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Abstract

In the present paper, we give a similar spectral variational
theory for closed curves in the Euclidean 3–space E3, consider-
ing deformations in the direction of the principal normal vec-
tor field. Similarly as in the planar case, the closed Euclidean
space curves satisfying the corresponding variational minimal
principle are characterized by their curvature being a function
of finite Chen type; their torsion remains completely free.
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1. Introduction

In [6], B.Y.Chen, F.Dillen, L.Vrancken and one of the authors intro-
duced the notion of k–minimality for compact hypersurfaces in Rie-
mannian manifolds, whereby k ∈ N , and, in particular, 0–minimality
corresponds to the classical notion of minimality (i.e. vanishing mean
curvature function), and 1–minimality corresponds to CMC (i.e. H
is constant). Basically, this is done by imposing these hypersurfaces
to satisfy a variational minimal principle for their volume (area when
dimension is 2, length when dimension is 1) under so-called normal
k–deformations, i.e. normal deformations for which the variational
functions are chosen in relation with elementary spectral theory. In
particular, in []the closed k–minimal curves in the Euclidean plane E2

are characterized by the property that their curvature function is of
finite type, i.e. has a finite Fourier series expansion with respect to
the arclength. As such, all 2–minimal closed Euclidean planar curves
were classified, and also many examples of such k–minimal curves, for
k > 2, were given.

In the present paper, we give a similar spectral variational theory
for closed curves in the Euclidean 3–space E3, considering deforma-
tions in the direction of the principal normal vector field. Similarly
as in the planar case, the closed Euclidean space curves satisfying the
corresponding variational minimal principle are characterized by their
curvature being a function of finite Chen type; their torsion remains
completely free. Finally, we discuss some examples of closed k-minimal
space curves, which were studied before in the context of the theory
of curves of finite Chen type [3], [4], [7], [8], [9] and which came up
very recently in the work of P.D.Scofield on space curves of constant
precession [10].

2. Deformations of space curves in the principal
normal direction

Let β be a closed (regular) curve in E3 of length 2πr, r ∈ R+
0 . Then β

can be considered as an isometric immersion of a circle S1(r) of radius
r into E3:

β : S1(r) → E3s 7→ β(s),(2.1)
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whereby s ∈ [0, 2πr] is an arclength parameter. As usual, let T = β′,
N and B be the Frenet trihedral of β, such that the curvature function
k(s) and the torsion function τ(s) of β are determined by the Frenet
formulas T ′ = kN, N ′ = − kT + τB and B′ = − τN .

Now, we consider deformations of the curve β in the direction of
its principal normal N , i.e. variations given by

β → βts 7→ βt(s) := β(s) + tf(s)N(s),(2.2)

where t ∈ (−ε, ε), ε ∈ R+
0 , and f ∈ C∞β; of course, β = β0.

From (2.2) it follows that the velocity of the deformed curve βt is
given by

β′t = {1− tkf}T + tf ′N + tτfB,(2.3)

(when ′ denotes differentiation with respect to s). Hence,

||β′t||2 = 1− (2kf)t + (k2f 2 + τ 2f2 + f
′2)t2.(2.4)

Consequently, the length L(t) of the curve βt is found to be

L(t) =
∫ 2πτ
0 ||β′t(s)|| s =

∫ 2πτ
0 (1− (2kf) t + (k2f 2 + τ 2f 2 + f ′2)t2)

1
2 ds

=
∫ 2πτ
0 (1− At + Bt2)

1
2 ds,

(2.5)
where we have put

A = 2kf , B = k2f 2 + τ 2f 2 + f
′2.(2.6)

Thus we find the following first variational formula for the length under
these deformations:

L′(t) =
∫ 2πr

0

1
2

−A + 2Bt

(1− At + Bt2)
1
2

ds.(2.7)

This implies that

L′(0) = − 1
2

∫ 2πr

0
Ads = −

∫ 2πr

0
k(s)f(s)ds.(2.8)

