtain uniquely the elements A1 and A2.
Next, apply Lemma 2 to the pair A = A2 ◦ A1 and B = A3 to
obtain A3 uniquely. We continue inductively applying Lemma
2 to the pairs A = Aj−1 ◦ · · · ◦ A1 and B = Aj to obtain Aj

uniquely.

Proof of Lemma 1. We decompose the set F2 as the disjoint union
of four subsets, say F2 = ∪4

i=1Li, where

L1 = {[(G, (A1, A2))] ∈ F2; A1 and A2 are not parabolics};

L2 = {[(G, (A1, A2))] ∈ F2; A1 is parabolic and A2 is not parabolic};

L3 = {[(G, (A1, A2))] ∈ F2; A2 is parabolic and A1 is not parabolic};

L4 = {[(G, (A1, A2))] ∈ F2; A1 and A2 are both parabolic}.

It is easy to see that the images under Φ2 of Li and Lj are disjoint if
i 6= j. This is a consequence of the fact that, T is parabolic if and only
if a(T ) = r(T ). The injectivity of Φ2 then follows from the injectivity
of Φ2 restricted to each Li, i = 1, 2, 3, 4. In what follows, we denote
by x, y and z the points r(A1), r(A2) and r(A2 ◦ A1), respectively.

(I) Φ2 is injective on L1. The transformations A1 and A2 are
not parabolics. The matrix representation of these transformations
is given by

A1 =
(

k2
1 x(1− k2

1)
0 1

)

,

A2 =
(

y 0
1− k2

2 yk2
2

)

,
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where either ‖k2
j‖ > 1 or k2

j = e2πiθj , θj ∈ (0, 1/2), for j = 1, 2. In this
case, the product A2 ◦ A1 has the matrix representation

A2 ◦ A1 =
(

yk2
1 xy(1− k2

1)
k2

1(1− k2
2) x(1− k2

1)(1− k2
2) + yk2

2

)

.

Since 1 is a fixed point of A2 ◦ A1, we have the equation

k2
2(k

2
1 + x(1− k2

1)− y) = (1− y)(k2
1 + x(1− k2

1)).

The facts y 6= 1, y 6= 0 and k2 6= 0 imply that k2
1 +x(1−k2

1)−y 6= 0.
In particular,

(∗) k2
2 = (1−y)(k2

1+x(1−k2
1))

k2
1+x(1−k2

1)−y .

The fixed points of A2◦A1 are the roots of the quadratic polynomial
in w:

k2
1(1− k2

2)w
2 + [x(1− k2

1)(1− k2
2) + yk2

2 − yk2
1]w − xy(1− k2

1) = 0.

In particular, z = −xy(1−k2
1)

k2
1(1−k2

2) and (since z 6= 0)

(∗∗) k2
2 = xy(1−k2

1)+zk2
1

k2
1z .

The equality of the RHS of (∗) and (∗∗) gives us the following
equation to be satisfied by k2

1:

k4
1 − k2

1(
xz(y−1)+xy(1−x)+(x−y)(z−xy)

y(1−x)(z−x) ) + x(x−y)
(1−x)(z−x) = 0.

The solutions to this equations are by 1,−1, k1and − k1. ¿From
that one obtain:

k2
1 = x(x−y)

(1−x)(z−x) , and k2
2 = x(y−1)(y−z)

z(x−y) .

(II) Φ2 is injective on L2. In this case A1 and A2 have the following
representation
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A1 =
(

1 a
0 1

)

,

A2 =
(

y 0
1− k2

2 yk2
2

)

,

where either ‖k2
2‖ > 1 or k2

2 = e2πiθ, θ ∈ (0, 1/2) and a 6= 0. In this
case the product A2 ◦ A1 has the following matrix representation

A2 ◦ A1 =
(

y ay
1− k2

2 a(1− k2
2) + yk2

2

)

.

The fact that 1 is a fixed point of A2 ◦ A1 gives us the equation

(1 + a)(y − 1) = k2
2(y − 1− a).

Since k2 6= 0 and y 6= 1, we must have that 1 + a = 0 if and only if
y = 1 + a; in which case y = 0, a contradiction. In particular, we get

(∗) k2
2 = (1+a)(y−1)

y−1−a .

The fixed points of the transformation A2 ◦A1 are the roots of the
quadratic equation in w:

w2 + (a− y)w − ay
1−k2

2
= 0.

It follows that z = −ay
1−k2

2
, and

(∗∗) k2
2 = z+ay

z .

The equality of the RHS of (∗) and (∗∗) implies the following
equation to be satisfied by a:

a2y + ay(z − y + 1) = 0.

Since a 6= 0 and y 6= 0, we obtain

a = y − z − 1, and k2
2 = (y−1)(y−z)

z .
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(III) Φ2 is injective on L3. In this case, A1 and A2 have the following
matrix representation

A2 =
(

1 0
b 1

)

,

A1 =
(

k2
1 x(1− k2

1)
0 1

)

,

where either ‖k2
1‖ > 1 or k2

1 = e2πiθ, θ ∈ (0, 1/2) and b 6= 0. The
product A2 ◦ A1 has the following matrix representation

A2 ◦ A1 =
(

k2
1 x(1− k2

1)
bk2

1 bx(1− k2
1) + 1

)

.

