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1. Introduction

In this note we establish a result of existence of periodic solutions for
partial neutral functional differential equations with unbounded delay
that can be modelled in the form

d
dt

(x(t) + F (t, xt)) = Ax(t) + G(t, xt), t ≥ 0,(1.1)

where A is the infinitesimal generator of a strongly continuous se-
migroup of linear operators on a Banach space X and both F as G
are appropriate functions. These equations will be called abstract
neutral functional differential equations (abbreviated, ANFDE) with
unbounded delay.

We refer the reader to [6] for a brief historical review and for the ba-
sic qualitative properties of the ANFDE with unbounded delay. Next,
for completeness, we collect the notions that will be needed in sec-
tion 2.

Throughout this paper X will be a Banach space provided with
a norm ‖ · ‖ and A : D(A) ⊆ X → X will be the infinitesimal
generator of a strongly continuous semigroup of linear operators T (t)
defined on X. For the theory of strongly continuous semigroups of
linear operators we refer to Nagel [11] and Pazy [12]. We only recall
here some notions and properties that will be essential for us. In parti-
cular, it is well known that there exist constants M̃ ≥ 1 and ω ∈ IR
such that

‖T (t)‖ ≤ M̃eωt, t ≥ 0.(1.2)

Moreover, if T is an uniformly bounded and analytic semigroup with
infinitesimal generator A such that 0 ∈ ρ(A) (the resolvent set of A),
then it is possible to define the fractional power (−A)α, for 0 < α ≤
1, as a closed linear operator on its domain D((−A)α). Furthermore,
the subspace D((−A)α) is dense in X and the expression

‖x‖α := ‖(−A)αx‖, x ∈ D((−A)α),

defines a norm on D((−A)α). Hereafter we represent by Xα to the
space D((−A)α) endowed with the norm ‖ · ‖α. The following prop-
erties are well known ([12]).



Existence of Periodic Solutions of NFDE 307

Lemma 1.1 : Suppose that the preceding conditions are satisfied.
(a) Let 0 < α ≤ 1. Then Xα is a Banach space.
(b) If 0 < β < α ≤ 1 then Xα ↪→ Xβ and the imbedding is

compact whenever the resolvent operator of A is compact.
(c) For every a > 0, there exists a positive constant Ca such that

‖(−A)αT (t)‖ ≤ Ca

tα
, 0 < t ≤ a.

(d) For every a > 0, there exists a positive constant C ′
a such that

‖(T (t) − I)(−A)−α‖ ≤ C ′
a tα, 0 < t ≤ a.

To study equation (1.1) we assume that the histories xt : (−∞, 0] →
X, xt(θ) := x(t + θ), belong to some abstract phase space B, that is
a phase space defined axiomatically.

In this work we will employ an axiomatic definition of the phase
space B introduced by Hale and Kato [3]. To establish the axioms
of space B we follow the terminology used in the book [8]. Thus,
B will be a linear space of functions mapping (−∞, 0] into X
endowed with a seminorm ‖ · ‖B. We will assume that B satisfies
the following axioms:
(A) If x : (−∞, σ + a) → X, a > 0, is continuous on [σ, σ + a) and
xσ ∈ B then for every t in [σ, σ + a) the following conditions hold:
(i) xt is in B.
(ii) ‖x(t)‖ ≤ H‖xt‖B.
(iii) ‖xt‖B ≤ K(t− σ) sup{‖x(s)‖ : σ ≤ s ≤ t} + M(t− σ)‖xσ‖B.

Where H ≥ 0 is a constant; K, M : [0,∞) → [0,∞), K is
continuous and M is locally bounded and H, K and M are
independent of x(·).
(A-1) For the function x(·) in (A), xt is a B−valued continuous
function on [σ, σ + a).
(B) The space B is complete.

We will denote by B̂ the quotient Banach space B/‖ · ‖B and, if
ϕ ∈ B we write ϕ̂ for the coset determined by ϕ.

The axiom (A-1) implies that the operator functions S(·) and W (t)
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given by

[S(t)ϕ](θ) :=











ϕ(0), −t ≤ θ ≤ 0,

ϕ(t + θ), −∞ < θ < −t,

and

[W (t)ϕ](θ) :=











T (t + θ)ϕ(0), −t ≤ θ ≤ 0,

ϕ(t + θ), −∞ < θ < −t,

are strongly continuous semigroups of linear operators on B.

Example 1.1 We consider the phase space B := Cr×Lp(g; X), r ≥
0, 1 ≤ p < ∞ in [8], which consists of all classes of functions
ϕ : (−∞, 0] → X such that ϕ is continuous on [−r, 0], Lebesgue-
measurable and g ‖ϕ(·)‖p is Lebesgue integrable on (−∞,−r),
where g : (−∞,−r) → IR is a positive Borel measurable function
(see Marle [9] for concepts regarded to the integration of vector valued
functions). The seminorm in B is defined by

‖ϕ‖ := sup{‖ϕ(θ)‖ : −r ≤ θ ≤ 0} +
(∫ −r

−∞
g(θ)‖ϕ(θ)‖pdθ

)1/p

.

Throughout this work we will assume that g satisfies conditions (g-6)
and (g-7) in the terminology of [8]. This means that g is integrable on
(−∞,−r) and that there exists a nonnegative and locally bounded
function γ on (−∞, 0] such that

g(ξ + θ) ≤ γ(ξ) : g(θ),

for all ξ ≤ 0 and θ ∈ (−∞,−r) \ Nξ , where Nξ ⊆ (−∞,−r) is a
set with Lebesgue measure 0. In this case, B is a phase space which
verifies axioms (A), (A-1) and (B) ([8], Theorem 1.3.8).

In this note we will establish existence of solutions and existence
of periodic solutions of equation (1.1), assuming that T (·), F and G
satisfy certain compactness conditions. Similar results, but based on
the contraction mapping theorem have been established in [7].

