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Abstract

We use inexact Steffensen-Aitken-type methods to approxi-
mate implicit functions in a Banach space. Using a projection
operator our equation reduces to solving a linear algebraic sys-
tem of finite order. Semilocal convergence results as well as an
error analysis are also provided.

AMS (MOS) Subject Classification: 65J15, 65B05, 47H17,
49D15.

Key Words and Phrases: Steffensen-Aitken method, im-
plicit function, projection operator.

rvidal
Máquina de escribir
DOI: 10.4067/S0716-09172000000300005

http://dx.doi.org/10.4067/S0716-09172000000300005


292 Ioannis K. Argyros, Emil Cǎtinaş and Ion Pǎvǎloiu

1. Introduction

Let E, Λ be Banach spaces and denote by U(x0, R) the closed ball
with center x0 ∈ E and of radius R ≥ 0. We will use the same symbol
for the norm ‖ ‖ in both spaces. Let P be a projection operator
(P = P 2) which projects E on its subspace EP and set Q = I − P .
Suppose that the nonlinear operators F (x, λ) and G(x, λ) with values
in E are defined for x ∈ D, where D is some open convex subset of
E containing U(x0, R), and λ ∈ U(λ0, S) for some λ0 ∈ Λ, S ≥ 0.
For each fixed λ ∈ U(λ0, S) the operator PF (w, λ) will be assumed
to be Fréchet-differentiable for all w ∈ D. Then PF ′(x, λ) will denote
the Fréchet-derivative of the operator PF (w, λ) with respect to the
argument w at w = x. Moreover for each fixed λ ∈ U(λ0, S) the
operator PG(w, λ) will be assumed to be continuous for all w ∈ D.

In this study we are concerned with the problem of approximating
a solution x∗ := x∗(λ) of the equation

(1) F (x, λ) + G(x, λ) = 0.

We introduce the inexact Steffensen-Aitken-type method

xn+1(λ) = xn(λ)− A(xn(λ), λ)−1(F (xn(λ), λ) + G(xn(λ), λ))

(2) −z(xn(λ), λ) (n ≥ 0),

where by x0 we mean x0(λ). That is, x0 depends on the λ used in
(2). A(x, λ) ∈ L(E × Λ, E) and is given by

A(xn(λ), λ) = P [g1(xn(λ), λ), g2(xn(λ), λ); F ] + P [g3(xn(λ), λ),

(3) g4(xn(λ), λ); G] (n ≥ 0)

where [x(λ), y(λ); F ] (or [x(λ), y(λ); G]) denotes divided difference
of order one on F (or G) at the points x(λ), y(λ) ∈ D, satisfying

(4) [x(λ), y(λ); F ](y(λ)− x(λ)) = F (y(λ), λ)− F (x(λ), λ)

for all x(λ) 6= y(λ), λ ∈ U(λ0, S), and

(5) [x(λ), x(λ); F ] = F ′(x(λ), λ), λ ∈ U(λ0, S)
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if F (x(λ), λ) is Fréchet-differentiable at x(λ) for all λ ∈ U(λ0, S). The
operator z: D×U(λ0, S) → E is chosen so that iteration {xn(λ)} (n ≥
0) generated by (2) converges to x∗. The operator g1, g2, g3, g4: D ×
U(λ0, S) → E are continuous.

The importance of studying inexact Steffensen-Aitken methods
comes from the fact that many commonly used variants can be con-
sidered procedures of this type. Indeed approximation (2) character-
izes any iterative process in which corrections are taken as approxi-
mate solutions of Steffensen-Aitken equations. Moreover we note that
if for example an equation on the real line is solved F (xn(λ), λ) +
G(xn(λ), λ) ≥ 0 and A(xn(λ), λ) overestimates the derivative xn −
A(xn(λ), λ)−1(F (xn(λ), λ) + G(xn(λ), λ)) is always “larger” than the
corresponding Steffensen-Aitken iterate. In such cases a positive
z(xn(λ), λ) (n ≥ 0) correction term is appropriate.