The fact that 1 is a fixed point of A2 ◦ A1 implies the following
equation

1 + x(b− 1) = k2
1(1 + x(b− 1)− b).

Since k1 6= 0, we must have that 1 + x(b − 1) = 0 if and only if
1+x(b−1)−b = 0, in which case b = 0 a contradiction. In particular,
we get

(∗) k2
1 = 1+x(b−1)

1+x(b−1)−b .

The fixed points of the transformation A2 ◦A1 are the roots of the
quadratic equation in w:

bk2
1w

2 + (bx + 1)(1− k2
1)w − x(1− k2

1) = 0.

It follows that z = −x(1−k2
1)

bk2
1

, and

(∗∗) k2
1 = x

x−zb .

The equality of the RHS of (∗) and (∗∗) gives the following equation
to be satisfied by b:

zxb2 + b(z(1− x)− x) = 0.
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Since b 6= 0, x 6= 0 and z 6= 0, we obtain

b = x+z(x−1)
xz and k2

1 = x2

(x−1)(x−z) .

(IV) Φ2 is injective on L4. In this case, A1 and A2 have the following
matrix representation

A2 =
(

1 0
b 1

)

,

A1 =
(

1 a
0 1

)

,

where ab 6= 0. In this case the product A2 ◦ A1 has the following
matrix representation

A2 ◦ A1 =
(

1 a
b 1 + ab

)

Since 1 is a fixed point of A2 ◦A1, we have the following equation

a = b(1 + a).

The fact that a 6= 0 implies a 6= −1, and we obtain the equation

(∗) b = a
1+a .

The fixed points of the transformation A2 ◦A1 are the roots of the
quadratic equation in w:

w2 + aw − a
b = 0.

It follows that z = −a
b , and

(∗∗) b = −a
z .

The equality of the RHS of (∗) and (∗∗) implies

a = −1− z and b = 1+z
z .
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Proof of Lemma 2.
We normalize so that a(A) = ∞.

Case 1. Assume A and B to be parabolic elements. In this case, A
and B have the following matrix representation

A =
(

1 a
0 1

)

,

B =
(

1 + px −px2

p 1− px

)

,

where ap 6= 0 and x is the fixed point of B. We want to obtain a
unique value of p in function of a, x and r(B ◦ A).

In this case, the product B ◦A has the following matrix represen-
tation

B ◦ A =
(

1 + px a(1 + px)− px2

p 1 + ap− px

)

.

Denote by z the point r(B ◦ A). The fact that z is fixed point of
B ◦ A gives us the equation p(x − z)(z + a − x) = −a. Since a 6= 0,
we obtain

p = −a
(x−z)(z+a−x) .

Case 2. Assume A to be parabolic and B to be non-parabolic. In
this case, A and B have the following matrix representation

A =
(

1 a
0 1

)

,

B =
(

x− yk2 xy(k2 − 1)
1− k2 xk2 − y

)

,
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where a 6= 0, r(B) = x and a(B) = y are the fixed point of B and
either ‖k‖ > 1 or k2 = e2πiθ, θ ∈ (0, 1/2). We want to obtain a unique
value of k2 in function of a, x, y and r(B ◦ A).

In this case, the product B ◦A has the following matrix represen-
tation

B ◦ A =
(

x− yk2 a(x− yk2) + xy(k2 − 1)
1− k2 a(1− k2) + xk2 − y

)

Denote by z the point r(B ◦ A). The fact that z is fixed point of
B ◦A gives us the equation k2(y− z)(x− z− a) = (x− z)(y− z− a).
Since x 6= z and y 6= z, we have that x − z − a = 0 if and only if
y − z − a = 0 in which case x = y a contradiction. In particular,

k2 =
(x− z)(y − z − a)
(y − z)(x− z − a)

.

Case 3. Assume A non-parabolic and B to be parabolic. Let r(A) =
r, a(B) = r(B) = x and r(B ◦ A) = z. The transformations A and B
have the following matrix representation

A =
(

k2 r(1− k2)
0 1

)

,

B =
(

1 + px −px2

p 1− px

)

,

where p 6= 0. In this case we want to determine the value of p uniquely.
The transformation B ◦ A has the matrix representation

B ◦ A =
(

k2(1 + px) (1 + px)r(1− k2)− px2

pk pr(1− k2) + 1− px

)

,

The condition that z is a fixed point of B ◦A gives us the equation

p((k2 + 1)xz + r(1− k2)(x− z)− x2 − k2z2) = (1− k2)(z − r).
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Since p 6= 0, k2 6= 1 and z 6= r, both sides of the above equation
are necessarily different from zero. In particular,

p = (1−k2)(z−r)
(k2+1)xz+r(1−k2)(x−z)−x2−k2z2 .