Throughout this paper we always assume that B is a phase space.
The terminology and notations are those generally used in operator
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theory. In particular, if X and Y denote Banach spaces, we indicate
by L(X,Y ) the Banach space of bounded linear operators from X
into Y and we abbreviate this notation to L(X) whenever X = Y . In
addition, we denote by Br[x] the closed ball with center at x and
radius r and we reserve the bold type α to represent the Kuratowski’s
measure of non-compactness. For the properties of the measure α
see Deimling [1].

2. Existence of periodic solutions

We begin by studying existence of mild solutions of the abstract
Cauchy problem

d
dt

(x(t) + F (t, xt)) = Ax(t) + G(t, xt), t ≥ σ,(2.1)

xσ = ϕ ∈ Ω,(2.2)

where Ω is an open subset of B; F, G : [σ, a] × Ω → X are
continuous functions and 0 ≤ σ < a.

Henceforth we will assume that A is the infinitesimal generator
of an analytic semigroup T (·) of bounded linear operators on X. In
further, to avoid unnecessary notations, we suppose that 0 ∈ ρ(A)
and that the semigroup T (·) is uniformly bounded, that is to say,
‖T (t)‖ ≤ ˜M, for some constant ˜M ≥ 1 and every t ≥ 0.

Definition 2.1 : We will say that a function x : (−∞, σ + b) →
X, b > 0, is a mild solution of the Cauchy problem (2.1)-(2.2) if
xσ = ϕ; the restriction of x(·) to the interval [σ, σ + b) is conti-
nuous and for each σ ≤ t < σ + b the function AT (t − s)F (s, xs),
s ∈ [σ, t), is integrable and the integral equation

x(t) = T (t− σ)[ϕ(0) + F (σ, ϕ)]− F (T, xt)−
∫ t

σ
AT (t− s) F (s, xs) ds

+
∫ t

σ
T (t− s) G (s, xs) ds, σ ≤ t,(2.3)
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is verified.
Next we introduce some additional notations. For each pair of

positive constants δ, r we define the set
C(σ, δ, r) := {u ∈ C([σ, σ + δ]; X) : u(σ) = 0, ‖u(t)‖ ≤ r, σ ≤ t ≤
σ + δ}.

It is easy to see that C(σ, δ, r) is a non-empty bounded, closed and
convex subset of C([σ, σ + δ]; X), whenever this space is provided
with the sup norm. Furthermore, for ϕ ∈ B we will represent by
S(ϕ, σ, δ, r) the set formed by the functions x : (−∞, σ + δ] → X such
that xσ = ϕ, xt ∈ Ω, σ ≤ t ≤ σ+δ, x(·) is continuous on [σ, σ+δ] and
supσ≤s≤σ+δ ‖x(s)− T (s− σ)ϕ(0)‖ ≤ r. It is clear that if δ1 ≤ δ and
r1 ≤ r then we may consider S(ϕ, σ, δ1, r1) ⊆ S(ϕ, σ, δ, r). In the case
σ = 0 we shall abbreviate these notations by C(δ, r) and S(ϕ, δ, r),
respectively. To relate these notations, we set y(·, ϕ) : (−∞,∞) → X
for the function defined by

y(t, ϕ) :=
{

ϕ(t− σ), −∞ < t < σ,
T (t− σ)ϕ(0), t ≥ σ,

and u(t) = x(t) − y(t, ϕ) for x ∈ S(ϕ, σ, δ, r) and t ≤ σ + δ. Since
u(t) = 0 for all t ≤ σ and ‖u(t)‖ ≤ r for σ ≤ t ≤ σ + δ we may
consider u ∈ C(σ, δ, r). Moreover, in this case, xt = ut + W (t − σ)ϕ
for σ ≤ t ≤ σ + δ. Conversely, for each u ∈ C(σ, δ, r) we denote
by ũ the extension of u defined by ũ(θ) = 0, for θ ≤ σ, and
ũ(t) := u(t), for σ ≤ t ≤ r.

Initially we establish a result of existence of local solutions.

Theorem 2.1 : Let ϕ ∈ Ω and assume that the following condi-
tions hold:

1. (a-1) There exists β ∈ (0, 1) such that the function F is Xβ-
valued and (−A)βF is continuous .

(a-2) There are positive constants δ0 and r0 such that the map
˜F : C(σ, δ0, r0) → C([σ, σ + δ0]; X) given by ˜F (u)(t) := F (t, ũt +
W (t− σ)ϕ) is completely continuous .

(b-1) There exist constants 0 < b(ϕ) < a − σ and r(ϕ) > 0
such that Br(ϕ)[ϕ] ⊆ Ω and, for each 0 < t ≤ b(ϕ), there is
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a compact set Ut ⊆ X such that T (t)G(s, ψ) ∈ Ut, for all
ψ ∈ Br(ϕ)[ϕ] and every σ ≤ s ≤ σ + b(ϕ); then there exists a
mild solution x(·, ϕ) of Cauchy problem (2.1)-(2.2) defined on
(−∞, σ + b), for some b > 0.

Proof. To simplify the notations we consider σ = 0. In view of
(−A)βF and G are continuous functions and Ω is open in B
we can assert that there exists 0 < r′ < r(ϕ) such that
Br′ [ϕ] ⊆ Ω; ‖(−A)βF (t, ψ))‖ ≤ C1 and ‖G(t, ψ)‖ ≤ C2, for certain
constants C1, C2 ≥ 0 and every 0 ≤ t ≤ b(ϕ) and ψ ∈ Br′ [ϕ].
Since W (·)ϕ is continuous , we can choose δ′ > 0 such that

‖W (t)ϕ− ϕ‖B ≤
r′

2
(2.4)

for all 0 ≤ t ≤ δ′. We set ˜K := max0≤t≤δ′ K(t) and r :=
min{r0, r′/(2˜K)}.

Since hypothesis (a-2) implies that the set of functions {F (t, xt) :
x ∈ S(ϕ, δ′, r)} is relatively compact then limt→0 F (t, xt) = F (0, ϕ),
uniformly on x ∈ S(ϕ, δ′, r). From this we derive that having fixed
ε > 0 small enough there exists 0 < δ ≤ min{δ′, δ0, b(ϕ)} for which
the following hold:

‖(T (t)− I) F (0, ϕ)‖ ≤ ε,(2.5)

‖F (0, ϕ)− F (t, x1)‖ ≤ ε,(2.6)

and
˜MC2δ + 2ε +

C1Ca

β
δβ ≤ r(2.7)

for all 0 ≤ t ≤ δ, and x(·) ∈ S(ϕ, δ, r), where Ca denotes the
constant introduced in Lemma 1.1(c).

