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Abstract
The aim of this paper is to generalize the results in [1] and

[13]. Here, we are interested in two problems concerning cer-
tain classes of near rings satisfying one of the following poly-
nomials identities :

(∗) For each x, y in a near-ring N , there exist positive inte-
gers t = (x, y) ≥ 1 and s = s (x, y) > 1 such that xy = ±ysxt.

(∗∗) For each x, y in a near-ring N , there exist positive
integers t = t (x, y) ≥ 1 and s = s (x, y) > 1 such that xy =
±xtys.
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The first problem is to prove the decomposition for near-rings sat-
isfying either of the properties (∗) or (∗∗) and the second problem is to
prove the commutativity of distributively generated near - ring satisfy-
ing either (∗) or (∗∗). As an application we show that if N is strongly
distributively generated near - ring satisfying either (∗) or (∗∗), then
R is commutative. This generalizes a result by A. Frolich which as-
serts that a distributively generated near - ring N is distributive if
and only if N2 is distributive or if 〈N, +〉 is commutative.

A celebrated theorem of I. Herstein [8] asserts that a periodic ring
is commutative if its nilpotent elements are central. In order to get
the analog of this result in near - rings H. Bell [2] proved that if N is
distributively generated (d.g.) near - ring with its nilpotent elements
laying in the center, then the set A of all nilpotent elements of N forms
an ideal of N and if N/A is periodic, then N must be commutative.
Recently, M. Quadri, Ashraf and A. Ali [13] proved that a d. g. near
- ring N satisfying any one of the following conditions :

(i) For each x, y ∈ N , there exist positive integers m = m (x, y) , n =
n (x, y) at least one of them greater than one such that xy = ymxn,

or
(ii) For each x, y ∈ N , there exist positive integers m = m (x, y) , n =

n (x, y) at least one of them greater than one such that xy = xnym,
then R is commutative.

The main purpose of this paper is to generalize the above result.
In view of this observation, we want to study the structure and com-
mutativity of near - ring N satisfying one of following conditions :

(∗) For each x, y in a near - ring N , there exist positive integers
t = t (x, y) ≥ 1 and s = s (x, y) > 1 such that xy = ±ysxt.

(∗∗) For each x, y in a near - ring N , there exist positive integers
t = t (x, y) ≥ 1 and s (x, y) > 1 such that xy = ±xtys.

The present paper is organized as follows : In the first section, we
put together some elementary material for the sake of completeness.
In particular, the connection of the direct sum decomposition of rings
and analogous of near - rings. In section 2, we establish a rather
general theorem which asserts that if a near - ring N satisfying either
(∗) or (∗∗), then N = A⊕B, that is N is an orthogonal sum of subnear
- rings A and B, where A is the set of the nilpotent elements of N and
B =

{

x ∈ N | xn(x) = x, n (x) ∈ Z
}

with (B, +) is abelian.



On structure and commutativity of near-rings 115

Section 3 is devoted to the problem that if N satisfies (∗) or (∗∗),
then under appropriate additional hypothesis a distributively gener-
ated near - ring must be a commutative ring. As an application we
prove that if strongly distributively generated near ring N satisfying
either (∗) or (∗∗), then N must be a commutative ring.

1. Preliminaries

All near - rings in this paper are left near - rings. The multiplicative
center of a near - ring N will be denoted by Z (N), the set of nilpotent
elements of N denoted by A and the set of idempotent elements of N
is denoted by B. An element x of a near - ring N is called distributive
if (a + b) x = ax + bx and anti-distributive if (a + b) x = bx + ax for
all a, b ∈ N . If all the elements of a near - ring N are distributive,
then N is said to be distributive near - ring. A near - ring N is called
distributively generated (d. g.) if it contains a multiplicative subsemi
- group of distributive elements which generates additive group N+.
A near - ring N will be called strongly distributively generated (s.d.g.)
if if contains a set of distributive elements whose square generate N+

(see [12]).
A near - ring N is called zero - symmetric if 0x = 0 for all x ∈ N ,

that is left distributive gives x0 = 0. A near ring N is called zero -
commutative if xy = 0 implies that yx = 0 for x, y ∈ N .