Case 4. Assume A and B to be non-parabolic elements. In this case,
A and B have the following matrix representation

A =
(

k2
1 x(1− k2

1)
0 1

)

,

B =
(

u− tk2
2 ut(k2

2 − 1)
1− k2

2 uk2
2 − t

)

,

where r(A) = x, r(B) = u, a(B) = t, and either ‖kj‖ > 1 or k2
j =

e2πiθj , θj ∈ (0, 1/2). We want to obtain a unique value of k2
2 in function

of x, u, t, k2
1 and r(B ◦ A).

In this case the product B ◦ A has the following matrix represen-
tation

B ◦ A =
(

k2
1(u− tk2

2) x(1− k2
1)(u− tk2

2) + ut(k2
2 − 1)

k2
1(1− k2

2) x(1− k2
1)(1− k2

2) + uk2
2 − t

)

.

Denote by z the point r(B ◦ A). The fact that z is fixed point of
B◦A gives us the equation k2

2(z−t)(k2
1z+x(1−k2

1)−u) = (z−u)(k2
1z+

x(1−k2
1)−t). Since t 6= z and u 6= z, we have that k2

1z+x(1−k2
1)−u =

0 if and only if k2
1z + x(1 − k2

1) − t = 0; in which case u = t, a
contradiction. In particular,

k2
2 = (z−u)(k2

1z+x(1−k2
1)−t)

(z−t)(k2
1z+x(1−k2

1)−u) .
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4. Explicit Matrix Representation

For the case of normalized marked groups in Fn or F∞, as a conse-
quence of Theorem 1, we can write matrices in PGL(2,C) representing
the transformations A1,..., An, ..., as follows.

(I) If r1 6= ∞, then

A1 =
(

k2
1 r1(1− k2

1)
0 1

)

,

where k2
1 = r1(r1−r2)

(1−r1)(s2−r1) .

(II) If r1 = ∞, then

A1 =
(

1 r2 − s2 − 1
0 1

)

.

(III) If r2 6= 0, then

A2 =
(

r2 0
(1− k2

2) r2k2
2

)

,

where k2
2 = r1(r2−1)(r2−s2)

s2(r1−r2) .

(IV) If r2 = 0, then

A2 =
(

1 0
r1+s2(r1−1)

r1s2
1

)

.

(V) If rj = aj (j = 3, ..., n) and r1 = ∞, then

Aj =
(

1 + pjrj −pjr2
j

pj 1− pjrj

)

,
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where pj = 1+s2−r2
(rj−sj)(sj−rj+r2−s2−1) .

(VI) If rj = aj (j = 3, ..., n) and r1 6= ∞, then

Aj =
(

1 + pjrj −pjr2
j

pj 1− pjrj

)

,

where pj = (1−k2
1)(sj−r1)

(k2
1+1)rjsj+r1(1−k2

1)(rj−sj)−r2
j−k2

1s2
j
.

(VII) If rj 6= aj (j = 3, ..., n) and r1 = ∞, then

Aj =
(

rj − ajk2
j rjaj(k2

j − 1)
1− k2

j rjk2
j − aj

)

,

where k2
j = (rj−sj)(aj−sj−r2+s2+1)

(aj−sj)(rj−sj−r2+s2+1) .

(VIII) If rj 6= aj (j = 3, ..., n) and r1 6= ∞, then

Aj =
(

rj − ajk2
j rjaj(k2

j − 1)
1− k2

j rjk2
j − aj

)

,

where k2
j = (rj−sj)(aj−k2

1sj−r1(1−k2
1))

(aj−sj)(rj−k2
1sj−r1(1−k2

1)) .

For the case of normalized marked groups in Vn or V∞, as a conse-
quence of Theorem 1, we can write matrices in PGL(2,C) representing
the transformations A1,..., An, ..., as follows.

A1 =
(

k2
1 r1(1− k2

1
0 1

)

,

where k2
1 = r1(r1−r2)

(1−r1)(t2−r1) .

A2 =
(

r2 0
1− k2

2 r2k2
2

)

,

where k2
2 = r1(r2−1)(r2−t2)

t2(r1−r2) .
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Aj =
(

rj − ajk2
j ajrj(k2

j − 1)
1− k2

j rjk2
j − aj

)

,

where k2
j =

(rj−tj)(mj−1(aj−tj−1+tj−1µ2
j−tjµ2

j )−ajtj+tj−1tj−ajtj−1µ2
j+ajtjµ2

j )
(aj−tj)(mj−1(rj−tj−1+tj−1µ2

j−tjµ2
j )−rjtj+tj−1tj−rjtj−1µ2

j+rjtjµ2
j ) , and

mj−1 is the attracting fixed point of the transformation Aj−1◦Aj−2 · · ·A2◦
A1 with multiplier µ2

j , where
∥

∥

∥µ2
j

∥

∥

∥ > 1.

The above values of mj and µ2
j are obtained in an inductive way,

where m2 = 1 and µ2
2 is the multiplier of A2 ◦ A1.