If x(·) satisfies the equation (2.3), we can decompose it as
x(t) = u(t)+y(t, ϕ), t ≤ δ, such as was indicated in the observations
preceding the statement of this theorem. It is clear that the function
u(·) verifies the equation

u(t) = T (t)F (0, ϕ)− F (t, ut + yt)−
∫ t
0 AT (t− s)F (s, us + ys) ds +

∫ t
0 T (t− s) G (s, us + ys) ds,

0 ≤ t ≤ δ,
(2.8)
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where we have abbreviated the notations by using y(·) instead of
y(·, ϕ). This expression leads us to define the maps T , T1, and
T2 on C(δ, r) by means of

(τ1u)(t) = −
∫ t

0
AT (t− s)F (s, ũs + ys) ds,(2.9)

(τ2u)(t) = T (t)F (0, ϕ) − F (t, ũt + yt)+
∫ t
0 T (t− s)G(s, ũs + ys) ds

(2.10)

for 0 ≤ t ≤ δ and T := T1 + T2.
In what follows we will show that T1 and T2 are completely

continuous maps with values in C([0, δ]; X) and that T has compact
range included in C(δ, r).

To prove these assertions, we observe initially that if u(·) ∈
C(δ, r) then ũt + W (t)ϕ ∈ Br′ [ϕ], for all 0 ≤ t ≤ δ. In fact,
axiom (A) of the phase space and (2.4) yield that

‖ũt + W (t)ϕ− ϕ‖B ≤ ‖ũt‖+ ‖W (t)ϕ− ϕ‖B

≤ ˜Kr + r′
2

≤ r′.

Now, since G is a continuous function it is clear that T2 is well
defined on C(δ, r) and that (T2u)(·) is also a continuous func-
tion . On the other hand, since F is Xβ-valued and (−A)βF
is continuous then both (−A)βF (s, ũs + ys) as F (s, ũs + ys) are
continuous . In addition, in view of T (·) is an analytic semigroup
( see [12]), the operator function s → AT (t− s) is continuous in the
uniform operator topology on [0, t) and thus AT (t− s)F (s, ũs +ys)
is also continuous on [0, t). Applying the estimations established in
Lemma 1.1 we obtain that
‖(−A)T (t− s)F (s, ũs + ys)‖ = ‖(−A)1−β T (t− s)(−A)βF (s, ũs + ys)‖

≤ Cte.
(t−s)1−β

which, by the Bochner’s Theorem ([9]), implies that ‖AT (t−s) F (s, ũs+
ys)‖ is integrable on [0, t). This concludes the proof that T1 is a
well defined map with values in C([0, δ]; X).
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Next we estimate ‖T u(t)‖ for 0 ≤ t ≤ δ. Since

‖(T u)(t)‖ ≤ ‖(T (t)− I)F (0, ϕ)‖ + ‖F (0, ϕ)− F (t, ũt + yt)‖

+ ‖
∫ t
0(−A)1−β T (t− s)(−A)βF (s, ũs + ys) ds‖

+ ‖
∫ t
0 T (t− s)G(s, ũs + ys) ds‖

and we can consider u ∈ C(δ0, r), it is follows from (2.5), (2.6) and
(2.7) that

‖(T u)(t)‖ ≤ 2ε + CaC1
β δβ + ˜MC2 δ

≤ r

which shows that T (u) ∈ C(δ, r).
Next we will prove that the range of T1 is relatively compact. By

Ascoli’s theorem it is sufficient to show that the set R(T1) is equicon-
tinuous on [0, δ] and R(T1)(t) is relatively compact in X for each
0 ≤ t ≤ δ. We begin by showing this last assertion. Clearly, we may
suppose that t > 0. Let 0 < η < t. Then

T1(u)(t) := −
∫ t−η
0 AT (η)T (t− η − s)F (s, ũs + ys) ds

+
∫ t
t−η(−A)1−βT (t− s)(−A)βF (s, ũs + ys) ds.

From (a-2) we obtain that F (s, ũs + ys), 0 ≤ s ≤ δ, is included in a
compact set and since (−A)T (η) is a bounded operator, by the mean
value theorem for the Bochner integral ([9]) we infer that the first term
of the right hand side is also included in a compact set. Furthermore,
since

‖
∫ t

t−η
(−A)1−βT (t− s)(−A)βF (s, ũs + ys) ds‖ ≤

∫ t

t−η

CaC1

(t− s)1−β ds

converges to 0, as η → 0, we conclude that R(T1)(t) is relatively
compact.

To prove the equicontinuity of R(T1) at t0 we take 0 ≤ t0 < t < δ.
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From the definition of T1 it follows that

T1(u)(t)− T1(u)(t0) = −
∫ t0
0 A[T (t− s)− T (t0 − s)]F (s, ũs + ys) ds

−
∫ t
t0 AT (t− s)F (s, ũs + ys) ds

= (T (t− t0)− I) T1(u)(t0)

+
∫ t
t0(−A)1−βT (t− s)(−A)βF (s, ũs + ys) ds.

From this expression and using both the compactness of R(T1)(t0) as
the equi-integrability of functions (−A)1−βT (t−s)(−A)βF (s, ũs+ys),
for u ∈ C(δ, r), we obtain thatR(T1) is equicontinuous from the right
at t0. Proceeding similarly we can prove that R(T1) is equicontinuous
at any t0 ≥ 0.

On the other hand, using hypotheses (a-2) and (b-1), and repeating
the argument (see also [4]) we can show that R(T2) is relatively com-
pact in C([0, δ]; X).

Finally, applying the Schauder’s fixed point theorem we conclude
the existence of a fixed point u(·) ∈ C(δ, r) of T . If we define
x(t) = ũ(t) + y(t), −∞ < t ≤ δ, it is easy to see from the definition
of T that x(·) is a mild solution of problem (2.1)-(2.2), which
completes the proof of the theorem.