It can easily be shown by induction on n that under the above hy-
potheses F (xn(λ), λ)+G(xn(λ), λ) belong to the domain of A(xn(λ), λ)−1

for all n ≥ 0.
Therefore, if the inverses exist (as it will be shown later in the

theorem), then the iterates {xn(λ)} can be computed for all n ≥ 0.
The iterates generated when P = I (identity operator on E) cannot
easily be computed in infinite dimensional spaces since the inverses
may be too difficult or impossible to find. It is easy to see, however,
that the solution of equations (2) reduces to solving certain operator
equations in the space EP . If, moreover, EP is a finite dimensional
space of dimension N , we obtain a system of linear algebraic equations
of at most order N . Special choices of the operators introduced above
reduce our iteration (2) to earlier considered methods. Indeed we can
have: for g1(x(λ), λ) = g2(x(λ), λ) = x(λ), g3(x(λ), λ) = g4(x(λ), λ) =
0, z = 0 we obtain Newton methods considered in [3], [4], [5]; for
P = I, no λ, g1(x) = g2(x) = x (x ∈ D), g3(xn) = xn−1 (n ≥ 1),
g4(xn) = xn (n ≥ 0), zn = 0 (n ≥ 0) we obtain Catinas method [4];
for P = I, no λ, G(x) = 0 (x ∈ D), zn = 0 (n ≥ 0), g3(x) = g4(x) = 0,
g2(x) = g1(F (x)) (x ∈ D), we obtain methods considered by Pǎvǎloiu
in [3], [4], [6], [7]. Our choices of the operators since they include all
previous methods allow us to consider a wider class of problems.

We provide sufficient conditions for the convergence of iteration
(2) to a locally unique solution x∗(λ) of equation (1) as well as several
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error bounds on the distances ‖xn+1(λ)− xn(λ)‖ and ‖xn(λ)− x∗(λ)‖
(n ≥ 0).

II. Convergence Analysis

We can now state and prove the following semilocal convergence
result:

Theorem. Let F , G, P , Q be as in the introduction. Assume:

(a) there exist x0(λ) ∈ D, λ0 ∈ Λ such that C := C(λ) = A(x0(λ), λ0)
is invertible. Set B = C−1;

(b) there exist nonnegative numbers ai, R, S, i = 1, 2, . . . , 15 such
that:

(6) ‖BP ([x, y; F ]− [v, w; F ])‖ ≤ a1(‖x− v‖+ ‖y − w‖),

(7) ‖x−g1(x, λ)‖ ≤ a2‖A(x, λ)−1(F (x, λ)+G(x, λ))−z(x, λ)‖

(8) ‖x−g2(x, λ)‖ ≤ a3‖A(x, λ)−1(F (x, λ)+G(x, λ))−z(x, λ)‖,

(9) ‖g1(x, λ)− g1(y, λ)‖ ≤ a4‖x− y‖ a4 ∈ [0, 1),

(10) ‖g2(x, λ)− g2(y, λ)‖ ≤ a5‖x− y‖ a5 ∈ [0, 1),

(11) ‖B(QF (x, λ)−QF (y, λ))‖ ≤ a6‖x− y‖,

‖B(A(xn+1, λ)(z(xn+1, λ))−A(xn, λ)(z(xn, λ))‖ ≤ a7‖xn+1−xn‖

(12) n ≥ 0),

‖BP ([x, y; G]− [g3(x, λ), g4(x, λ); G])‖ ≤ a8(‖x− g3(x, λ)‖+

(13) ‖y − g4(x, λ)‖),
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(14) ‖x−g3(x, λ)‖ ≤ a9‖A(x, λ)−1(F (x, λ)+G(x, λ))−z(x, λ)‖,

(15)
‖x− g4(x, λ)‖ ≤ a10‖A(x, λ)−1(F (x, λ) + G(x, λ))− z(x, λ)‖

(16) ‖g3(x, λ)− g3(y, λ)‖ ≤ a11‖x− y‖ a11 ∈ [0, 1),

(17) ‖g4(x, λ)− g4(y, λ)‖ ≤ a12‖x− y‖ a12 ∈ [0, 1),

(18) ‖B(QG(x, λ)−QG(y, λ))‖ ≤ a13‖x− y‖,

(19)
‖B([g1(x0, λ), g2(x0, λ); F ]−[g1(x0, λ0), g2(x0, λ0; F ])‖ ≤ a14‖λ−λ0‖

and

‖B([g3(x0, λ), g4(x0, λ); G]− [g3(x0, λ0), g4(x0, λ0); G])