5. Computing Models for Some Teichmüller Spaces

5.1. Teichmüller Spaces of Riemann Surfaces of Type (0,4)

A Riemann surface S is said to be of type (0, 4) if it is a Riemann
surface of genus zero with exactly 4 boundary components. If some
of the boundaries is a puncture, then S is called a parabolic Riemann
surface of type (0, 4); otherwise, it is called a hyperbolic Riemann
surface of type (0, 4).

Let Γ < PGL+(2,R) be a Fuchsian group acting on the hyperbolic
plane such that S = H/Γ is a hyperbolic Riemann surface of type
(0, 4). Let α1, α2 and α3 be simple loops on S (through the point z)
as shown in figure 1.

Figure 1.



Fixed Point Parameters 179

The fundamental group of S, at the point z ∈ S, has a presentation

Π1(S, z) =< α1, α2, α3 >∼= Γ3.

In this way, we have that Γ is a free group of rank 3 generated
by A1, A2 and A3, so that the transformations Ai are hyperbolic and
the axis of these transformations A1, A2, A3, A2 ◦A1 and A3 ◦A1 are
shown in figure 2.

Figure 2.

The Teichmüller space of Γ (or S) T (Γ) is in this case given by
the subset V (3) consisting of those marked groups (G, (B1, B2, B3))
satisfying the following.

(1) G is discrete subset of PGL+(2,R) ⊂ PGL(2,C).

(2) a(B1) = ∞, a(B2) = 0 and a(B2 ◦B1) = 1.

(3) There exists a quasiconformal homeomorphism F : H → H such
that F ◦ Ai ◦ F−1 = Bi, for i = 1, 2, 3..

As a consequence of theorem 1, we have one-to-one real analytic
map
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Φ3 : T (Γ) = V (3) → R6,

defined by Φ3((G, (B1, B2, B3))) = (r1, r2, r3, a3, s2, s3), where ri, a3

and sk are the repelling fixed point of Bi, the attracting fixed point of
B3 and the repelling fixed point of Bk ◦B1, respectively.

If we denote by u the attracting fixed point of the transformation
B3 ◦ B1, then we have that the value u is a real analytic function on
r1, r2, r3, a3, s2 and s3. In fact,

u = r1 − (r1−a3)(r1−r3)(r1−1)(r1−s2)
r1(r1−r2)(r1−s3) .

The axis of the transformations B1, B2, B3, B2◦B1 and B3◦B1 have
the same topological configuration as the axis of the transformations
A1, A2, A3, A2 ◦A1 and A3 ◦A1, respectively. In particular, the fixed
points of the above transformations satisfy the following inequalities.

(E1) r2 < 0.

(E2) 1 < s2 < r1 < s3 < u < a3 < r3.

Let us consider the parameter space R as the open subset of R6

consisting of the tuples (r1, r2, r3, a3, s2, s3) satisfying the inequalities
given by (E1) and (E2). In particular, Φ3(T (Γ)) is contained R.

Corollary 2. Φ3(T (Γ)) =R.

Proof. We have to show that for any point p = (r1, r2, r3, a3, s2, s3)
contained in the region R there is a normalized marked group
(G, (B1, B2, B3)) in V (3) so that Φ3((G, (B1, B2, B3))) = p. For p as
above we can construct Möbius transformations

B1 =
(

k2
1 r1(1− k2

1)
0 1

)

,

B2 =
(

r2 0
(1− k2

2) r2k2
2

)

,
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B3 =
(

r3 − a3k2
3 r3a3(k2

3 − 1)
1− k2

3 r3k2
3 − a3

)

,

where
k2

1 = r1(r1−r2)
(1−r1)(s2−r1) ;

k2
2 = r1(r2−1)(r2−s2)

s2(r1−r2) ;

k2
3 = (r3−s3)(a3−s3−r2+s2+1)

(a3−s3)(r3−s3−r2+s2+1) .

The inequalities (E1) and (E2) ensure that the transformations B1,
B2, B3, B2◦B1 and B3◦B1 are hyperbolic. We also have that a(B1) =
∞, r(B1) = r1, a(B2) = 0, r(B2) = r2, a(B3) = a3, r(B3) = r3, a(B2 ◦
B1) = 1, r(B2 ◦ B1) = s2, a(B3 ◦ B1) = r1 − (r1−a3)(r1−r3)(r1−1)(r1−s2)

r1(r1−r2)(r1−s3)

and r(B3 ◦ B1) = s3. We denote the axis of the transformations B1,
B2, B3, B2 ◦B1 and B3 ◦B1 by N1, N2, N3, N2,1 and N3,1, respectively,
as shown in figure 3.

Figure 3.

Construct the geodesics:

L1 (common perpendicular of N1 and N2),
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L2 (common perpendicular between N2 and N2,1),

L3 (common perpendicular between N1 and N2,1),

M1 (common perpendicular between N1 and N3),

M2 (common perpendicular between N3 and N3,1)
and

M3 (common perpendicular between N1 and N3,1).

Denote by Ri and Si the reflection on Li and Mi, respectively (see
figure 3). Direct computations show that the hyperbolic distance d
between L1 and L3 is the same as the hyperbolic distance between

M1 and M3 (d = log(
√

r1(r1−r2)
(r1−s2)(r1−1))). In particular, we have B1 =

R1 ◦ R3 = S1 ◦ S3, B2 = R2 ◦ R1 and B3 = S2 ◦ S1. We consider
the groups G1 =< B1, B2 > and G2 =< B1, B3 >. The group Gi

uniformizes a pant Pi, both of them having a boundary (given by the
axe N1) of the same length. It is easy to see that we can apply the
first combination theorem of Maskit [7] to these groups with common
subgroup J =< B1 > (the discs used in such a theorem are the discs
bounded by the axe N1). As a consequence, the group G generated by
B1, B2 and B3 is a free group of rank three and H/G is a hyperbolic
Riemann surface of type (0, 4) (see figure 4 for a fundamental domain
of G).

Figure 4.
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The construction of a quasiconformal homeomorphism of the hy-
perbolic plane as required is standard using the fundamental domains
for Γ and G which are topologically the same. 2

Remark. The angle involve in gluing the pants corresponding to the
groups G1 and G2 in the above proof is given by

θ = θ(r1, r2, r3, a3, s2, s3) = π

log(
√

r1(r1−r2)
(r1−s2)(r1−1) )

log(
√

(r1−a3)(r1−r3)
r1(r1−r2)

).

We can either make r2 = 0 or s2 = 1 or u = s3 or a3 = r3 to obtain
explicit models for the Teichmüller space (as boundaries of the above
model) of parabolic Riemann surfaces of type (0, 4). We must remark
that if we make r1 = ∞, then we get only a model of the Teichmüller
space of pants. In the particular case, r2 = 0, s2 = 1, u = s3 and
a3 = r3, we obtain Maskit’s model for the Teichmüller space of marked
surfaces of genus zero with four punctures (see [4]). In this case, the
above formula for u gives us u = r1 + (r1−1)(r3−1)

r1
= r3 − r3−r1

r1
. The

explicit model is M = {(r1, r3) ∈ R2; 1 < r1 < r3}. In figure 5 we
draw a fundamental domain for the group G =< B1, B2, B3 > such
that Φ3(G =< B1, B2, B3 >) = (r1, 0, r3, r3, 1, u).
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Figure 5.

In this case the angle θ = θ(r1, r3) is θ = θ(r1, r3) = π
log( r1

r1−1 ) log( r3−r1
r1

).

We have an explicit one-to-one real analytic diffeomorphism between
M and the Fricke space (angle, length coordinates) L : M → R2

defined by L(r1, r3) = (log( r1
r1−1), θ(r1, r3)). Similarly, one can use the

above parameters to find explicit models for the Teichmüller spaces of
surfaces of type (0, m), where m ≥ 5.

5.2. Teichmüller Spaces of Riemann Surfaces of Type (1,1)

A Riemann surface of type (1, 1) is topologically equivalent to a surface
of genus one with a deleted point. If the boundary is a puncture, then
we call it a parabolic Riemann surface of type (1, 1).; otherwise, we
call it a hyperbolic Riemann surface of type (1, 1).
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A hyperbolic Riemann surface S of type (1, 1) can be constructed
from a pant P , where two of its boundaries are bounded by closed
simple geodesics of the same length, by identifying these two bound-
aries. This can be seen as follows. Start with a Fuchsian group Γ
uniformizing a surface S of type (1, 1). Let l be a non-dividing simple
closed geodesic on S and denote by R = S − l. Fix a lifting T of
the region R in the hyperbolic plane and consider G1 the subgroup
of G fixing T . The group G1 uniformizes a pant P with two bound-
aries bounded by simple closed geodesics of the same length. We may
assume up to conjugation that G1 =< A1, A2 > is normalized by
a(A1) = ∞, a(A2) = 0 and a(A2 ◦A1) = 1, and the axis of A1 and A2

are projected to the two geodesics of the same length. If r1 = r(A1),
r2 = r(A2) and s = r(A2 ◦ A1), then the axis of the transformations
A1, A2 and A2 ◦ A1, denoted as N1, N2 and N2,1, respectively, are
as shown in figure 6. A fundamental domain for G1 is also shown in
figure 6.

Figure 6.
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As a consequence of Theorem 1, we have that the multiplier of
the transformations A1 and A2 are given by k2

1 = r1(r1−r2)
(r1−1)(r1−s) and

k2
2 = r1(1−r2)(s−r2)

s(r1−r2) , respectively. Our assumption on the equality of the

geodesics lengths implies that s = r2(1−r1)
1−r2

. Since s > 1 we have the
inequality r2(2− r1) < 1. Observe that r2 < 0 and r1 > 1 imply that
r2(1−r1)

1−r2
< r1. On the other hand, both geodesics N1 and N2 project

onto l on S. It implies that there is a transformation A3 in Γ such
that A3 ◦A2 ◦A−1

3 = A−1
1 . We denote by D2 and D1 the discs bounded

by N2 and N1, respectively, where the boundary of D1 contains r1 + 1
and the boundary of D2 contains r2

2 . We have that A3(D2) is equal
to the complement of D1 ∪ N1. In this way the conditions of the
Maskit’s second combination theorem ([7]) are satisfied for G1 and
G2 =< A3 >. In particular, Γ is the HNN-extension of G1 by A3 (see
figure 7 for a fundamental domain of Γ).