Proceeding as above we can also establish a result of existence of
global solutions.

Corollary 2.1 : Suppose that F and G are defined on [0,∞)×B
and that the hypotheses of Theorem 2.1 are verified for all σ ≥ 0.
Assume further that F also satisfies the following condition :
(a-3) For every δ > 0 and all function x : (−∞, δ) → X such that
x0 ∈ B and x is continuous and bounded on [0, δ), the function t →
F (t, xt) is uniformly continuous on [0, δ).

If x(·, ϕ) : (−∞, b), b > 0, is a noncontinuable solution of (2.1-
2.2), with σ = 0, which is bounded on [0, b) then b = ∞.
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Proof. If we suppose that b < ∞, it follows from (a-3) that there
exists limt→b− x(t, ϕ). Hence we obtain that the extension of x(·, ϕ)
to (−∞, b] defined by x(b) := limt→b− x(t, ϕ) is continuous on [0, b].
Setting ψ := xb the problem (2.1) with initial condition ψ at σ = b has
a local solution x(·, ψ) defined on (−∞, b+δ) for some δ > 0. It is easy
to see from (2.3) that x(·, ψ) is also a solution of the problem (2.1)
with initial condition x0 = ϕ, which is contrary to our hypothesis.

In connection with these results it should be noted that if
(−A)βF (t, ϕ) and G(t, ϕ) satisfy further certain local Lipschitz or
yet Hölder conditions on ϕ then the mild solution of (2.1)-(2.2) is
unique. Next, for completeness, we state a pair of results of this type.
For the sake of brevity we omit their proofs.

Lemma 2.1 : Assume that for each ϕ ∈ Ω and each σ ≥ 0
there exist positive constants r, δ, C1 and C2 such that the following
conditions hold:
(i) ‖(−A)βF (t, ψ1)− (−A)βF (t, ψ2)‖ ≤ C1‖ψ1 − ψ2‖B;
(ii) ‖G(t, ψ1)−G(t, ψ2)‖ ≤ C2‖ψ1 − ψ2‖B;
(iii) C1K(0)‖(−A)−β‖ < 1,
for σ ≤ t ≤ σ + δ and all ψ1, ψ2 ∈ Br[ϕ]. Then the mild solution of
problem (2.1)-(2.2) is unique.

Lemma 2.2 : Assume that for each ϕ ∈ Ω and each σ ≥ 0
there exist constants C, δ > 0, 0 < ν < 1 and continuous functions
k1, k2 : [0,∞) → [0,∞) such that the following conditions hold:
(i) ‖(−A)βF (t, x1

t ) − (−A)βF (t, x2
t )‖ ≤ k1(t − σ) supσ≤s≤t ‖x1(s) −

x2(s)‖ν ;
(ii) ‖G(t, x1

t )−G(t, x2
t )‖ ≤ k2(t− σ) supσ≤s≤t ‖x1(s)− x2(s)‖ν ;

(iii) ki(t) ≤ Ct, i = 1, 2,
for σ ≤ t ≤ σ + δ and all pair of functions x1, x2 : (−∞, σ + δ] → X
which are continuous on [σ, σ + δ] and x1

0 = x2
0 ∈ B. Then the mild

solution of problem (2.1)-(2.2) is unique.
In the sequel we assume that the functions F, G and the semi-

group T (·) satisfy appropriate conditions to assure existence and unique-
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ness of mild solutions of equation

d
dt

(x(t) + F (t, xt)) = Ax(t) + G(t, xt), t ≥ 0,(2.11)

with initial condition
x0 = ϕ ∈ Ω.(2.12)

In these conditions we refer to (2.11) as an ANFDE(F,G) system.
Furthermore, we will say that the ANFDE(F,G) system is ω-periodic
if F (t, ϕ) and G(t, ϕ) are ω-periodic at t. In the rest of this section
we use ω to represent a fixed strictly positive constant.

Definition 2.2 : We will say that a function x : IR → X is
an ω-periodic solution of equation (2.11) if x(·) is a mild solution of
(2.11) with initial condition x0 ∈ Ω and x(t + ω) = x(t), for all
t ≥ 0.

It is clear that if x : IR → X is a function such that x0 = ϕ ∈ B,
the restriction of x(·) on [0, ω) is continuous and xω = ϕ then
ϕ is ω-periodic on (−∞, 0]. In addition, if the ANFDE(F,G) system
is ω-periodic and x(·, ϕ) is a mild solution of (2.11)-(2.12) then the
condition xω = ϕ is sufficient to guarantee that x(·, ϕ) is an ω-
periodic solution of (2.11). Since this is the essential property in order
to obtain existence of periodic solutions we shall state it formally.

Proposition 2.1 : Assume that the ANFDE(F,G) system is ω-
periodic and that the mild solution of (2.11) with initial condition
x0 = ϕ is defined on IR. If xω(·, ϕ) = ϕ then x(·) is an ω-periodic
solution.

Let E be a non empty closed subset of Ω such that the mild
solution x(·, ϕ) of (2.11)-(2.12) is unique and defined on [0, ω], for
each ϕ ∈ E. In this case we represent by Pω the map E → B, ϕ →
xω(·, ϕ).

If the ANFDE(F,G) system is ω-periodic, it is clear from the
previous Proposition that a sufficient condition for the existence of a
periodic solution of (2.11) is the existence of a fixed point for the map
Pω. In order to establish the existence of a fixed point of Pω we will
apply the Sadovskii’s Theorem. Nevertheless, an essential condition



Existence of Periodic Solutions of NFDE 317

needed to apply this result is that the domain of the respective map
it will be bounded, closed and convex. For this reason we introduce
the following assumption.

Assumption (F,G): There exists a bounded, closed and convex
set E ⊆ Ω such that for each ϕ ∈ E the Cauchy problem (2.11)-
(2.12) has a unique mild solution x(·, ϕ) defined on (−∞, ω], the
closure of the set {xs(·, ψ) : 0 ≤ s ≤ ω , ψ ∈ E} is bounded and
included in Ω and Pω(E) ⊆ E.

