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Universidade de São Paulo, Brazil

Proyecciones
Vol. 19, No 3, pp. 249-269, December 2000.
Universidad Católica del Norte
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Abstract
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algebras.
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1. Introduction

The study of dibaric algebras has as motivation the algebras coming
from genetic models in bisexual populations with sex linked genetic
inheritance. First, Etherington [3], introduced the idea of treating
the male and female components of a population separately and next
Holgate [4] formalized this concept with the introduction of the sex
differentiation algebra and dibaric algebras. Following the modern no-
tation of Wörz-Busekros [7], we introduce Holgate’s definitions bellow.
See also the survey [6] for more information. Here F will be a field of
characteristic different from two.

Let § be a bi-dimensional commutative F -algebra generated by the
elements {m, f}, and with multiplication table m2 = 0, mf = fm =
(m + f)/2, and f2 = 0. This algebra § is called sex differentiation
algebra. Now, an algebra A will be called dibaric if it admits a homo-
morphism onto the sex differentiation algebra.

Recall that an F -algebra is called baric if it admits a homomor-
phism onto the field F . Since §2 = 〈m+ f〉F is an ideal of § isomorphic
to F we get that §2 is a baric algebra and hence we obtain the following
well known result

Lemma 1.1. : If an algebra A is dibaric, then A2 is baric.

Example 1.1. : Let (, ω) be a baric R-algebra, that is, B is an
R-algebra and ω : B −→ R is a homomorphism different from zero.
Consider T : B −→ B a linear mapping satisfying ω ◦ T = ω. Thus T
leaves the ideal ker(ω) invariant. Now, we introduce the vector space
A := B ⊗ B ⊕ B, where ⊕ denotes the direct sum and ⊗ denotes the
tensor product of vector spaces. We identify the elements x⊗y⊕0 ∈ A
with x ⊗ y ∈ B ⊗ B and the elements 0 ⊕ z ∈ A with z ∈ B. In this
space we introduce a commutative multiplication by

(x1 ⊗ y1) (x2 ⊗ y2) = 0, z1z2 = 0
(x⊗ y) z = 1

2 (xy ⊗ T (z)⊕ ω(z)xy) .

The algebra A is the sex linked duplicate of the algebra B with respect
to the linear mapping T (see [7] for more information). Obviously, A
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is a dibaric algebra with weight γ : A −→ S defined by γ(x⊗y⊕z) :=
ω(xy)h + ω(z)m.

Example 1.2. : Let A = Ah ⊕Am be the 5-dimensional commu-
tative R-algebra with a1, a2 and a3 as basis of Ah, with b1 and b2 as
basis of Am and with multiplication table as follows: A2

h = 0, A2
m = 0

and (for i, j = 1, 2)

aibj =
1
2

(δijai + (1− δij)a3 + bi) , a3bj =
1
2

(a1bj + a2bj)

where δij is equal to 1 if i = j and is equal to 0 in another case. The
algebra A is dibaric with weight γ : A −→ S defined by γ(x1a1 +
x2a2 + x3a3 + y1b1 + y2b2) := (x1 + x2 + x3)h + (y1 + y2)m. This
algebra is called the zygotic algebra for sex linked inheritance for two
alleles with simple Mendelian segregation rates. We claim, without
proof, the following relevant fact: every element x ∈ A with γ(x) =
h + m satisfies the plenary train equation [8 x[5] − 6x[4] − 3x[3] +
x[2] = 0]wheretheplenarypowersaredefinedinductivelybyx[1] = x and
x[k+1] = x[k]x[k] for k ≥ 1. Therefore, if x ∈ A represents a state of a
population (γ(x) = h + m), then its trajectory {x[k]}∞k=1 converge and
x[∞] = limkl∞ x[k] is equal to the idempotent (8x[4] + 2x[3] − x[2])/9.
We notice that an explicit form of x[∞], in terms of the correspond-
ing gametic algebra, was given by Lyubich in [5] (see also [7, 8, 9] for
more information). Finally, we claim that 8x[4] − 6x[3] − 3x[2] + x[1] ∈
ann(A) = R〈a1 + a2 − 2a3〉 for all x ∈ A with γ(x) = f + m.