Moreover, from (2.7), we obtain the following second variational for-
mula:

L′′(t) =
∫ 2πr

0

1
4

4B(1− At + Bt2)− (−A + 2Bt)2

(1− At + Bt2)
3
2

ds.(2.9)
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This implies that

L′′(0) =
∫ 2πr

0

1
4

(4B−A2)ds =
∫ 2πr

0
(τ 2(s)f2(s) + f

′2(s)) ds.(2.10)

Definition. Let DN be the set of all deformations of a space curve
β in the direction of its principal normal N . Then β is a minimal curve
when it satisfies the variational minimal principle for the deformations
of the class DN , i.e. when L′(0) = 0, or still, when the length of β is
a critical point of the functional L(t). A minimal curve β is said to
be stable minimal when L′′(0) ≥ 0, i.e. when any small deformation
of the class DN increases the length.

Actually, as is well known, the above formulas essentially remain
valid when considering any compactly supported variation of DN also
for non–closed space curves. Then (2.8) and (2.10) yield the classical
result that the straight lines (L′(0) = 0 for all functions f , implying
of course k ≡ 0) are the only minimal curves in E3, and they are
moreover stable (since, always, L′′(0) ≥ 0). We recalled the above
formulas however specifically for the closed curves in E3, since we next
want to consider various subclasses of the set DN as determined by the
behaviour of the spectral decomposition of the variational functions
f .

3. Curves of finite Chen type and classes Fk of
functions

The Laplace operator ∆ of S1(r) being given by

∆ = − d2

ds2 ,(3.1)

its eigenvalues are

λn =
( n

r

)2
, (n = 0, 1, 2, . . .) ,(3.2)

and the corresponding eigenspaces are

Vn = span {cos
ns
r

, sin
ns
r
} , (n = 0, 1, 2, . . .) .(3.3)
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These eigenspaces are mutually orthogonal with respect to the inner
product

〈f, g〉 :=
∫ 2πr

0
f(s) g(s)ds, (f, g ∈ C∞β) ,

and their sum
∞
∑

k=0
Vk is dense in C∞β.

Hence the spectral decomposition of β with respect to its Laplacian,

β(s) = β0 +
∞
∑

n=1
(βn cos

ns
r

+ β̃n sin
ns
r

) ,(3.4)

where β0, βn and β̃n are certain fixed vectors in E3, β0 actually being
the center of mass of β, is nothing but the Fourier series of β with
respect to the arclength parameter s. As a particular case of a general
notion of (compact as well as non–compact) submanifolds of finite
Chen type [2], we have the following.

Definition. A closed curve β in E3 is said to be of finite Chen
type, FT, if its spectral decomposition (3.4) is finite; otherwise β is
said to be of infinite Chen type, ∞T . A finite type curve β is said to
be of k–type, kT , when the sum

∑

in (3.4) contains exactly k non–zero
terms

(βn cos
ns
r

+ β̃n sin
ns
r

) each corresponding to a different eigenvalue
λn. For a finite type curve, the number of the greatest eigenvalue
corresponding to which a non–zero term occurs in (3.4) is called the
upper order of β : u. o.(β).

For more information on curves of FT, see e.g. [2], [3], [4]. In
particular, the circles are the only closed 1T curves, all 2T curves in
En are classified by B.Y.Chen, F.Dillen and one of the authors [4], and
also all 3T curves in E3 are known through some work of L.Vrancken
and both authors [8], [9] and a recent paper of D. Blair [1]. We will
come back to some 2T and 3T closed space curves in the last section.

Similarly, every function f ∈ C∞β can be decomposed in its spec-
tral series with respect to ∆, or equivalently in its Fourier series with
respect to s:

f(s) = f0 +
∞
∑

n=1
fn(s) ,(3.5)
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whereby f0 is a constant and fn is an eigenfunction belonging to λn,
for n = 1, 2, . . . , i.e.

fn(s) = an cos
ns
r

+ bn sin
ns
r

,(3.6)

where an, bn are constants.