Figure 7.
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Denote by a and r the attracting and repelling fixed points of A3,
respectively. In this case, r2 < r < 0 and r1 < a. If k2 > 1 denotes
the multiplier of A3, then

A3 =
(

r − ak2 ar(k2 − 1)
1− k2 rk2 − a

)

.

Since necessarily A3(0) = r1 and A3(r2) = ∞, we obtain a = r1r2
r

and k2 = r2(r1−r)
r(r−r2) . The inequality r > r2 implies the inequality r1 < a.

In this way, we obtain that the only variables are given by r1, r2 and
r satisfying the inequalities

(F1) r2(2− r1) < 1; and

(F2) r2 < r < 0 < 1 < r1.

The Teichmüller space of Γ is identified with the set W of marked
groups (G, (B1, B2, B3)) satisfying:

(1) G is discrete subset of PGL+(2,R);

(2) a(B1) = ∞, a(B2) = 0 and a(B2 ◦B1) = 1; and

(3) There is a quasiconformal homeomorphism F : H → H such
that F ◦ Ai ◦ F−1 = Bi, for i = 1, 2, 3.

In particular, for (G, (B1, B2, B3)) in W , the only relation is given
by B3 ◦B2 ◦B−1

3 = B−1
1 .

Let us consider the regionH in R3 consisting of the points (r1, r2, r)
satisfying the inequalities (F1) and (F2). As a consequence of theorem
1, we have a one-to-one real analytic map Θ : W → H defined by
Θ((G, (B1, B2, B3))) = (r(B1), r(B2), r(B3)).

Corollary 3. Θ(W ) =H.
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Proof. Start with a point (r1, r2, r) in H. Set s = r2(1−r1)
1−r2

and
a = r1r2

r . Inequality (F1) ensure that 1 < s < r1, and (F2) ensure that
r1 < a. Using the values r1, r2 and s we can construct a pant group
G1 =< B1, B2 > where a(B1) = ∞, r(B1) = r1, a(B2) = 0, r(B2) =
r2, a(B2 ◦ B1) = 1. Direct computations shows that r(B2 ◦ B1) = s.
We also construct B3 satisfying r(B3) = r, a(B3) = a and k2 = a−r2

r−r2
.

Inequality (F2) ensures that B3 maps the disc D2 (bounded by the
geodesic joining r2 and 0 and containing r2

2 in the boundary) onto the
disc D′

1 (bounded by the geodesic joining ∞ and r1 and containing
r2 in the boundary). One can see that the conditions of the second
combination theorem of Maskit holds for G1 and G2 =< B3 >. As a
consequence of the same theorem, we have that the group G generated
by G1 and G2 has the presentation G =< G1, G2 >=< B1, B2, B3; B3◦
B2 ◦B−1

3 = B−1
1 >, and (G, (B1, B2, B3)) belongs to H. 2

As a consequence of Theorem 4, we have that H is an explicit
model for the Teichmüller space of hyperbolic surfaces of type (1, 1).
This model only uses the fixed points of some elements. Compare to
Maskit’s model in [5] in which one of the parameters is a multiplier.

In the boundary of H (given by r2(2− r1) = 1) we have an explicit
model for the Teichmüller space of parabolic Riemann surfaces of type
(1, 1). In this case, the model is given by N = {(r1, r); 1

2−r1
< r < 0 <

1 < r1}. Figure 8 shows a fundamental domain for a marked group
(G, (B1, B2, B3)) obtained from a point (r1, r) in N .

Figure 8.
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5.3. Teichmüller Spaces of Closed Riemann Surfaces of Genus
Two

Let S be a closed Riemann surface of genus two. On S we consider a
set of oriented simple loops (through a point z) γ, α1, α2, β1 and β2

as shown in figure 9.

Figure 9.

The fundamental group of S, with base point at z, has a presen-
tation of the form

Π1(S, z) =< γ, α1, α2, β1, β2; α−1
1 β1α1 = γβ1, α−1

2 β2α2 = γβ2 >.

Let F be a Fuchsian group (acting on the hyperbolic plane H =
{z ∈ C; lm(z) > 0}) uniformizing the surface S, that is, there is a
holomorphic covering π : H → S with F as covering group. Choose
a point x in H such that π(x) = z. We have a natural isomorphism
λ : Π1(S, z) → F as follows. For a class [η] ∈ Π1(S, z) we consider
a representative η. Now we lift η under π at the point x. The end
point of such a lifting is of the form fη(x) for a unique element fη ∈ F .
Basic covering theory asserts that if ρ is another representative of [η],
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then fρ = fη. We define λ([η]) = fη. We set A1 = λ([γ]), A2 =
λ([β1]), A3 = λ([β2]), F1 = λ([α1]) and F2 = λ([α2]). In particular, a
presentation of F is given by

F =< A1, A2, A3, F1, F2; F1 ◦ A2 ◦ F−1
1 = A2 ◦ A1, F2 ◦ A3 ◦ F−1

2 =
A3 ◦ A1 >.

Denote by γ̃, α̃1, α̃2, β̃1 and β̃2 the projections on S under π of
the axis of the transformations A1, F1, F2, A2 and A3, respectively, as
shown in figure 10.

Figure 10.

We have oriented the axe Ax(H) of a (hyperbolic) transformation
H in such a way that the attracting fixed point of H is the end point.
The orientations of the projections of the above axis carry the natural
orientation induced from the one given to the axis. We can normalize
F in PGL(2,R) such that a(A1) = ∞, a(A2) = 0 and a(A2 ◦A1) = 1.
The choice made for the transformations A1, A2, A3, F1 and F2 imply
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that the axis of these transformations are as shown in figure 11.

Figure 11.

For simplicity, we denote a(A3) = a3, r(Ai) = ri (i = 1, 2, 3),
a(A3 ◦ A1) = u, r(Aj ◦ A1) = sj (j = 2, 3), r(Fk) = xk, a(Fk) = yk

(k = 1, 2). In particular, we have that these fixed points satisfy the
following inequalities:

r2 < x1 < 0 < 1 < y1 < s2 < r1 < s3 < y2 < u < a3 < x2 < r3.

From the above, we observe that the group G1 = 〈A1, A2, A3〉
uniformizes a hyperbolic surface of type (0, 4) with two pairs of holes
of the same length. These two pairs of holes are the ones bounded by
the loops β̃1 and π(Ax(A2◦A1)), and the loops β̃2 and π(Ax(A3◦A1)),
respectively. We denote by D2, D′

2, D3 and D′
3 the disjoint discs

bounded by the axis of the transformations A2, A2◦A1, A3 and A3◦A1,
respectively. Since F1 ◦ A2 ◦ F−1

1 = A2 ◦ A1 and F2 ◦ A3 ◦ F−1
2 =

A3 ◦ A1, we have that F1(D̄2) ∩D′
2 = ∅ and F1(D̄3) ∩D′

3 = ∅, where
the bar represents the Euclidean closure. One can apply the second
combination theorem of Maskit [7] to the pair of groups G1 and G2 =<
F1 >. The resulting group G3 =< G1, G2 >= G1∗F1 uniformizes
a surface of genus one with two boundary components of the same
length. Now we apply again the second combination theorem of Maskit
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to the pair G3 and G4 =< F2 > to obtain the group F =< G3, G4 >=
G3∗F2 uniformizing the surface S.

For the group F in we have some equalities. We denote by k2(H) >
1 the multiplier of the (hyperbolic) transformation H. Then we have
the following:

(1) k2(A2) = k2(A2 ◦ A1);

(2) k2(A3) = k2(A3 ◦ A1);

(3) F1(0) = 1, F1(r2) = s2;

(4) F2(a3) = u, F2(r3) = s3;

(5) k2(A1) = r1(r1−r2)
(1−r1)(s2−r1) ;

(6) k2(A2) = r1(r2−1)(r2−s2)
s2(r1−r2) ;

(7) k2(A3) = (r3−s3)(a3−k2(A1)s3−r1(1−k2(A1)))
(a3−s3)(r3−k2(A1)s3−r1(1−k2(A1))) .

Direct computations imply that u = r2
1(1−k2(A1))+r1(k2(A1)s3−a3−r3)+a3r3

k2(A1)(s3−r1)
.

Equality (1) implies s2 = r1(r2−1)
r2−r1

. Equality (2) and the fact that
r1 < s3 imply s3 = a3(1−r1)+r1(r2−1)

r2−r1
. As a consequence, we obtain that

u = r1(1−r2+r3)−r3
r1−r2

.
The transformation Fk is uniquely determined by xk, yk and k2(Fk).

Equality (3) implies
y1 = r1(1−x1−r2)+x1r2

x1(1−2r1+r2)+r1−r2
, and k2(F1) = (x1−1)(r1(x1−1+r2)−x1r2)

x1(r1−1)(r2−x1) .
Equality (4) implies y2 = P

Q and

k2(F2) = (−a3+r1+a3r1−r1x2+r2x2−r1r2)(r1−r1x2+r2x2−r1r2−r3+r1r3)
(a3−x2)(r1−1)(r1−r2)(x2−r3) , where P =

a3r1−a3r1x2−r2
1−a3r2

1 +a3r2
1x2+a3r2x2−a3r1r2−r1r2x2−a3r1r2x2+

2r2
1r2 +a3r2

1r2−r2
1r2x2 +r1r2

2x2−r2
1r

2
2−a3r3 +r1r3 +3a3r1r3−r1r3x2−

r2
1r3−2a3r3

1r3+r2
1r3x2−a3r2r3+r2r3x2−r1r2r3+a3r1r2r3−r1r2r3x2+

r2
1r2r3, and

Q = (r2−r1)(−a3 +x2 +r1 +a3r1−2r1x2 +r2x2−r1r2−r3 +r1r3).
We observe from the above that the group F is uniquely deter-

mined by the fixed points r1, r2, r3, a3, x1 and x2.
We consider the open (connected) region (in R6) F defined as:
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F = {(r1, r2, r3, a3, x1, x2); r2 < x1 < 0 < 1 < y1 < s2 < r1 < s3 <
y2 < u < a3 < x2 < r3},

where the values y1, s2, s3, y2 and u are given by the formulae
above.