2. Dibaric Weight Homomorphisms

In the following A will be an algebra (not necessarily commutative
or associative) over the field F . A function γ : A −→ §, where § is
the sex differentiation algebra defined above, is called dibaric weight
homomorphism if γ is an onto homomorphism of algebras. So, if a, b
are elements in A such that γ(a) = m and γ(b) = f, then we have the
following decomposition

A = Fa⊕ Fb⊕ ker(γ),(2.1)
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where ker(γ) := {x ∈ A : γ(x) = 0} is an ideal of A of codimension
two.

Notice that for every dibaric weight homomorphism γ and every
automorphism f : § −→ §, the mapping f ◦ γ is a dibaric weight ho-
momorphism and ker(γ) = ker(f ◦ γ). We say that two dibaric weight
homomorphisms γ and γ′ are equivalent if there exists an automor-
phism f : § −→ § such that γ′ = f ◦ γ.

Lemma 2.1. : The sex differentiation algebra has only two au-
tomorphisms, the identity and the involution ∗ : § −→ § given by
∗(m) = f, ∗(f) = m.

Proof. Let f : §l§ be an onto homomorphism. Then 0 = f(m2) =
f(m)2, and analogously, 0 = f(f)2 and hence either f(m) ∈ Fm,
f(f) ∈ F f or f(m) ∈ F f, f(f) ∈ Fm. Next using that f(m)f(f) =
f(mh) = f((m + f)/2) = (f(m) + f(f))/2 we get the result.

From this result, it follows that each equivalence class defined
above has exactly two weight. So, if γ and γ′ are two different and
equivalent dibaric weight homomorphisms, then γ′ = ∗◦γ. We denote
by & the set of these equivalence classes, that is, an element of & is
{γ, γ∗}, where γ is a dibaric weight homomorphism and γ∗ := ∗ ◦ γ.

Theorem 2.1. : The application {γ, γ∗} 7−→ ker(γ) is a bijection
between the set & of equivalence class of dibaric weight homomor-
phisms of A, and the set of ideals I of A of codimension two, such
that A/I ∼= §.

Corollary 2.1. : Dibaric weight homomorphisms with same ker-
nel are equivalent.

Lemma 2.2. : Different dibaric weight homomorphisms of an
algebra A are linearly independent.
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Proof. Let γ1, γ2, · · · , γm be different dibaric weight homomor-
phisms of A and consider scalars α1, · · · , αm in F such that

α1γ1(z) + α2γ2(z) + · · ·+ αmγm(z) = 0(2.2)

for all z ∈ A. We will prove that α1 = 0 = α2 = · · · = αm using induc-
tion over the number m of different dibaric weight homomorphisms of
A. The case m = 1 is trivial. Let m > 1. Then by hypothesis of
induction, the lemma is true for m− 1 weights.

Notice that if there exists and index i such that αi = 0, then by
hypothesis of induction, we obtain that αj = 0 for j = 1, 2, ..., m, and
the result follows.

First, we suppose that all weight homomorphisms have same ker-
nel. Under this assumption, we obtain from Corollary 2.1 that m = 2
and γ2 = γ∗1 . Now, let z ∈ A such that γ1(z) = m. Then 0 =
α1γ1(z)+α2γ∗1(z) = α1m+α2f, and hence it follows that α1 = 0 = α2.

Finally, we suppose that there exist homomorphisms with different
kernels. We can assume that ker(γ1) 6= ker(γ2). Under this condition,
consider x ∈ A such that γ1(x) 6= 0 and γ2(x) = 0. Since im (γ1) = S,
there exists y ∈ A such that m+ f = γ1(x)γ1(y) = γ1(xy). Multiplying
the equation (2.2) by γ1(xy), we obtain

α1γ1(xy)γ1(z) + α2γ1(xy)γ2(z) + · · ·+ αmγ1(xy)γm(z) = 0,(2.3)

and replacing z → (xy)z in equation (2.2) we get

α1γ1(xy)γ1(z) + α2γ2(xy)γ2(z) + · · ·+ αmγm(xy)γm(z) = 0.(2.4)

for all z ∈ A. Next subtracting the equation (2.4) from equation (2.3),
we get

α2 (γ1(xy) γ2(z) + · · ·+ αm (γ1(xy)− γm(xy)) γm(z) = 0.(2.5)

