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Abstract
It is considered the non-linear operator
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, p > 2,

and a variational inequality associated to the operator

A(u) + g(x, u)

with g satisfying some conditions.
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We will be considering the elliptic operator:

A(u) = −
n

∑

i=1

∂
∂xi

(

∂u
∂xi

p−2 ∂u
∂xi

)

, p > 2,

and a variational inequality associated to the operator

A(u) + g(x, u)

with g satisfying some conditions, on a not necessarily bounded do-
main Ω ⊂ Rn.

We will assume that g(x, u) satisfies the following hypothesis:
(a) g(x, r) is measurable, in x, on Ω, for a fixed r ∈ R; it is

continuous in r, for each x, fixed. For each x ∈ Ω, g(x, 0) = 0 and for
all r ∈ R, x ∈ Ω, g(x, r)r ≥ 0;

(b) g(x, r) is a non-decreasing function in r, on R. For each fixed
r, gr(x) = g(x, r) is a L1(Ω)-function.

Let us remaind that, under (b), if

G(x, r) =
∫ r

0
g(x, s) ds,

G is continuous, convex, in r, for all x and r, with G(x, 0) = 0.
Moreover,

G′(x, r) = g(x, r).

In what follows we will use the notation as in [3].
Our goal is to prove the following theorem, where Ω ⊂ Rn is an

open subset and A(u) is the above described operator.

Theorem. If g(x, r) satisfies (a) and (b) and G(x, r) is its primi-
tive with respect to r then, if V is any closed subspace of W 1,p

0 (Ω) and
K ⊂ V is a closed, convex subset of V with 0 ∈ K and f ∈ V ′ then,
there is a unique u ∈ K such that g(x, u) is in L1(Ω), g(x, u)u is in
L1(Ω) and

∫

G(x, u) dx < ∞. Moreover, u, satisfies both inequalities:
(i) for each v ∈ K ∩ L∞(Ω),
(A(u) + g(x, u)− f, v − u) ≥ 0
(ii) for each v ∈ K,
∫

G(x, v) dx−
∫

G(x, u) dx + (A(u)− f, v − u) ≥ 0.



A Variational Inequality Related to an Elliptic Operator 107

Proof: We know, from [3] that for each positive, integer n, there
is a solution un , in K of the variational inequality:

(A(un) + gn(x, un)− f, v − un) ≥ 0, (v ∈ K).

Since A is coercive and 0 ∈ K,

(A(un) + gn(x, un)− f, un) ≤ 0.

Therefore,

α||un||p ≤ (A(un), un) ≤ (A(un) + gn(x, un), un) ≤ (f, un). ∗

with α ∈ R.
We will show that, if

un ⇀ u, weakly in V,

u is a solution of the problem in the theorem and that

w = A(u).

From (*), we have that
∫

Ω
gn(x, un)un dx

is uniformly bounded, for all n.
The sequence {gn(x, un)} n is equiuniformly integrable on Ω.
For each R, positive, integer,

R|gn(x, un)| ≤ un gn(x, un) + R {g(x,R) + |g(x,−R)|} , ∗∗

since g(x, · ) is non-decreasing.
Let ε > 0 and B ⊂ Ω, measurable. We have

∫

B
|gn(x, un)| dx ≤ 1

R

∫

B
un gn(x, un) dx +

∫

B
g(x,R) dx + |g(x,−R)|

and this may be taken less than ε for all n if µ(B) is sufficiently small,
as far as g( · , r) ∈ L1(Ω).
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From inequality (**), with N ⊂ Ω,

∫

N
|gn(x, un)| dx ≤ 1

R

∫

N
un gn(x, un) dx+

∫

N
(g(x,R) dx+|g(x,−R)|) dx.

Since
∫

N un gn(x, un) dx ≤ M2 , independently of n, there exists
Bε ⊂ Ω measurable with µ(Bε) < ∞, such that

∫

Ω−Bε

|gn(x, un)| dx ≤ ε, for all n ∈ N.

Moreover, since ||un|| ≤ C by the Sobolev immersion theorems, we
may obtain (un) a subsequence of (un) such that

un → u, a.e. in Ω.

Therefore
gn(x, un) → g(x, u), a.e., in Ω.

By the convergence theorem of Vitali, g(x, u) is in L1(Ω), and

gn(x, un) → g(x, u)

strongly in L1(Ω). Using Fatou’s lemma, g(x, u)u is in L1(Ω).
For each n ∈ N, let us define

Gn(x, r) =
∫ r

0
gn(x, s) ds.