Later we will exhibit a class of ANFDE(F,G) systems for which
this assumption is valid. Since one of the hypotheses of the Sadovkii’s
theorem is the continuity of the respective map, our next result estab-
lish a criteria to assure the continuity of Pω.

Theorem 2.2 : Suppose that assumption (F,G) holds. If we
assume further that:

(a-4) There exists β ∈ (0, 1) such that F is Xβ-valued and the func-
tion (−A)βF is continuous and takes closed and bounded sets into
bounded sets.

(a-5) For every r > 0 and each ϕ ∈ E the map ˜Fϕ : C(ω, r) →
C([0, ω]; X) given by ˜Fϕ(u)(t) := F (t, ũt + W (t)ϕ) is completely con-
tinuous .

(b-2) The map G takes closed and bounded sets into bounded sets
and for each closed and bounded set B ⊆ Ω and each t > 0 there
exists a compact subset Wt of X such that T (t)G(s, ψ) ∈ Wt, for
all ψ ∈ B and every 0 ≤ s ≤ ω;

then the map Pω : E → B, ϕ → xω(·, ϕ) is continuous.

Proof. We begin by showing that for each relatively compact subset
B of B the set ∪ϕ∈BR( ˜Fϕ) is relatively compact in C([0, ω]; X). In
fact, from the continuity of F and the compactness of the interval
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[0, ω] we obtain that for each ε > 0 and each ϕ ∈ Ω there exists δ′ > 0
such that

sup
0≤t≤ω

‖F (t, ϕ)− F (t, ψ)‖ ≤ ε,

for all ψ ∈ Ω such that 0 ≤ ‖ϕ− ψ‖B ≤ δ′. Since for u ∈ C(ω, r), we
have

‖ũt + W (t)ϕ− ũt −W (t)ψ‖B = ‖W (t)(ϕ− ψ)‖B
≤ C1 ‖ϕ− ψ‖B

for all 0 ≤ t ≤ ω and certain constant C1 > 0, it follows that there is
δ(ϕ) > 0 such that

sup
0≤t≤ω

‖F (ũt + W (t)ϕ)− F (ũt + W (t)ψ)‖B ≤ ε

for ‖ϕ− ψ‖B ≤ δ(ϕ). Hence we can write

‖ ˜Fϕ(u)− ˜Fψ(u)‖ ≤ ε,

for all u ∈ C(ω, r) and ‖ϕ−ψ‖B ≤ δ(ϕ). In view of the fact that B is
relatively compact , we can assert the existence of ϕ1, ϕ2, · · · , ϕn such
that B ⊆ ∪n

i=1Bδ(ϕi)[ϕi]. From this we obtain that

∪ϕ∈BR( ˜Fϕ) ⊆ ∪n
i=1 ∪u∈C(ω,r) Bε[ ˜Fϕi ]

= ∪n
i=1R( ˜Fϕi) + Bε[0].

Applying (a-5) we infer that the first set on the right hand side of the
above inclusion is relatively compact . Since ε was chosen arbitrarily
this proves our asertion.

Let now (ϕn)n be a sequence in E which converges to ϕ. We are
going to prove that Pωϕn converges to Pωϕ. Let xn := x(·, ϕn). First
we will show that the set {xn : n ∈ IN} is relatively compact in
C([0, ω]; X). In fact, since xn(t) = zn(t)− F (t, xn

t ), where

zn(t) := T (t)[ϕn(0) + F (0, ϕn)] −
∫ t
0 AT (t− s)F (s, xn

s ) ds
+

∫ t
0 T (t− s)G(s, xn

s ) ds, 0 ≤ t ≤ ω,

and by the Assumption (F, G) the set {xn
t : 0 ≤ t ≤ ω, n ∈ IN} is

bounded, we may proceed as in the proof of Theorem 2.1 to show that
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{zn(·) : n ∈ IN} is relatively compact in C([0, ω]; X). Furthermore,
turning to use the boundedness of the set {xn

t : 0 ≤ t ≤ ω, n ∈ IN}
we obtain that there is r > 0 for which

{F (t, xn
t ) : n ∈ IN} ⊆ ∪n∈INR( ˜Fϕn)

which implies the set {F (t, xn
t ) : n ∈ IN} is relatively compact in

C([0, ω]; X). This completes the proof of this asertion.
Thus we can find a subsequence of xn(·), denoted with the same

index, which converges to u ∈ C([0, ω]; X). We define the function
ũ on (−∞, ω] by ũ(θ) := ϕ(θ), for θ ≤ 0, and ũ(θ) := u(t), for
0 ≤ t ≤ ω. It is follows from the axioms of phase space that xn

t → ũt,
as n →∞, and the Lebesgue’s dominated convergence theorem implies
that

u(t) = T (t)[ϕ(0) + F (0, ϕ)] − F (t, ũt) −
∫ t
0 AT (t− s)F (s, ũs) ds

+
∫ t
0 T (t− s)G(s, ũs) ds, 0 ≤ t ≤ ω.

Therefore, ũ(·) is the mild solution of (2.11)-(2.12) and Pω(ϕ) = ũω =
limn→∞ xn

ω = limn→∞ Pω(ϕn). In view of the fact that this conclusion
remains valid whenever we replace (ϕn)n by any of its subsequences
we infer that Pω is continuous .

We are now in conditions to establish the main result of this sec-
tion.

Theorem 2.3 : Assume that (a-4) and (a-5) are satisfied. If
further the following conditions are fulfilled:
(a) The ANFDE(F,G) system is ω-periodic and the assumption (F,
G) holds.
(b) The semigroup T (·) is compact.
(c) The function G : [0,∞)×Ω → X takes bounded and closed sets
into bounded sets.
(d) There exists σ ∈ (0, ω) such that

M(ω − σ)
[

K(σ) sup
0≤s≤σ

‖T (s)‖H + M(σ)
]

< 1.