Notice that γ2(xy) = 0.Since γk(xy) ∈ γk(A2) = §2 = 〈m + f〉F for
k = 1, . . . , m, there exist scalars βk such that γk(xy) = βk(m + f). So,
the equation (2.5) can be written as follows

(m + f) (α2γ2(z) + α3(1− β3)γ3(z) + · · ·+ αm(1− βm)γm(z)) = 0,
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and therefore

γ(z) := α2γ2(z)+α3(1−β3)γ3(z)+ · · ·+αm(1−βm)γm(z) ∈ F (m− f).

Thus, γ(A2) ∈ F (m + f) ∩ F (m− f) = (0). Now, if γ(z) = λz(m− f)
then 0 = γ(z2) = γ(z)2 = −λ2

z(m + f). This implies that λz = 0 and
hence γ(z) = 0. Using the hypothesis of induction on γ(z) = 0, we
have α2 = 0. So, αj = 0 for all j.

From the above result, it follows that the number of different
dibaric weight homomorphisms of an algebra A is at most n, where n
is the dimension of A. We will show that this bound can be improved.
For an algebra A we define inductively

A[1] = A, A[i] = A[i−1]A[i−1], i > 1.

So, ifA has finite dimension, there exists a natural number r, such that
A[r+1] = A[r]. Under this condition, we can show that the number of
different dibaric weight homomorphisms of A is at most 2 · dim(A[r]).
Notice that for a dibaric algebra A2 6= A.

According to Lemma 1.1, if A is a dibaric algebra with γ as dibaric
weight homomorphism, then A2 is baric and γ̂ : A2 −→ §2, the restric-
tion of γ : A −→ § is a baric weight homomorphism for A2. From,
now on we identify §2 with the field F.

Theorem 2.2. : The application {γ, γ∗} 7−→ γ̂ is an injection be-
tween the set & of equivalence classes of dibaric weight homomorphism
of A and the set of baric weight homomorphisms of A2.

Proof. First, we note that the elements of §2 are invariant by the
involution ∗ and hence pq = ∗(pq) = ∗(p) ∗ (q) for all p, q ∈ §. From
this fact, we obtain that the application is well defined, that is γ̂ = γ̂∗.

Next, we will show that the application is injective. Let τ, γ be
two dibaric weight homomorphisms, such that τ̂ = γ̂. We have to
show that these two homomorphisms are equivalent but according to
Corollary 2.1, it suffices to show that they have the same kernels. So,
let a ∈ ker(γ). Since ker(γ) is an ideal of A, we have that aA ⊆
ker(γ) ∩ A2 and using the hypothesis, we have aA ⊆ ker(τ). Then, it
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follows that a ∈ ker(τ), since in other case we have an element b ∈ A,
such that τ(ab) 6= 0 and this is a contradiction. So, we showed that
ker(γ) ⊂ ker(τ) and therefore ker(γ) = ker(τ). This implies that the
two homomorphisms are equivalent.

In an analogous way we can prove the following lemma

Lemma 2.3. : The application ω 7−→ ω̂ is an injection between
the set of baric weight homomorphisms of a baric algebra B and the
set of baric homomorphisms of B2.

Proof. Let ω, τ : B −→ F be two baric weight homomorphisms of
B such that ω(x) = τ(x) for all x ∈ B2. We already know that ω = τ
if and only if ker(ω) = ker(τ). If x ∈ ker(ω), then x2 ∈ ker(ω)∩A2 =
ker(τ)∩A2 and hence 0 = τ(x2) = τ(x)2. This forces τ(x) = 0. Thus,
we have proved that ker(ω) ⊂ ker(τ) that is ker(ω) = ker(τ) and hence
by Lemma 3.3.1 of [5] we have that ω = τ .