Definition. A function f ∈ C∞β is said to be of finite Chen type,
FT, when the sum

∑

in (3.5) is finite, and, in particular, f is said to
be of k–type, kT , when the sum

∑

in (3.5) contains exactly k non–zero
functions fn. The number of the ”highest” non–zero term appearing
in the sum

∑

in (3.5) for a finite type function f is called the upper
order of f : u.o.(f).

Definition. A function f ∈ C∞β belongs to the class Fk ⊂ C∞β
when all terms f0, f1, . . . , fk−1 in its Fourier series (3.5) are identically
zero, i.e. if

f ∈
∞
∑

n=k

Vn.(3.7)

Clearly we have the following inclusions:

C∞β = F0 ⊃ F1 ⊃ F2 ⊃ · · · ⊃ Fk ⊃ · · · .(3.8)

4. Principal normal k–deformations

Definition. A principal normal deformation β → βt of a closed curve
β in E3 is said to belong to the class DN

k of the principal normal
k–deformations, when the function f which determines the normal
variational field fN belongs to the set Fk.

Clearly, we have the following inclusions:

DN = DN
0 ⊃ DN

1 ⊃ DN
2 ⊃ · · · ⊃ DN

k ⊃ · · · .(4.1)

Definition. A closed curve β in E3 is said to be k–minimal, k ∈ N ,
if L′(0) = 0 for all principal normal k–deformations of β, or, in other
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words, if it satisfies the variational minimal principle in the class DN
k .

And a k–minimal closed curve β in E3 is said to be stable k–minimal ,
if L′′(0) ≥ 0 for all principal normal k–deformations of β.

From formula (2.10) we have the following.

Proof. Every closed k–minimal curve in E3 is stable k–minimal.

Remark. From the previous definition and (4.1), we see that every
k–minimal curve is automatically also `–minimal for ` ≥ k.

From the previous definition combined with formula (2.8), we have
that β is k–minimal if and only if

∫ 2πr

0
k(s)f(s)ds = 0 (∀f ∈ Fk) .(4.2)

Since the eigenspaces Vn of ∆ are mutually orthogonal, we derive from
(4.2) the following characterization of k–minimality.

Teorema : Let β be a closed curve in E3 of length L = 2πr, with
arclength s ∈ [0, 2πr] and curvature function k. Then the following
statements are equivalent:

(i) β is k–minimal;

(ii) k ∈
k−1
∑

i=0
Vi ;

(iii) k is a FT function with (k) < k;

(iv) k(s) = k0 +
k−1
∑

n=1
(kn cos

ns
r

+ ˜kn sin
ns
r

), (k0, kn, ˜kn ∈ R);

(v) There exists a polynomial P of one variable such that
P (∆)k = 0.

Corolario 3 : There are no closed 0–minimal curves in E3.

Corolario 4 : The only closed 1–minimal curves in E3 have con-
stant curvature k.
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Corolario 5 : The closed 2–minimal curves in E3 are the closed
curves β of length L = 2πr in E3 for which k(s) = `+a cos

s
r

+b sin
s
r

,

where `, a, b ∈ R and s ∈ [0, 2πr]is the arclength parameter.

5. Some examples

In this section we discuss some non–trivial examples of k–minimal
closed space curves, k ≥ 2, which on one hand are known for quite
some time now within the theory of submanifolds of finite Chen type,
and on the other hand turned up very recently in the work of P.D.Scofield
[10] on Euclidean space curves of constant precession.

Euclidean space curves of constant precession are defined by the
property that, being transformed with unit speed, their centrode re-
volves about a fixed axis with constant angle and constant speed [10].
Here by centrode is meant, for a curve β(s)where sis an arclength pa-
rameter, the vector C(s) = τ(s)T (s)+ k(s)B(s), which at every point
β(s)of the curve determines the axis of instantaneous rotation

of the Frenet frame {T (s), N(s), B(s)}when moving along the curve.
The following characterization of such curves is originally due to

P.D.Scofield, but we will present its derivation in a somewhat different
way here.