The Teichmüller space T (F ) can be identified with the space (sub-
space of the suitable deformation space) consisting of marked groups
(G, (B1, B2, B3, H1, H2)) satisfying the following properties:

(1) G is a discrete subgroup of PGL+(2,R);

(2) a(B1) = ∞, a(B2) = 0, a(B2 ◦B1) = 1;

(3) There exists a quasiconformal homeomorphism K : H → H such
that K ◦ Ai ◦K−1 = Bi, for i = 1, 2, 3, and K ◦ Fj ◦K−1 = Hj,
for j = 1, 2.

In particular, for (G, (B1, B2, B3)) in T (F ), the only relations are
given by H1 ◦B2 ◦H−1

1 = B2 ◦B1 and H2 ◦B3 ◦H−1
2 = B3 ◦B1 >.

We have, as a consequence of the previous sections, an one-to-one
real analytic map φ : T (F ) → F , defined as

φ((G, (B1, B2, B3, H1, H2))) =
(r(B1), r(B2), r(B3), a(B3), r(H1), r(H2)).

Corollary 4. φ(T (F )) =F .

Proof. The map φ is a surjective map. This is a consequence of
the combination theorems of Maskit in [7]. We sketch the idea of the
proof of this assertion. Given a point p = (r1, r2, r3, a3, x1, x2) in F ,
we can construct the values s2, s3, u, y1 and y2. We can also construct
values k2(H1) and k2(H2). Using these values we obtain unique trans-
formations B1, B2, B3, H1 and H2. The inequalities defining the set F
asserts that the above transformations are all hyperbolic. The config-
uration of the axis of the transformations B1, B2, B3, B2 ◦B1, B3 ◦B1,
H1 and H2 is the same as for the axis of the transformations A1, A2,
A3, A2 ◦ A1, A3 ◦ A1, F1 and F2 as shown in figure 11. The group



194 Rubén A. Hidalgo

T1 =< B1, B2 > is a free group of rank two uniformizing a pant. The
group T2 =< B1, B3 > also uniformizes a pant. One can check that
the conditions of the first combination theorem of Maskit are satisfied
and one obtain that T3 =< T1, T2 >= T1∗<B1>T2 uniformizes a surface
of type (0, 4). It is easy to check that Hk ◦ Bk+1 ◦H−1

k = Bk+1 ◦ B1,
for k = 1, 2. The conditions of the second combination theorem holds
for the group T3 and T4 =< T1 >. The group T5 =< T3, T4 >= T3∗H1

uniformizes a surface of genus one with two boundary components.
Again apply the second combination theorem to the groups T5 and
T6 =< H2 > to obtain that the marked group T7 =< T5, T6 >= T5∗H2

belongs to T (F ). 2

Remarks.

(1) The main difference between the above parameters and the ones
in [9] is the fact that we only use fixed points. The parameters
given by Maskit also only contain fixed points and are more easy
than the ones obtained here.

(2) Maskit’s model uses the fact that any Riemann surface of genus
two is constructed from two isometric pants. Min model uses the
fact that any Riemann surface of genus two is constructed from
two surfaces of type (1, 1). Our construction uses the fact that
any Riemann surface of genus two is constructed from a surface
of type (0, 4) with two pairs of boundaries of the same length.

(3) We can relate our fixed point parameters to other parameters of
Teichmüller space, for instance to Fenchel-Nielsen Parameters in
the same way as done for the case of signature (0, 4). The way
to do this is the following. At each each axis Ax(A1), Ax(A2)
and Ax(A3) we have associated the multiplier of the transfor-
mations A1, A2 and A3, respectively. These multipliers are in
function of the fixed point parameters and, in particular, the
hyperbolic lengths of the geodesics α̃1, α̃2 and γ̃ are in function
of these fixed points parameters. To obtain the angle at γ̃, we
look at the common orthogonal geodesic L1 (respectively, L2)
to both Ax(A1) and Ax(A2) (respectively, Ax(A1) and Ax(A3)).
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These two geodesics determine an arc in Ax(A1), whose hyper-
bolic length determine the angle (also in function of the fixed
point parameters). To determine an angle at α̃1 we look the
common orthogonal geodesic L3 of Ax(A1) and Ax(A2A1). We
proceed to see the hyperbolic arc in Ax(A2A1) determined by
the intersection point of L3 with Ax(A2A1) and the image by F1

of the intersection point of L3 with Ax(A2). Similarly for look-
ing at the angle at α̃2. The explicit computations are similar to
the case (0, 4) and are left to the interested reader.

(4) We can apply Theorem 1 to construct explicit models for the
Teichmüller space of arbitrary topologically finite Riemann sur-
faces. This will be done elsewhere.
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