An ideal of a near - ring N is defined to be a normal subgroup I
of N+ such that

(i) NI ⊆ I and
(ii) (x + i) y − xy ∈ I for all x, y ∈ N and i ∈ I. If N is a d. g.

near - ring, then (ii) may be replaced by (ii)′ IN ⊆ I.
A near - ring N is called periodic if for each x ∈ N , there exist

distinct positive integers m and n such that xm = xn.
A near - ring N is an orthogonal sum of subnear - ring X and Y

denoted by N = X ⊕ Y , if XY = Y X = (0) and each element of N
has a unique representation if the form x + y such that x ∈ X and
y ∈ Y .
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2. Decomposition Theorems for near rings

In 1989, Ligh and Luh proved that a ring R satisfying the property
xy = (xy)n(x,y) ; x, y ∈ R, for a positive integer n (x, y) > 1 is a direct
sum of a J-ring and zero ring (A J-ring is a ring satisfying Jacobson
property x = xn(x), x ∈ R, for a positive integer n (x) > 1). Recently,
Bell and ligh [4] established that the direct sum decomposition for
rings satisfying the properties xy = (xy)2 p (xy) and xy = (yx)2 p (yx),
where p (X) ∈ Z [X], the polynomial ring over Z. Furthermore, in [4]
they remarked that in case of near rings the analogous hypothesis do
not quite yield such decomposition. Further, they introduced a weaker
notion of orthogonal sum and obtained orthogonal sum decomposition
of a near - ring N satisfying the property xy = (yx)n(x,y), x, y ∈ N ,
for a positive integer n (x, y) > 1.

Motivated by this observation, we shall prove the following results
in this section.

Theorem 2.1. : Suppose that N is a near - ring satisfying (∗)
and the idemoptent elements of N are multiplicative central. Then
the set A of all nilpotent elements of N is a subnear - ring with trivial
multiplication, and the set B of all idemoptent elements of N is a
subnear - ring with (B, +) is abelian. Furthermore, N = A⊕B.

Remark : If a near - ring N satisfies (∗∗), then we may not even
get orthogonal sum decomposition of N which is evident from the
following :

Example : Let N = {0, x, y, z} with addition and multiplication
tables, defined as follows :

+ | 0 x y z · | 0 x y z
0
x
y
z

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 x y z
x 0 z y
y z 0 x
z y x 0

0
x
y
z

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0
0 x 0 x
0 0 0 0
0 z 0 z
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One can easily see that N is a near - ring satisfying the property
(∗∗). But the set B = {0, x, z} is not a subnear - ring of N .

It is natural to ask a question : What additional conditions are
needed to force the orthogonal sum decomposition of a near - ring N
satisfies (∗∗) ? In this direction, we prove.

Theorem 2.2. : Let N be a zero - commutative near - ring
satisfying (∗∗) and the idempotent elements of N are multiplicative
central. Then the set A of all nilpotent elements of N is a subnear-ring
with trivial multiplication, and the set B of all idempotent elements of
N is a subnear - ring with (B, +) is abelian. Furthermore, N = A⊕B.

Now, we state the following results (see [1], [4] and [8]).

Lemma 2.1. : Let N be a near ring with idempotent elements
are multiplicative central, and let e and f be any idempotent element
of N . Then there exists an idempotent element g such that ge = e
and gf = f .

Lemma 2.2. : Let N be a zero-symmetric near ring. Then the
set A of all nilpotent elements in N is an ideal if and only if A is a
subgroup of the additive group N+ of N .

Lemma 2.3. : Let N be a near ring having zero commutative.
Then the annihilator of any non-empty subset of N is an ideal.

Lemma 2.4. : Let N be a zero-symmetric near ring satisfying
the following conditions :

(a) For each x in N , there exists an integer n = n (x) > 1 such
that xn = x.

(b) Every non-trivial homomorphic image of N contains a non-zero
central idempotent.

Then (N, +) is abelian.
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Proof of Theorem 2.1. : We break the proof in the following
steps.

Step 1. If N satisfies (∗), then it is easy to check that N is
zero-symmetric as well as zero-commutative.

Step2. The set A of all nilpotent elements in N form an ideal.
To see this, we let a ∈ A and x ∈ N . The there exist integers s1 =
s (x, a) ≥ 1, t1 = t (x, a) > 1 such that ax = ±xs1at1 . Now, choose
s2 = s1 (xs1 , at1) ≥ 1 and t2 = t1 (xs1 , at1) > 1 such that xs1at1 =
±at1t2xs1s2 ,±xs1at1 = (±)2 at1t2xs1s2 , and ax = (±)2 at1t2xs1s2 . Hence,
it is clear that for arbitrary k, we have integers s1 = s (x, a) ≥ 1,
s2 = s1 (xs1 , at1) ≥ 1, ..., sk = sk−1 (xsk−1 , atk−1) ≥ 1, t1 = t (x, a) > 1,
t2 = t1 (xs1 , at1) > 1, ..., tk = tk−1 (xsk−1 , atk−1) > 1 such that

ax = (±)k at1t2...tkxs1s2...sk .