For a space curve of constant precession, it is required that C(s)moves
with constant speed on a circle centered at the axis of precession (a
fixed line) `in a plane perpendicular to this axis. So, to start with, we
must have

||C(s)||2 = k2 + τ 2 = constant,(5.1)

say
k2 + τ 2 = w2, (w ∈ R+

0 ) .

Hence it follows that
kk′ + ττ ′ = 0,(5.2)

such that
k′ = fτ , τ ′ = − fk ,(5.3)

for some function f of s. Next, we express that the curve C(s) has
constant speed: since, using the Frenet formulas,

C ′(s) = τ ′T + k′B ,(5.4)
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we must have
k
′2 + τ

′2 = constant.(5.5)

Inserting (5.3) in (5.5), and using (5.1), we conclude that also f must
be constant, say

k′ = µτ , τ ′ = − µk, (µ ∈ R0),(5.6)

(µ = 0 reducing the curve C(s) to a single point). Now, for C(s) to
describe a circle S2

0(ω), we would need to have a fixed point A 6= 0,
spanning the axis `, and such that ∀s : d(A,C(s)) =constant, say r,
(where d is the Euclidean distance function), meaning then that the
curve C(s) lies on the intersection of two spheres S2

0(ω) and S2
A(r),

thus expressing that the angle θ(s) between the vectors C(s) and the
fixed vector A is constant. With this in mind, for any point β(s) on
the original curve, consider a vector

V (s) = α(s)T (s) + δ(s)N(s) + γ(s)B(s) .(5.7)

In order to satisfy the property we aim for, we express that the velocity
vector C ′(s) of C(s) should be perpendicular to V (s) for all s, yielding

ατ ′ + γk′ = 0 .(5.8)

Combining with (5.6) we then obtain that

αk − γτ = 0 ,(5.9)

such that
α = gτ , γ = gk ,(5.10)

for some function g of s. Thus V (s) should be of the form

V (s) = g(τT + kB) + δN = gC + δN.(5.11)

Finally, we express that the vector V (s) should be the same for all s,
i.e.

V ′(s) = 0 ,(5.12)

and then, of course, also

||V (s)||2 = constant.(5.13)
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From (5.12) we obtain that

(g′τ + gτ ′ − kδ)T + δ′N + (g′k + gk′ + τδ)B = 0 ,(5.14)

i.e. that

g′τ + gτ ′ − kδ = 0, δ′ = 0, g′k + gk′ + τδ = 0,(5.15)

so that, in particular, δ is constant, and from (5.13) we obtain that

g2(k2 + τ 2) + δ2 = constant,

which by (5.1) and the fact that we already know that δ is constant,
implies that also g is constant. Thus g = C1 and

δ = C2 are constants, which, by (5.15), are related by

C1τ ′ = C2k , C1k′ = − C2τ,(5.16)

or still, making use of (5.6), by

C2 = − µC1 .(5.17)

Hence
V (s) = C1(C(s)− µN(s))(5.18)

is a fixed vector different from 0, (determining the axis `). Since
any constant multiple of V (s) can serve in the same purpose, we will
consider in the following, in particular, the fixed vector

A = C(s)− µN(s) .(5.19)

It is clear at once that

d(A,C(s)) = ||A− C(s)|| = ||µN(s)|| = |µ| = constant,(5.20)

say |µ| = r.
From (5.6) we see that the curvature k(s) and torsion τ(s)of a

curve of constant precession satisfy both the differential equation

F ′′(s) + µ2F (s) = 0 ,(5.21)
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which, again making use of (5.6), and eventually up to a reflection and
a translation of the arclength parameter, give the following ”natural
equations” of such curves:

k(s) = ±ω sin µs , τ(s) = ω cos µs .(5.22)

Teorema : ([10]).The Euclidean space curves β(s) of constant
precession are characterized by their natural equations (5.23), where
w ∈ R+

0 and µ ∈ R are arbitrary constants.

We already know that ||C(s)|| = ω, and further we will denote

||A|| = α ,(5.23)

thus having
α =

√

w2 + µ2 .(5.24)

Next, P.D.Scofield observed that since T ′ = kN and denoting by φ(s)
the angle between N(s) and the fixed vector A, since

N(s) · A = α cos φ(s) = N(s) · (C(s)− µN(s)) = − µ,(5.25)

α and µ being constants, that also φ(s) is constant, and thus, that
the spherical image T (s) of a curve of constant precession β(s) is a
helix on S2

0(1), (its tangent line N(s) making a constant angle with
the fixed direction `).

Based on this, he obtains the following.

Teorema B ([10]).An arclength parametrization of a Euclidean
space curve of constant precession with natural equations

k(s) = − ω sin µs , τ(s) = ω cos µs,(5.26)

is given by

x(s) =
α + µ

2α(α− µ)
sin(α− µ)s− α− µ

2α(α + µ)
sin(α + µ)s, y (s) =
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− α + µ
2α(α− µ)

cos(α− µ)s +
α− µ

2α(α + µ)
cos(α + µ)s ,

z(s) =
ω
µα

sin µs ,
(5.27)

where w ∈ R+
0 , µ ∈ R0 are constants and α =

√
w2 + µ2. Moreover,

the curve lies on the one–sheeted hyperboloid of revolution

x2 + y2 − µ2

ω2 z2 =
4µ2

ω4 .(5.28)

And the curve is closed if and only if
µ
α

is rational.

These curves are, cf §3, clearly all 3T–curves, except when α−µ =
µ, i.e. α = 2µ, or still, using (5.25) when

w =
√

3 |µ| ,(5.29)

in which case they are 2T–curves. From Theorem B and Theorem 2,
we thus have the following.

Corolario : All 2T–curves in E3 of constant precession and all
3T–curves in E3 of constant precession for which

µ
α

is rational, are

k–minimal curves in E3, for some k ≥ 2.

Remark 1. Actually, it follows from the above considerations, that
the curves β(s) of constant precession in E3 are characterized also by
the fact that their centrode C(s) is a curve of constant speed lying on
the sphere centered at the origin 0 of E3.

Remark 2. Also, for curves of constant precession, it is clear from
the above that N revolves also with constant (complementary) angle
and constant speed around the axis `. In particular this implies that
the spherical image of a given curve β(s) of constant precession, σ(s) =
T (s), since σ′(s) = T ′(s) =k(s)N(s), is a spherical helix (on S2

0(1)).
The parametric equations of such helices are known, and so, a para-

metrization of the curve β(s) of constant precession can be obtained
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by simple integration. Whereas in general, for space curves to find the
parametric equations of a curve β(s) from given natural equations is
a rather complicated matter, (see e.g. Struik, Eisenhart).

6. Some comments

1. The above notes on k–minimality of space curves can trivially be
extended to the study of the k–minimal closed curves in arbitrary
dimensional Euclidean spaces Em, m > 3.

2. More generally, the theory of the k–minimal compact hypersur-
faces Mn in En+1, or for that matter, of the k–minimal compact hyper-
surfaces Mn in any Riemannian manifold Nn+1, could similarly be ex-
tended to a theory of k–minimal compact submanifolds Mn in Rieman-
nian manifolds Nm, with arbitrary dimensions n and arbitrary codi-

mensions m−n, by considering the class of
−→
H –normal k-deformations,

i.e. the deformations in the direction of the mean curvature vector
field

−→
H of Mn in Nm, for which the variational function f ∈ Fk, i.e.

f ∈
∞
∑

n=k
Vn where Vn is the eigenspace of the Laplace operator ∆ of Mn

corresponding to the eigenvalue λn (0 = λ0 < λ1 < λ2 < . . . < +∞).
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