(20) ‖ ≤ a15‖λ− λ0‖,

for all v, w, x, y ∈ U(x0, R), λ ∈ U(λ, S);

(c) the sequence {z(xn(λ), λ)} (n ≥ 0) is null for all λ ∈ U(λ0, S);

(d) for each fixed λ ∈ U(λ0, S) there exists a minimum nonnegative
number r∗ := r∗λ satisfying

(21) Tλ(r∗) ≤ r∗ and r∗ ≤ R

with r := r(λ),

(22) Tλ(r) = n +
b1r + b2

b(r)− b3r
r

where

(23) n := n(λ) ≥ ‖x0(λ)− x1(λ)‖,

b1 = a1(1 + a4 + a5) + a8(1 + a11 + a12), b2 = a6 + a13 + a7,
b3 = a1(a2 + a3) + a8(a9 + a10),
(24)
b(r) := b(r, s) = 1− (a1(a4 + a5)+ a8(a11 + a12))r− (a14 + a15)S;
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(e) r∗, R, S also satisfy:

(25) b(r∗)− b3r∗ > 0,

r∗ ≥ max
{

‖g1(x0(λ), λ)− x0(λ)‖
1− a4

,
‖g2(x0(λ), λ)− x0(λ)‖

1− a5
,

∥

∥

∥

∥

∥

∥

g3(x0(λ), λ)− x0(λ)‖
1− a11,

‖g4(x0(λ),λ)−x0(λ)‖
1−a12







, (26)

(27) c := c(λ) = d(r,R) < 1,

where

(28) d(e1, e2) =
b1(e1 + e2) + b4

b(e1)− b3(e1 + e2)

and

(29) b4 = a6 + a13.

Then
(i) For each fixed λ ∈ U(λ0, S) the scalar sequence {tn(λ)} (n ≥ 0)

generated by

(30) t0(λ) = 0, t1(λ) = n,

(31)

tn+1(λ) = tn(λ) +
b1(tn(λ)− tn−1(λ)) + b2

αnβn
(tn(1)− tn−1(λ)) (n ≥ 1),

(32) αn := αn(λ) = 1− b3γn (n ≥ 0),

(33)
βn := βn(λ) = 1−(a14+a15)S−[a1(a4+a5)+a8(a11+a12)]tn(λ) (n ≥ 0),

and

(34) γn := γn(λ) = (tn(λ)− tn−1(λ))β−1
n (n ≥ 1),
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is monotonically increasing, bounded above by r∗ and limn→∞ tn(λ) =
r∗;

(ii) the inexact Steffensen-Aitken method generated by (2) is well
defined, remains in U(x0(λ), r∗) for all n ≥ 0, and converges to a
solution x∗(λ) ∈ U(x0(λ), r∗) of equation (1). Moreover if z = 0
then x∗(λ) is unique in U(x0(λ), R). Furthermore the following error
bounds are true:

‖xn+1(λ)− xn(λ)‖ ≤ b1‖xn(λ)− xn−1(λ)‖+ b2

ᾱnβ̄n
‖xn(λ)− xn−1(λ)

(35) ‖ (n ≥ 1),

(36) ‖xn+1(λ)− xn(λ)‖ ≤ tn+1(λ)− tn(λ) (n ≥ 0),

(37) ‖xn(λ)− x∗(λ)‖ ≤ r∗ − tn(λ) (n ≥ 0),

where

(38) ᾱn := ᾱn(λ) = 1− b3γ̄n (n ≥ 0),

β̄n := β̄n(λ) = 1− (a14 + a15)‖λ− λ0‖ − [a1(a4 + a5) + a8(a11 + a12)]

(39) ‖xn(λ)− x0(λ)‖ (n ≥ 0),

and

(40) γ̄n := γ̄n(λ) = ‖xn(λ)− xn−1(λ)‖β̄−1
n (n ≥ 1).

Proof. (i) By (21) and (30) we deduce 0 ≤ t0(λ) ≤ t1(λ) ≤ r∗. Let us
assume 0 ≤ tk−1(λ) ≤ tk(λ) ≤ r∗ for k = 1, 2, . . . , n. Then it follows
from (30) and (31) that 0 ≤ tk(λ) ≤ tk+1(λ). Hence, the sequence
{tn(λ)} (n ≥ 0) is monotonically increasing. Moreover by (31) and
the induction hypotheses we get in turn

tk+1(λ) ≤ tk(λ) +
b1r∗ + b2

b(r∗)− b3r∗
(tk(λ)− tk−1(λ))

≤ · · · ≤ n +
b1r∗ + b2

b(r∗)− b3r∗
r∗ = Tλ(r∗) ≤ r∗ (by (21)).
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That is the sequence {tn(λ)} (n ≥ 0) is also bounded above by r∗.
Since for each fixed λ ∈ U(λ0, S) r∗ is the minimum nonnegative
number satisfying (21) it follows that limn→∞ tn(λ) = r∗.

(ii) By hypotheses (30), (23) and (22) it follows that x1(λ) ∈
U(x0(λ), r∗). Moreover from (26) we deduce g1(x0(λ), λ), g2(x0(λ), λ),
g3(x0(λ), λ), g4(x0(λ), λ) ∈ U(x0(λ), r∗). Let us assume xk+1(λ),
g1(xk(λ), λ), g2(xk(λ), λ), g3(xk(λ), λ), g4(xk(λ), λ) ∈ U(x0(λ), r∗) for
k = 0, 1, 2, . . . , n, and that (36) is true for k = 1, 2, . . . , n (since it is
true for k = 0 by (23) and (30)). Then from (9) and (26) we get

‖g1 (xk (λ) , λ)− x0 (λ)‖ ≤ ‖g1 (xk (λ) , λ)− g1 (x0 (λ) , λ)‖+
‖g1 (x0 (λ) , λ)− x0 (λ)‖

≤ a4 ‖xk (λ)− x0 (λ)‖+
‖g1

1 (x0 (λ) , λ)− x0 (λ)‖ ≤ r∗.
That is g1(xn(λ), λ) ∈ U(x0(λ), r∗). Similarly we obtain g2(xn(λ), λ),

g3(xn(λ), λ), g4(xn(λ), λ) ∈ U(x0(λ), r∗). Using (6), (9), (10), (13),
(16), (17), (19) and (20) we obtain

‖BP ([g1 (xk (λ) , λ) , g2 (xk (λ) , λ) ; F ] +
[g3 (xk (λ) , λ) , g4 (xk (λ) , λ) ; G]−
[g1 (x0 (λ) , λ0) , g2 (x0 (λ) , λ0) ; F ]−
g3 (x0 (λ) , λ0) g4 (x0 (λ) , λ0) ; G‖
≤ ‖BP ([g1 (xk (λ) , λ) ; g2 (xk (λ) , λ) ; F ]−

[g1 (x0 (λ) , λ0) , g2 (x0 (λ) , λ0) ; F ])‖
+ ‖BP ([g3 (xk (λ) , λ) , g4 (xk (λ) , λ) ; G]−

g3 (x0 (λ) , λ0) , g4 (x0 (λ) , λ0) ; G)]‖
≤ ‖BP ([g1 (xk (λ) , λ) , g2 (xk (λ) , λ) ; F ]−

[g1 (x0 (λ) , λ) , g2 (x0 (λ) , λ)]‖
+ ‖BP ([g1 (x0 (λ) , λ) , g2 (x0 (λ) , λ) ; F ] −

[g1 (x0 (λ) , λ0) , g2 (x0 (λ) , λ0) ; F ])‖
+ ‖BP ([g3 (xk (λ) , λ) , g4 (xk (λ) , λ) ; G] −

[g3 (xk (λ) , λ) , g4 (x0 (λ) , λ)])‖
+ ‖BP ([g3 (x0 (λ) , λ) , g4 (x0 (λ) , λ) ; G] −