Thus a ∈ A, at1t2...tk = 0 for sufficiently large k. Hence ax = 0 for
all x ∈ N and a ∈ A. By step 1, N is zero-commutative, and hence
the nilpotent elements of N annihilate N on both sides. Thus

AN = NA = {0} .

Hence A2 = {0} and A ⊆ Z (N). Let a, b ∈ A such that ap = 0
and aq = 0 where p and q are positive integers. Then (a− b)p+q = 0,
that is a− b ∈ A. Hence A is an additive subgroup of N+. Therefore
A is an ideal of N by Lemma 2.2.

Step 3. Let N satsfying (∗) and let n ∈ N . Suppose that s′ ≥ 1,
t′ > 1 be integers such that n2 = ±ns′+t′ . Then n

(

n∓ ns′+t′−1
)

= 0.

By step 1, N is zero-commutative. Hence
(

n∓ ns′+t′−1
)

n = 0 and
(

n∓ ns′+t′−1
)

ns′+t′−1 = 0. This implies that
(

n∓ ns′+t′−1
)2

= 0 and
n∓ ns′+t′−1 ∈ A, that is n− ns′+t′−1 ∈ A and n + ns′+t′−1 ∈ A. So we
can write n = n− ns′+t′−1 + ns′+t′−1. Now,

(

ns′+t′−1
)s′+t′−1

= n(s′+t′−1)(s′+t′−1)

= n(s′+t′−2)(s′+t′)+1

=
(

ns′+t′
)s′+t′−2

· n
= (n2)s′+t′−2 · n
=

(

ns′+t′−2
)2
· n.
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Since ns′+t′−2 is idempotent by (∗),
(

ns′+t′−1
)s′+t′−1

= ns′+t′−1 =
ns′+t′−1 for s′+t′−2 > 1 and ns′+t′−1 ∈ B. This shows that N = A+B.

Step 4. Let N satisfying (∗) and let B be a subnear-ring with
(B, +) abelian. If x, y ∈ B, then there exist integers k = k (x) > 1
and l = l (y) such that xk = x and yl = y. Let p = (k − 1) l−(k + 2) =
(l − 1) k− (1− 2) > 1. Then xp = x and yp = y. Note that e1 = xp−1

and e2 = yp−1 are idempotent elements in N with e1x = x and e2y = y.
Thus xy = ± (e2y)q (e1x)r for some integers q = q (xy, e1e2) ≥ 1 and
r = r (xy, e1e2) > 1. But, we have

xy = e1xe2y = e1e2xy = xye1e2 = ± (e1e2)
q (xy)r .

This implies that xy = e1e2 (xy)r. Hence xy = (xy)r and so xy is
idempotent that is xy ∈ B. Moreover, since N/A has xk = x property,
we have an integer j > 1 such that

(x− y)j = x− y + a, a ∈ A.

Since e1, e2 are central idempotent in N , in view of Lemma 2.1.
choose an idempotent g for which ge1 = e1 and ge2 = e2. Hence
gx = x and gy = y. Multiplying (1) by g gives (x− y)j = x− y. This
shows that x − y ∈ B. Hence B is a subnear-ring. By step 1, N is
zero-symmetric and by Lemma 2.4, we get (B, +) is abelian.

Step 5. We want to see that each element in N has at most one
representation of the form a + b, where a ∈ A, and b ∈ B. Moreover,
M = A ⊕ B. We have by step 2, N is an ideal. Let a1, a2 ∈ A, and
b1, b2 ∈ B such that a1 + b1 = a2 + b2. Then a1 − a2 = b2 − b1 ∈
A ∩B = {0} which gives a1 = a2 and b1 = b2. Hence N = A⊕B.

Proof of Theorem 2.2. Using the same techniques applied in
the proof of Theorem 2.1, we can prove this result.

3. Certain near - rings are rings.

In [9], Ligh prove that distributively generated Boolean near - rings
are rings and indicated that some of the more complicated polynomial
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identities implying commutativity in rings may turn out d. g. near
- rings into rings. The aim of this section is to prove that under
certain additional conditions such as d. g. near - rings turn out to be
commutative ring. In this direction, we prove the following results.