Then the equation (2.11) has an ω-periodic solution.
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Proof. Since T (·) is a compact semigroup and G(·) takes bounded
and closed sets into bounded sets, it follows from Theorem 2.2 that
the map Pω ( in short, P ) : E → E, ϕ → xω(·, ϕ) is continuous .
Consequently, there exists an induced map P̂ : Ê → Ê which satisfies
the condition P̂ (ϕ̂) = ̂P (ϕ), for every ϕ̂ ∈ Ê and every ϕ ∈ ϕ̂. Our
objective is to show that P̂ is a condensing map. Since for each subset
C of Ê there is D ⊆ E such that C = D̂ and α(C) = α(D),
we restrict our attention to estimate the value α(P̂ (D̂)), for each
D ⊆ E with α(D) > 0.

It will be convenient for our purpose to introduce some notations.
Let 0 ≤ σ1 ≤ σ2 ≤ ω. We define the following sets of functions
defined on [σ1, σ2]:

D[σ1, σ2] := {x(·, ϕ) |[σ1,σ2] : ϕ ∈ D}

D1[σ1, σ2] := {T (·)ϕ(0) |[σ1,σ2] : ϕ ∈ D}

D2[σ1, σ2] := {z(·, ϕ) |[σ1,σ2] : z(t, ϕ) = x(t, ϕ)− T (t)ϕ(0), ϕ ∈ D}.

It is clear that D[σ1, σ2] and Di[σ1, σ2], i = 1, 2, are subsets of
C([σ1, σ2]; X). Furthermore,

D[σ1, σ2] ⊆ D1[σ1, σ2] + D2[σ1, σ2].(2.13)

On the other hand, for 0 ≤ σ ≤ ω we set Dσ := {xσ(·, ϕ) : ϕ ∈ D}.
Proceeding as in the proof of Theorem 2.2 we obtain that D2[σ1, σ2]

is a relatively compact subset of C([σ1, σ2]; X) so that

α(D[σ1, σ2]) ≤ α(D1[σ1, σ2]).

Furthermore, since the semigroup T is compact , α(D1[σ1, σ2]) = 0,
for σ1 > 0 and

α(D1[0, σ]) ≤ sup
0≤s≤σ

‖T (s)‖H α(D).

On the other hand, combining the previous estimations with the The-



Existence of Periodic Solutions of NFDE 321

orem 2.1 in [14] we obtain that

α(P̂ (D̂)) ≤ K(ω − σ) α(D[σ, ω]) + M(ω − σ) α(D̂σ)

≤ M(ω − σ) [K(σ) α(D[0, σ]) + M(σ) α(D)]

≤ M(ω − σ)
[

K(σ)H sup0≤s≤σ ‖T (s)‖ + M(σ)
]

α(D),

for each 0 < σ ≤ ω which, by condition (d), implies that P̂ is a
condensing map. Finally, by the Sadovskii’s fixed point theorem ([13]),
we infer that P has a fixed point in E and, based in our previous
discussion, we can assert that there exists an ω-periodic solution of
(2.11).

In practical applications the property K(·) bounded and M(t) con-
vergent towards zero when t goes to infinity is frequently encountered
(see [8]). For this reason, next we present a pair of consequences of
Theorem 2.3 in the context of phase spaces verifying such property.
In this case, and without any danger of confussion, we will employ the
same symbol K to denote supt≥0 K(t). First we present a class of
systems which satisfy the Assumption (F,G).

Proposition 2.2 : Assume that the functions F, G : [0,∞) ×
B → X satisfy conditions (a-3), (a-4), (a-5) and (b-2). Suppose,
furthermore, that the following conditions hold:
(i) The function K(·) is bounded and M(t) → 0 as t →∞;
(ii) There is µ > 0 such that ‖T (t)‖ ≤ ˜Me−µt, for t ≥ 0;
(iii) There exist positive constants N1, N2, N3 and N4 such that

‖(−A)βF (t, ϕ)‖ ≤ N1‖ϕ‖B + N2,(2.14)

and
‖G(t, ϕ)‖ ≤ N3‖ϕ‖B + N4(2.15)

then for N1 and N3
µ small enough and for every ϕ ∈ B the mild

solution x(·, ϕ) is defined and bounded on IR and the Assumption (F,
G) is fulfilled.

Proof. Let x = x(·, ϕ) be the mild solution of (2.1-2.2) corre-
sponding to σ = 0. From Theorem 2.1 we obtain that x is defined
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on (−∞, b), for some b > 0. Applying (2.3) we infer the existence of
positive constants C1 and C2 which are independent of ϕ such that

‖xt‖B ≤ K
(

C1e−µt‖ϕ‖B + C2

)

+ M(t)‖ϕ‖B,

for 0 ≤ t < b. This estimation and Theorem 2.2 show that x is defined
and bounded on IR. Furthermore, it is clear from this estimation that
if we choose R > C2K and ω large enough then ‖xω‖B ≤ R for all
ϕ ∈ B such that ‖ϕ‖B ≤ R. Thus, the Assumption (F,G) is verified
with E = BR[0].

Corollary 2.2 : Assume that F, G and T satisfy the conditions
(a-3), (a-4) and (a-5) and conditions (a), (b), (c) considered in of
Theorem 2.3. If further K(·) is a bounded function and M(t) → 0,
as t →∞, then (2.11) has an mω-periodic solution for some m ∈ IN .

Proof. We apply Theorem 2.3 on an interval [0,mω]. It is clear
that for m large enough, by taking σ := mω/2, the condition (d) of
the already mentioned result is fulfilled.

We complete this work applying our results to the study of exis-
tence of periodic solutions of a concrete equation. Initially, we present
some general examples.

Example 2.1 : If the function F satisfies the following condition:
(a-6) There are bounded functions L1, L2 : [0, ω] → [0,∞) with
L1(h), L2(h) → 0, as h → 0, and a locally bounded function f :
[0,∞) → [0,∞) such that

‖F (t, xt)− F (s, xs)‖ ≤ L1(t− s)f(‖xs‖B) + L2(t− s) sup{f(‖x(ξ)‖)
: s ≤ ξ ≤ t},

for 0 ≤ s ≤ t < b and for every function x : (−∞, b) → X which is
continuous on [0, b) and xt ∈ Ω, for 0 ≤ t < b,
then F satisfies condition (a-3). If, in further, F (t, ·) is completely
continuous for each 0 ≤ t ≤ ω, then F also verifies (a-5).