[g3 (x0 (λ) , λ0) , g4 (x0 (λ) , λ0) ; G])‖
≤ a1 (a4 + a5) ‖xk (λ)− x0 (λ)‖+ a14 ‖λ− λ0‖
+a8 (a11 + a12) ‖xk (λ)− x0 (λ)‖+ a15 ‖λ− λ0‖
≤ [a1 (a4 + a5) + a8 (a11 + a12)] r∗ + (a14 + a15) S < 1 by (25).
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It follows from the Banach lemma on invertible operators [5] that
A(xk(λ), λ) is invertible and

(41) ‖A(xk(λ), λ)−1B−1‖ ≤ δ̄k ≤ δk,

where
γ̄k = (ᾱkβ̄k)−1 and δk = (αkβk)−1 (k ≥ 0).

Using (2) we obtain the approximation
xk+1 (λ)− xk (λ) =

(

A (xk (λ) , λ)−1 B−1
)

B {[PF (xk (λ) λ) −
PF (xk−1 (λ) , λ)− P [g1 (xk (λ) , λ) , g2 (xk (λ) , λ) ; F ]

(xk (λ)− xk−1 (λ))] + [QF (xk (λ) , λ)−QF (xk−1 (λ) , λ)] +
[A (xk (λ) , λ) (z (xk (λ) , λ))− A (xk−1 (λ) , λ) (z (xk−1 (λ) , λ))] +

[PG (xk (λ) , λ)− PG (xk−1 (λ) , λ)−
P [g3 (xk (λ) , λ) , g4 (xk (λ) , λ) ; G] (xk (λ)− xk−1 (λ)) ] +

[QG (xk (λ) , λ) , GC (xk−1 (λ) , λ)]} (k ≥ 1) .
(42)

By (6) we obtain
‖B (PF (xk (λ) , λ)− PF (xk−1 (λ) , λ) −

P [g1 (xk (λ) , λ) , g2 (xk (λ)) ; F ]) (xk (λ)− xk−1 (λ))‖
≤ ‖BP ([xk−1 (λ) , xk (λ) ; F −

[g1 (xk−1 (λ) , λ) , g2 (xk−1 (λ) , λ) ; F ])‖ ‖xk (λ)− xk−1 (λ)‖
≤ a1 (‖xk−1 (λ)− g1 (xk−1 (λ) , λ)‖+ ‖xk (λ)− g2 (xk−1 (λ) , λ)‖)
‖xk (λ)− xk−1 (λ)‖ .

(43)
Moreover from (7), (8), (9) and (10) we obtain the estimates

‖xk−1(λ)−g1(xk−1(λ), λ)‖ ≤ ‖xk−1(λ)−xk(λ)‖+‖xk(λ)−g1(xk(λ), λ)‖

≤ ‖g1(xk(λ), λ)− g1(xk−1(λ), λ)‖

≤ ‖xk(λ)− xk−1(λ)‖+ a2‖xk+1(λ)− xk(λ)‖+ a4‖xk(λ)− xk−1(λ)‖,

(44)

‖xk (λ)− g2 (xk−1 (λ) , λ)‖ ≤ ‖xk (λ)− g2 (xk (λ) , λ)‖+
‖g2 (xk (λ) , λ)− g2 (xk−1 (λ) , λ)‖

≤ a3 ‖xk+1 (λ)− xk (λ)‖+ a5 ‖xk (λ)− xk−1 (λ)‖ .

(45)
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Hence from (43), (44) and (45) we get

(46)

‖BP (F (xk (λ) , λ)− F (xk−1 (λ) , λ) −
[g1 (xk (λ) , λ) , g2 (xk (λ) , λ) ; F ] (xk (λ)− xk−1 (λ)))

≤ a1 (1 + a4 + a5) ‖xk (λ)− xk−1 (λ)‖2 +
a1 (a2 + a3) ‖xk+1 (λ)− xk (λ)‖ ‖xk (λ)− xk−1 (λ)‖ .