Theorem 3.1. Let N be a d. g. near - ring satisfying (∗). Then
N is commutative.

Theorem 3.2. Let N be a d. g. near - ring satisfying (∗∗). Then
N is commutative.

Besides providing a simpler and attractive proof of a result due to
Bell [2], our results generalize the theorems proved in [3] and [13].

We begin with the following known results .

Lemma 3.1. If N is a zero - commutative near - ring, then ab = 0,
impels that arb = 0 for all r ∈ N and a, b ∈ N .

Lemma 3.2. A d. g. near - ring N is always zero symmetric.

Lemma 3.3 [7]. A d. g. near - ring N is distributive if and only
if N2 is additively commutative.

Lemma 3.4 [7]. A d. g. near - ring N with unity 1 is a ring if N
is distributive or if N+ is commutative.

Lemma 3.5 [7]. If I is a two sided ideal in a d. g. near - ring,
then the elements of the quotient group N+ − I form a d. g. near -
ring which will representated by N/I.

Before, we prove our theorem, we first establish the following re-
sults.
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Lemma 3.6. Let N be a d. g. near - ring satisfying (∗). Let A
be the set of all nilpotent elements in N . Then A ⊆ Z (N).

Proof. Let a ∈ A and x ∈ N . Then using the same technique of
step 2 in the proof of Theorem 2.1, we get that the nilpotent elements
of N annihilate N on both sides and therefore, are central. Thus
A ⊆ Z (N).

Lemma 3.7. Let N be a d. g. near - ring satisfying (∗∗). Let A
be the set of all nilpotent elements in N . Then A ⊆ Z (N).

Proof. Let A ∈ A and x ∈ N . Then there exist integers s1 =
s (x, a) > 1 and t1 = t (x, a) > 1 such that xa = ±xs1at1 = (±)2 xs1s2at1t2

and xa = (±)2 xs1s2at1t2 . Hence, we find positive integers s1 > 1,
s2 > 1, ..., sk > 1 and t1 > 1, t2 > 1, ..., tk > 1 satisfying

xa = (±)k xs1s2...skat1t2...tk .

Since a ∈ A, at1t2...tk = 0 for sufficiently large k. Hence xa = 0 for all
x ∈ N .

Using the same arguments we also find that ax = 0 for all x ∈ N .
Hence nilpotent elements of N annihilate N on both sides. Hence
A ⊆ Z (N).

Now, we are in a position to prove our main theorems.

Proof of Theorem 3.1. By Lemma 2.1 and Lemma 2.2 together
with Lemma 3.6, we get A is a two sided ideal which in turn together
with the main theorem of Bell [2], we get the desired result.

Proof of Theorem 3.2. Using Lemma 3.7, and the argument in
the proof of Theorem 3.1, we get our result.
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4. Application.

The following results are corollaries of Theorem 3.1 and Theorem 3.2
and applications of Lemma 3.3 and Lemma 3.4.

Theorem 4.1. Let N be a d. g. near - ring satisfying (∗) or (∗∗).
Further, if N2 = N , then N is a commutative ring.

Proof. By Theorem 3.1, and Theorem 3.2, a d. g. near - ring
satisfying (∗) or (∗∗) is commutative. For any a, b, c ∈ N , we have
(b + c) a = a (b + c). This shows that N is distributive and by appli-
cation of Lemma 3.3, N2 is additively commutative. Further, N2 = N
yields that N is also additively commutative. Hence N is commuta-
tive.

Theorem 4.2. Let N be a d. g. near - ring with unity 1 satisfying
(∗) or (∗∗). Then N is a commutative ring.

Proof. Application of Lemma 3.4 together with Theorem 3.1 and
Theorem 3.2 and Theorem 3.2 gives the required result.

Theorem 4.3. Let N be strongly distributively generated near -
ring satisfying either (∗) or (∗∗). Then N is a commutative ring.

Proof. In view of Theorem 3.1 and Theorem 3.2, a strongly dis-
tributively generated near - ring satisfying either (∗) or (∗∗) is com-
mutative. Hence N is s. d. g. near - ring in which every element is
distributive. By application of Lemma 3.3, N2 is additively commu-
tative.

Thus the additive group N+ of the s.d.g. near - ring is also com-
mutrative and hence N is a commutative ring.
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