For each r and s,

Gn(x, r)−Gn(x, s) = G′
n(x, ξ)(r − s) = gn(x, ξ)(r − s)
≥ gn(x, s)(r − s),r ≤ ξ ≤ s.

Let v ∈ K be arbitrary. We have:

Gn(x, v)−Gn(x, un) ≥ gn(x, un)(v − un).

Integrating over Ω, we obtain:
∫

Gn(x, v)−Gn(x, un) ≥
∫

gn(x, un)(v − un) ≥ (f − A(un), v − un).
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If v is such that
∫

G(x, v) < ∞ then

|Gn(x, v)| ≤ |G(x, v)|

what implies that
∫

Gn(x, v) →
∫

G(x, v).

We also have

Gn(x, un) → G(x, u) a.e. in Ω.

Moreover,

G(x, u(x)) =
∫ u(x)

0
g(x, s) ds ≤ g(x, u(x))u(x),

and since g(x, u)u ∈ L1(Ω),
∫

G(x, u) dx < ∞.

We obtain,
∫

G(x, v)−
∫

G(x, u) ≥ lim sup(A(un)− f, un − V ),

for each v ∈ K, such that
∫

G(x, v) dx < ∞.

Letting, v = u, we have

0 ≥ lim sup(A(un)− f, un − u) = lim sup(A(un), un − u).

Since A is pseudo-monotonic from V to V ′, w = A(u) that is,

A(un) converges weakly to A(u)

in V ′, and
(A(un), un) → (A(u), u).
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Therefore, for each v ∈ K with
∫

G(x, v) dx < ∞

we have: ∫

G(x, v)−
∫

G(x, u) ≥ (A(u)− f, u− v),

which is part our theorem.
Let now, v ∈ K ∩ L∞(Ω).
We have,

∫

gn(x, un)(v − un) ≥ (A(un)− f, un − v).

By the lemma of Fatou, we have, since v ∈ L∞(Ω) ∩K:

lim inf gn(x, un)(v−un) ≥ lim inf(A(un)−f, un−v) = (A(u)−f, u−v).

Therefore
∫

g(x, u)(v − u) ≥ (A(u)− f, u− v)

or
(A(u) + g(x, u)− f, v − u) ≥ 0

what is other part of our theorem.

Unicity
Let u1 and u2 be two solutions of our problem, for a given f ∈ V ′.
Then,

∫

G(x, v)−
∫

G(x, u1) ≥ (A(u1)− f, u1 − v)

and ∫

G(x, v)−
∫

G(x, u2) ≥ (A(u2)− f, u2 − v).

G(x, r) is convex in r. Hence if we put

v =
1
2

(u1 + u2)
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v is a permissible element, and

u1 − v =
1
2

(u1 − u2) = −(u2 − v).

Hence,
∫

G(x, v)−
∫

G(x, u1) ≥ 1
2 (Au1 − f, u1 − u2)

∫

G(x, v)−
∫

G(x, u2) ≥ 1
2 (Au2 − f, u2 − u1).

Adding the inequalities, we obtain:

1
2

(A(u1)−A(u2), u1−u2)+
∫

G(x, u1)+
∫

G(x, u2)−2
∫

G(x, v) ≤ 0.

Therefore

0 ≤ (Au1 − Au2, u1 − u2) + 2
[

2
∫ G(x,u1)+G(x,u2)

2 −G
(

x, u1+u2
2

)]

≤ 0.

G is convex and therefore the second term is zero. Hence,

(Au1 − Au2, u1 − u2) = 0

n
∑

i=1

∫

Ω





∣
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∣

∣
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∂xi
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



(
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∂xi
− ∂u2

∂xi

)

dx = 0.

The function
λ → |λ|p−2 λ

is monotone. Therefore, for each i,




∣

∣

∣

∣

∣

∂u1

∂xi

∣

∣

∣

∣

∣

p−2 ∂u1

∂xi
−

∣

∣

∣

∣

∣

∂u2

∂xi

∣

∣

∣

∣

∣

p−2 ∂u2

∂xi





(

∂u1

∂xi
− ∂u2

∂xi

)

= 0.

for almost all x ∈ Ω.
By the same reason,

∂u1

∂xi
=

∂u2

∂xi
, for each i.

But u1 − u2 = 0, on Γ, since u1 − u2 ∈ W 1,p
0 (Ω). Therefore,

u1 = u2 .
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