As in (46) but using (13), (14), (15), (16) and (17) we obtain

(47)

‖BP (G (xk (λ) , λ)−G (xk−1 (λ) , λ)−
[g3 (xk (λ) , λ) , g4 (xk (λ) , λ) ; G] (xk (λ)− xk−1 (λ))‖

≤ a8 (1 + a11 + a12) ‖xk (λ)− xk−1 (λ)‖2 +
a8 (a9 + a10) ‖xk+1 (λ)− xk (λ)‖ ‖xk (λ)− xk−1 (λ)‖ .

Furthermore from (11), (12) and (18) we get respectively

(48) ‖B(QF (xk(λ), λ)−QF (xk−1(λ), λ))‖ ≤ a6‖xk(λ)− xk−1(λ)‖,

‖B(A(xk(λ), λ)(z(xk(λ), λ))− A(xk−1(λ), λ)(z(xk−1(λ), λ))‖

(49) ≤ a7‖xk(λ)− xk−1(λ)‖

and

(50) ‖B(QG(xk(λ), λ)−QG(xk−1(λ), λ)) ≤ a13‖xk(λ)− xk−1(λ)‖.

Finally from (31), (41), (42), (46)–(50) we deduce that estimates
(35) and (36) are true. By (36) and part (i) it follows that for each
fixed λ ∈ U(λ0, S) iteration {xn(λ)} (n ≥ 0) is Cauchy in a Banach
space E and as such it converges to some x∗(λ) ∈ U(x0(λ), r∗) (since
U(x0(λ), r∗) is a closed set. Using hypothesis (c) and letting n → ∞
in (2) we get F (x∗(λ), λ)+G(x∗(λ), λ) = 0. That is x∗(λ) is a solution
of equation (1). Estimate (37) follows immediately from (36) by using
standard majorization techniques [3], [5].

To show uniqueness when z = 0, let us assume y∗(λ) ∈ U(x0(λ), R)
is a solution of equation (1). Then from (2) we get
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xn+1(λ)−y∗(λ) = xn(λ)−y∗(λ)−A(xn(λ), λ)−1[(F (xn(λ), λ)

(51) − F (y∗(λ), λ)) + (G(xn(λ), λ)−G(y∗(λ), λ))].

Analyzing the right-hand side of (51) as in (42) with y∗(λ) “replacing”
xk(λ) and xn(λ) “replacing” xk−1(λ) we get
(52)
‖xn+1(λ)−y∗(λ)‖ ≤ c‖xn(λ)−y∗(λ)‖ ≤ · · · ≤ cn+1‖x0(λ)−y∗(λ)‖ ≤ cn+1R.

By letting n → ∞ in (52) and using (27) we get limn→∞ xn+1(λ) =
y∗(λ) for each fixed λ ∈ U(λ0, S). By the uniqueness of the limit of
the sequence {xn(λ)} (n ≥ 0) we deduce x∗(λ) = y∗(λ).

That completes the proof of the Theorem.

Remarks. (1) Condition (6) implies that F (x(λ), λ) is differentiable
on D [2], [3], whereas condition (13) does not necessarily imply the
differentiability of G(x(λ), λ) on D.

(2) Inequalities (21), (23), (25), (26) and (27) will determine r∗, R
and S.

(3) If a2 + a4 ≤ 1, a3 + a5 ≤ 1, a9 + a11 ≤ 1 and a10 + a12 ≤ 1 for
r∗ 6= 0, condition (26) is satisfied. Indeed from (7) we have

‖g1(x0(λ), λ)− x0(λ)‖ ≤ a2‖x1(λ)− x0(λ)‖ ≤ a3r∗,

and from (26) we must have

‖g1(x0(λ), λ)− x0(λ)‖ ≤ (1− a4)r∗

It suffices to show a2r∗ ≤ r∗(1− a4) or a2 + a4 ≤ 1 (r∗ 6= 0) which is
true by hypothesis. Similarly we can argue for the rest.
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[6] Pǎvǎloiu, I. Sur une generalisation de la methode de Steffensen,
Revue d’analyse Numerique et de theorie de l’approximation,
21, 1, (1992), 59–65.
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