Working in concrete phase spaces it is not difficult to present
examples of ANFDE(F, G) systems which verify the conditions con-
sidered in the previous results.
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Next we study a linear operator in the space B := Cr×Lp(g; X),
with r = 0, defined in the Example 1.1.

Example 2.2. Let B = Cr ×Lp(g; X), with r = 0 and p > 1, be
the space defined in Example 1.1. We set

Λ(t, ϕ) :=
∫ 0

−∞
C(t, θ)ϕ(θ) dθ,

where C(t, θ) ∈ L(X) is a strongly measurable map defined on [0,∞)×
(−∞, 0] which satisfies the following conditions:
(i) For each t, θ, C(t, θ) is a compact linear operator and this property
is verified locally uniformly at θ. This means that for every s > 0 the
set {C(t, θ)x : ‖x‖ ≤ 1, −s ≤ θ ≤ 0} is relatively compact in X;
(ii) For each t ≥ 0, the function ‖C(t,θ)‖

g(θ)1/p is q-integrable on (−∞, 0] and

(ii-1) sup0≤t≤b
∫ 0
−∞

‖C(t,θ)‖q

g(θ)q−1 dθ < ∞;

(ii-2) L1(h) := sup0≤t≤ω

(

∫ 0
−∞ ‖

C(t+h,θ−h)
g(θ)1/p − C(t,θ)

g(θ)1/p‖q dθ
)1/q

→ 0, h → 0+,

for every b > 0. where q denotes the conjugate exponent of p.
Then Λ satisfies conditions (a-3) and (a-5). In fact, condition (ii-1)

implies that Λ is well defined and Λ(t, ·) is a bounded linear map from
B into X. Moreover, Λ(t, ·) is a compact operator . In fact, setting,
for each s > 0,

Λs(t, ϕ) =
∫ 0

−s
C(t, θ)ϕ(θ) dθ

the same argument already used shows that Λs(t, ·) is a bounded linear
operator from B into X and Theorem 1 in [5] implies that Λs(t, ·) is
compact . Since Λs(t, ·) converges uniformly to Λ(t, ·) as s → ∞ it
follows that Λ(t, ·) is compact .

On the other hand, if x(·) ∈ S(ϕ, b, r), then it is clear that

‖Λ(t, xt)− Λ(s, xs)‖ ≤
∫ 0
−∞ ‖C(s + h, θ − h)− C(s, θ)‖ ‖x(s + θ)‖ dθ

+
∫ 0
−h ‖C(s + h, θ)‖ ‖x(s + h + θ)‖ dθ

≤ L1(h)‖xs‖B + L2(h) sups≤ξ≤t ‖x(ξ)‖
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where we have denoted

L2(h) := sup
0≤t≤b

(

∫ 0

−h
‖C(t, θ)
g(θ)1/p‖

q dθ
)1/q (∫ 0

−h
g(θ) dθ

)1/p

and h := t − s Thus, (ii-2) and the integrability of g show that con-
dition (a-6) is verified so that the assertion is consequence of previous
example.

Related with this example and Proposition 2.2 it is worth to point
out that if g satisfies (g-6) and (g-7) in the terminolgy of [8] and
γ(−t) → 0, as t →∞, then K(·) is a bounded function and M(t) → 0
as t → ∞ ([8], Theorem 1.3.7 and Example 7.1.8). In the example
that follows we suppose g verifies these conditions as well as that ln g
is uniformly continuous .

Example 2.3 We conclude this section with an application of our
results to discuss the existence of periodic solutions of the boundary
value problem

∂
∂t [u(t, ξ) +

∫ t
−∞

∫ π
0 b(s− t, η, ξ)q(u(s, η)) dη ds] = ∂2

∂ξ2 u(t, ξ)+
a0(ξ)u(t, ξ) +

∫ t
−∞ a(s− t)u(s, ξ) ds + a1(t, ξ),

t ≥ 0, 0 ≤ ξ ≤ π,
(2.16)

u(t, 0) = u(t, π) = 0, t ≥ 0,(2.17)

u(θ, ξ) = φ(θ, ξ), θ ≤ 0, 0 ≤ ξ ≤ π,(2.18)

where the functions a0, a, a1, b, q and φ satisfy appropriate con-
ditions. To represent this problem as the Cauchy problem (2.1)-(2.2)
we shall take X := L2([0, π]) and define x(t) := u(t, ·). The operator
A is given by

Af(ξ) := f ′′(ξ)

with domain

D(A) := {f(·) ∈ L2([0, π]) : f ′′(·) ∈ L2([0, π]), f(0) = f(π) = 0}.
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It is well known that A generates a strongly continuous semigroup
T (·) which is compact, analytic, self-adjoint and uniformly sta-
ble. Specifically, ‖T (t)‖ ≤ e−t, t ≥ 0. Furthermore, A has discrete
spectrum, the eigenvalues are −n2, n ∈ IN, with corresponding nor-

malized eigenvectors zn(ξ) :=
(

2
π

)1/2
sin(nξ). The operator (−A)1/2

is defined by

(−A)1/2f =
∞
∑

n=1
n < f, zn > zn

on the space D((−A)1/2) = {f(·) ∈ X :
∑∞

n=1 n < f, zn > zn ∈ X}.
Let B denote the space Cr × L2(g; X), with r = 0, defined in

Example 1.1. In this case (see [8]) H = 1; K(t) = 1 +
(

∫ 0
−t g(θ) dθ

)1/2

and M(t) = γ(−t)1/2 for all t ≥ 0. It is clear that B is isomorphic
and isometric to the space X × L2

µ((−∞, 0]× [0, π]) where µ is the
measure µ(θ, ξ) = g(θ) dθ dξ. Next we assume that the following
conditions hold:
(i) The function b(·) is measurable and

(i-1) For each r > 0, sup−r≤θ≤0
∫ π
0

∫ π
0 b2(θ, η, ξ) dη dξ < ∞;

(i-2) For each r > 0, limh→0
∫ π
0

∫ π
0 |b(θ, η, ξ + h)−

b(θ, η, ξ)|2 dη dξ = 0 uniformly on θ ∈ [−r, 0];
(i-3)

∫ π
0

∫ 0
−∞

∫ π
0

b2(θ, η, ξ)
g(θ) dη dθ dξ < ∞.