According to [5] the number of baric weight homomorphisms of a
baric algebra B is at most its dimension. Using this fact, Lemma 2.3
and Theorem 2.2 we have the following result:

Corollary 2.2. : Let A be a dibaric algebra of dimension n and
r a natural number such that A[r+1] = A[r]. Under these conditions,
the number of different dibaric weight homomorphisms of A is at must
2 · dim(A[r]).

Lemma 2.4. : Let A be a dibaric algebra with γ as dibaric
weight homomorphism. If there exists a monomial p(x) ∈ F [x], p(x) 6=
0, such that p(a) = 0, for all a ∈ ker(γ), then the only dibaric weight
homomorphisms of A are γ and γ∗.

Proof. Let τ : A −→ § be a dibaric weight homomorphism. If
τ(a) 6= 0, then there exists b ∈ A such that m + f = τ(a)τ(b) =
τ(ab). Then τ(p(ab)) = p(τ(ab)) = p(m + f) = m+f and hence ab /∈
ker(γ). This forces that a /∈ ker(γ). Consequently, ker(γ) ⊂ ker(τ)
and ker(γ) = ker(τ). Now the result follows form Theorem 2.1.
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Example 2.1. : An important example for biological applications
is the evolution algebra AV described in [5, Cap.I]. Consider two
positive integer n and ν and real scalars p(m)

ij,k and p(h)
ij,l satisfying

p(m)
ij,k ≥ 0, p(h)

ij,l ≥ 0,
n

∑

k=1

p(m)
ij,k = 1,

ν
∑

l=1

p(h)
ij,l = 1,(2.6)

for 1 ≤ i ≤ n, 1 ≤ j ≤ ν. Now we define in the space Rn × Rν a
commutative product as follows

eiek = 0, eiēj =
1
2

( n
∑

k=1

p(m)
ij,kek +

ν
∑

l=1

p(f)
ij,l ēl

)

, ēj ēl = 0

where we identify ei ≡ (ei, 0), ēj ≡ (0, ēj) such that (ei)n
i=1 is a canon-

ical basis of Rn and (ēj)ν
j=1 is a canonical basis of Rν . In this way, we

obtain a commutative algebra AV . The following result is well known

Lemma 2.5. : The mapping s : AV −→ § given by s(z) =
(
∑n

i=1 xi)m + (
∑ν

j=1 yj)f where z = (x, y) ∈ AV is a dibaric weight
homomorphism.

Lemma 2.6. : The weight homomorphism s : AV −→ § is
characterized, up to equivalence, as the only positive dibaric weight
homomorphism in the sense that the image of Ω = {(x, y) ∈ AV :
xi, yj ≥ 0,

∑

i xi = 1,
∑

j yj = 1} is contained in the set {αm + βf |
α, β ≥ 0, α + β > 0}.

Proof. Let γ : AV −→ §, be a positive dibaric weight homomor-
phism. For 1 ≤ i ≤ n and 1 ≤ j ≤ ν we have that γ(ei), γ(ēj) ∈ §,
so

γ(ei) = αim + βif, γ(ēj) = ᾱjm + β̄jf,

where αi, βi, ᾱj, β̄j ∈ R. Then, because (ei)2 = 0, we get 0 = γ(e2
i ) =

γ(ei)2 = (αim + βif)2 = αiβi(m + f) and analogously, using that
(ēj)2 = 0, we obtain that 0 = ᾱjβ̄j(m + f). On the other hand,
the elements 2eiēj and ei + ēj belong to Ω and their images are
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γ(2eiēj) = 2γ(ei)γ(ēj) = 2(αim+βjf)(ᾱjm+β̄jf) = (αiβ̄j+βiᾱj)(m+f)
and γ(ei + ēj) = (αi + ᾱj)m + (βi + β̄j)f. Therefore, we have the fol-
lowing relations,

αiβi = 0, αi + ᾱj > 0, αiβ̄j + βiᾱj > 0, βi + β̄j > 0, ᾱjβ̄j = 0.

In particular α1β1 = 0 and hence either α1 6= 0 and β1 = 0 or α1 = 0
and β1 6= 0. We will consider the two cases separately. In the first
case, we will prove that γ = s and in the second case that γ = ