Proyecciones Vol. 19, N o 2, pp. 105-112, August 2000 Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-0917200000200001

A VARIATIONAL INEQUALITY RELATED TO AN ELLIPTIC OPERATOR

A. WANDERLEY

Universidade do Estado do Río de Janeiro, Brasil and N. RIBEIRO

Universidade Federal do Río de Janeiro, Brasil

Abstract

It is considered the non-linear operator

$$A(u) = -\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(\left| \frac{\partial u}{\partial x_i} \right|^{p-2} \frac{\partial u}{\partial x_i} \right), \qquad p > 2,$$

and a variational inequality associated to the operator

A(u) + g(x, u)

with g satisfying some conditions.

Key words and phrases : Non-linear operator, variational inequality, Sobolev spaces

AMS Subject Classification : Primary: 35A15; Secondary: 35B99.

We will be considering the elliptic operator:

$$A(u) = -\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(\frac{\partial u}{\partial x_i}^{p-2} \frac{\partial u}{\partial x_i} \right), \qquad p > 2,$$

and a variational inequality associated to the operator

$$A(u) + g(x, u)$$

with g satisfying some conditions, on a not necessarily bounded domain $\Omega \subset \mathbf{R}^n$.

We will assume that g(x, u) satisfies the following hypothesis:

(a) g(x,r) is measurable, in x, on Ω , for a fixed $r \in \mathbf{R}$; it is continuous in r, for each x, fixed. For each $x \in \Omega$, g(x,0) = 0 and for all $r \in \mathbf{R}$, $x \in \Omega$, $g(x,r)r \ge 0$;

(b) g(x,r) is a non-decreasing function in r, on **R**. For each fixed r, $g_r(x) = g(x,r)$ is a $L^1(\Omega)$ -function.

Let us remaind that, under (b), if

$$G(x,r) = \int_0^r g(x,s) \, ds,$$

G is continuous, convex, in r, for all x and r, with G(x, 0) = 0.

Moreover,

G'(x,r) = g(x,r).

In what follows we will use the notation as in [3].

Our goal is to prove the following theorem, where $\Omega \subset \mathbf{R}^n$ is an open subset and A(u) is the above described operator.

Theorem. If g(x, r) satisfies (a) and (b) and G(x, r) is its primitive with respect to r then, if V is any closed subspace of $W_0^{1,p}(\Omega)$ and $K \subset V$ is a closed, convex subset of V with $0 \in K$ and $f \in V'$ then, there is a unique $u \in K$ such that g(x, u) is in $L^1(\Omega)$, g(x, u)u is in $L^1(\Omega)$ and $\int G(x, u) dx < \infty$. Moreover, u, satisfies both inequalities: (i) for each $v \in K \cap L^{\infty}(\Omega)$,

 $(A(u) + g(x, u) - f, v - u) \ge 0$ $(ii) for each <math>v \in K$, $\int G(x, v) dx - \int G(x, u) dx + (A(u) - f, v - u) \ge 0.$ **Proof**: We know, from [3] that for each positive, integer n, there is a solution u_n , in K of the variational inequality:

$$(A(u_n) + g_n(x, u_n) - f, v - u_n) \ge 0, \quad (v \in K)$$

Since A is coercive and $0 \in K$,

$$(A(u_n) + g_n(x, u_n) - f, u_n) \le 0.$$

Therefore,

$$\alpha ||u_n||^p \le (A(u_n), u_n) \le (A(u_n) + g_n(x, u_n), u_n) \le (f, u_n).$$

*

with $\alpha \in \mathbf{R}$.

We will show that, if

$$u_n \rightharpoonup u$$
, weakly in V ,

u is a solution of the problem in the theorem and that

$$w = A(u).$$

From (*), we have that

$$\int_{\Omega} g_n(x, u_n) u_n \, dx$$

is uniformly bounded, for all n.

The sequence $\{g_n(x, u_n)\}$ -*n* is equiuniformly integrable on Ω .

For each R, positive, integer,

$$R|g_n(x, u_n)| \le u_n g_n(x, u_n) + R \{g(x, R) + |g(x, -R)|\}, \qquad **$$

since $g(x, \cdot)$ is non-decreasing.

Let $\varepsilon > 0$ and $B \subset \Omega$, measurable. We have

$$\int_{B} |g_{n}(x, u_{n})| \, dx \leq \frac{1}{R} \int_{B} u_{n} \, g_{n}(x, u_{n}) \, dx + \int_{B} g(x, R) \, dx + |g(x, -R)|$$

and this may be taken less than ε for all n if $\mu(B)$ is sufficiently small, as far as $g(\cdot, r) \in L^1(\Omega)$.

From inequality (**), with $N \subset \Omega$,

$$\int_{N} |g_{n}(x, u_{n})| \, dx \leq \frac{1}{R} \int_{N} u_{n} \, g_{n}(x, u_{n}) \, dx + \int_{N} (g(x, R) \, dx + |g(x, -R)|) \, dx$$

Since $\int_N u_n g_n(x, u_n) dx \leq M_2$, independently of n, there exists $B_{\varepsilon} \subset \Omega$ measurable with $\mu(B_{\varepsilon}) < \infty$, such that

$$\int_{\Omega - B_{\varepsilon}} |g_n(x, u_n)| \, dx \le \varepsilon, \quad \text{for all} \quad n \in \mathbf{N}.$$

Moreover, since $||u_n|| \leq C$ by the Sobolev immersion theorems, we may obtain (u_n) a subsequence of (u_n) such that

$$u_n \to u$$
, a.e. in Ω .

Therefore

$$g_n(x, u_n) \to g(x, u)$$
, a.e., in Ω .

By the convergence theorem of Vitali, g(x, u) is in $L^1(\Omega)$, and

$$g_n(x, u_n) \to g(x, u)$$

strongly in $L^1(\Omega)$. Using Fatou's lemma, g(x, u)u is in $L^1(\Omega)$.

For each $n \in \mathbf{N}$, let us define

$$G_n(x,r) = \int_0^r g_n(x,s) \, ds.$$

For each r and s,

$$G_n(x,r) - G_n(x,s) = G'_n(x,\xi)(r-s) = g_n(x,\xi)(r-s) \\ \ge g_n(x,s)(r-s), r \le \xi \le s.$$

Let $v \in K$ be arbitrary. We have:

$$G_n(x,v) - G_n(x,u_n) \ge g_n(x,u_n)(v-u_n).$$

Integrating over Ω , we obtain:

$$\int G_n(x,v) - G_n(x,u_n) \ge \int g_n(x,u_n)(v-u_n) \ge (f - A(u_n), v - u_n).$$

If v is such that $\int G(x,v) < \infty$ then

$$|G_n(x,v)| \le |G(x,v)|$$

what implies that

$$\int G_n(x,v) \to \int G(x,v).$$

We also have

 $G_n(x, u_n) \to G(x, u)$ a.e. in Ω .

Moreover,

$$G(x, u(x)) = \int_0^{u(x)} g(x, s) \, ds \le g(x, u(x))u(x),$$

and since $g(x, u)u \in L^1(\Omega)$,

$$\int G(x,u)\,dx < \infty.$$

We obtain,

$$\int G(x,v) - \int G(x,u) \ge \limsup(A(u_n) - f, u_n - V),$$

for each $v \in K$, such that

$$\int G(x,v)\,dx < \infty.$$

Letting, v = u, we have

 $0 \ge \limsup(A(u_n) - f, u_n - u) = \limsup(A(u_n), u_n - u).$

Since A is pseudo-monotonic from V to V', w = A(u) that is,

$$A(u_n)$$
 converges weakly to $A(u)$

in V', and

$$(A(u_n), u_n) \to (A(u), u).$$

Therefore, for each $v \in K$ with

$$\int G(x,v)\,dx < \infty$$

we have:

$$\int G(x,v) - \int G(x,u) \ge (A(u) - f, u - v),$$

which is part our theorem.

Let now, $v \in K \cap L^{\infty}(\Omega)$.

We have,

$$\int g_n(x, u_n)(v - u_n) \ge (A(u_n) - f, u_n - v).$$

By the lemma of Fatou, we have, since $v \in L^{\infty}(\Omega) \cap K$:

 $\liminf g_n(x, u_n)(v - u_n) \ge \liminf (A(u_n) - f, u_n - v) = (A(u) - f, u - v).$

Therefore

$$\int g(x,u)(v-u) \ge (A(u) - f, u - v)$$

or

$$(A(u) + g(x, u) - f, v - u) \ge 0$$

what is other part of our theorem.

Unicity

Let u_1 and u_2 be two solutions of our problem, for a given $f \in V'$. Then,

$$\int G(x,v) - \int G(x,u_1) \ge (A(u_1) - f, u_1 - v)$$

and

$$\int G(x,v) - \int G(x,u_2) \ge (A(u_2) - f, u_2 - v).$$

G(x,r) is convex in r. Hence if we put

$$v = \frac{1}{2}(u_1 + u_2)$$

v is a permissible element, and

$$u_1 - v = \frac{1}{2}(u_1 - u_2) = -(u_2 - v)$$

Hence,

$$\int G(x,v) - \int G(x,u_1) \ge \frac{1}{2} (Au_1 - f, u_1 - u_2) \\ \int G(x,v) - \int G(x,u_2) \ge \frac{1}{2} (Au_2 - f, u_2 - u_1).$$

Adding the inequalities, we obtain:

$$\frac{1}{2} \left(A(u_1) - A(u_2), u_1 - u_2 \right) + \int G(x, u_1) + \int G(x, u_2) - 2 \int G(x, v) \le 0$$

Therefore

$$0 \le (Au_1 - Au_2, u_1 - u_2) + 2 \left[2 \int \frac{G(x, u_1) + G(x, u_2)}{2} - G\left(x, \frac{u_1 + u_2}{2}\right) \right]$$

 $\le 0.$

G is convex and therefore the second term is zero. Hence,

$$(Au_1 - Au_2, u_1 - u_2) = 0$$

$$\sum_{i=1}^{n} \int_{\Omega} \left(\left| \frac{\partial u}{\partial x_{i}} \right|^{p-2} \left| \frac{\partial u_{1}}{\partial x_{i}} - \left| \frac{\partial u_{2}}{\partial x_{i}} \right|^{p-2} \left| \frac{\partial u_{2}}{\partial x_{i}} \right| \right) \left(\frac{\partial u_{1}}{\partial x_{i}} - \frac{\partial u_{2}}{\partial x_{i}} \right) dx = 0.$$

The function

$$\lambda \to |\lambda|^{p-2} \lambda$$

is monotone. Therefore, for each i,

$$\left(\left|\frac{\partial u_1}{\partial x_i}\right|^{p-2} \left.\frac{\partial u_1}{\partial x_i} - \left|\frac{\partial u_2}{\partial x_i}\right|^{p-2} \left.\frac{\partial u_2}{\partial x_i}\right) \left(\frac{\partial u_1}{\partial x_i} - \frac{\partial u_2}{\partial x_i}\right) = 0\right.$$

for almost all $x \in \Omega$.

almost all $x \in \Omega$. By the same reason, $\frac{\partial u_1}{\partial x_i} = \frac{\partial u_2}{\partial x_i}$, for each *i*. But $u_1 - u_2 = 0$, on Γ , since $u_1 - u_2 \in W_0^{1,p}(\Omega)$. Therefore,

$$u_1=u_2.$$

References

- Brézis, H., Integrales convexes dans les espaces de Sobolev, Israel J. Math., 13, pp. 9–23, (1972).
- [2] Brézis, H. and Browder, F., Strongly Nonlinear Elliptic Boundary Value Problems, Ann. Sc. Norm. Sup. di Pisa, pp. 587–598, (1978).
- [3] Lions, J.L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Ed. Dunod, Paris, (1969).
- [4] Natanson, I., Theory of Functions of a Real Variable, Ed. Frederick Ungar, N.Y., (1955).

Received : May, 1999.

A. Wanderley

Instituto de Matemática e Estatística Universidade do Estado do Río de Janeiro Rua Sâo Francisco Xavier, 524 Río de Janeiro RJ 20550 - 013 Brasil

and

N. Riberiro

Instituto de Matemática Centro de Tecnología, Bloco C Universidade Federal do Río de Janeiro Río de Janeiro RJ 21945 - 9701 Brasil