(ii) The function ∂
∂ζ b(θ, η, ζ) is measurable; b(θ, η, π) = 0;

b(θ, η, 0) = 0 and

N :=
∫ π

0

∫ 0

−∞

∫ π

0

1
g(θ)

(

∂
∂ζ

b(θ, η, ζ)
)2

dη dθ dζ < ∞.

(iii) The function a0(·) ∈ L∞([0, π]); a(·) is measurable with
∫ 0
−∞

a2(θ)
g(θ) dθ < ∞ and a1(t, ·) ∈ L2([0, π]) for each t ≥ 0 and the

function t → a1(t, ·) is continuous.
(iv) The function q : IR → IR is Lipschitz or Hölder continuous and
|q(ξ)| ≤ C1|ξ|+ C2 for some constants C1, C2 ≥ 0.
(v) The function ϕ defined by ϕ(θ)(ξ) := φ(θ, ξ) belongs to B.

Under these conditions we define F, G : [0,∞) × B → X by
F (t, ϕ) := Λ1 ◦Q(ϕ) and G(t, ϕ) := Λ2(ϕ) + h(t), where
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Q(ϕ)(θ, ξ) := q(ϕ(θ, ξ)),(2.19)

Λ1(ϕ)(ξ) =
∫ 0

− ∞

∫ π

0
b(θ, η, ξ)ϕ(θ, η) dη dθ,(2.20)

Λ2(ϕ)(ξ) := a0(ξ)ϕ(0, ξ) +
∫ 0

− ∞
a(θ)ϕ(θ, ξ) dθ,(2.21)

h(t) = a1(t, ·),(2.22)

for 0 ≤ ξ ≤ π. A straithforward estimation using (i) and (iii) shows
that Λ1 and Λ2 are bounded linear operators on B and that the func-
tion h(·) is continuous . Furthermore, the values Λ1(ϕ) ∈ D((−A)1/2)
and ‖(−A)1/2Λ1‖ ≤ N1/2. In fact, from (2.20) and (ii) it follows that

< Λ1(ϕ), zn >=
1
n

( 2
π

)1/2

< Λ(ϕ), cos (nζ) >

where Λ is defined by

Λ(ϕ) :=
∫ 0

−∞

∫ π

0

∂
∂ζ

b(θ, η, ζ)ϕ(θ, η) dη dθ.

From (ii) we obtain that Λ : B → X is a bounded linear operator with
‖Λ‖ ≤ N1/2. Hence we can write ‖(−A)1/2Λ1(ϕ)‖ = ‖Λ(ϕ)‖ which
implies the assertion.

Therefore, the system (2.16-2.17-2.18) satisfies conditions (a-4) and
(b-2). Now we will show that F verifies the hypotheses of Example 2.2.
To this end we define C(θ) on L2([0, π]) by

[C(θ)f ](ξ); =
∫ π

0
b(θ, η, ξ)f(η) dη.

It is clear that
Λ1(ϕ) =

∫ 0

−∞
C(θ)ϕ(θ) dθ.

From (i-1) and Exercise VI.9.52 in [2] we conclude that C(θ) is a
compact linear operator from L2([0, π]) into L2([0, π]) with

‖C(θ)‖ ≤
(∫ π

0

∫ π

0
b2(θ, η, ξ) dξ dη

)1/2
.
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Moreover, from (i-1), (i-2) and the characterization of relatively
compact sets in L2([0, π]) ([2], Theorem IV.8.20) it follows that the
operators C(θ) are locally uniformly compacts . The condition (i-3)
implies that ‖C(θ)‖

g(θ)1/2 is 2-integrable on (−∞, 0]. Finally we can estimate
L1(h) as follows

L1(h) =
∫ 0
−∞

‖C(θ−h)−C(θ)‖2
g(θ) dθ

=
∫ 0
−∞ ‖

g1(θ−h)
g1(θ)

C(θ−h)
g1(θ−h) −

C(θ)
g1(θ)‖

2 dθ

≤
2

∫ 0
−∞

g(θ−h)
g(θ) ‖ C(θ−h)

g1(θ−h) −
C(θ)
g1(θ)‖

2 dθ + 2
∫ 0
−∞ |

g1(θ−h)
g1(θ) −

1|2 ‖C(θ)‖2
g(θ) dθ,

where we have abbreviated the notation setting g1 = g1/2. Using the
properties of g and the integrability of ‖C(θ)‖2

g(θ) we obtain that the right
hand side of the above inequality converges to zero as h → 0. From
Example 2.1 and 2.2 we derive that Λ1 verifies conditions (a-3) and
(a-5). On the other hand, Q is a substitution operator which is con-
tinuous and takes bounded sets into bounded sets ([10]). Moreover,
the Lipschits or Hölder continuity of q implies that Q has the same
property, respectively. Since F is a Hammerstein operator formed by
the composition of the linear operator Λ1 and the operator Q we obtain
that F satisfies the properties already established for Λ1. Thus, the
system (2.16-2.17-2.18) verifies conditions (a-3) and (a-5). In addition,
it is not difficult to see that F satisfies the hypotheses considered in
Lemma 2.1 or Lemma 2.2 so that for each φ there is a unique mild
solution x(·, φ) defined on (−∞, b), for some b > 0. Furthermore, if
C1‖Λ1‖ and ‖Λ2‖ are small enough and h is bounded then the solution
x(·, φ) is ‖ · ‖2-bounded on [0,∞).

In connection with the existence of periodic solutions, if h is ω-
periodic, from Proposition 2.2 and Corollary 2.2 we obtain that for
C1‖Λ1‖ and ‖Λ2‖ enough small there exists an mω-periodic mild
solution.
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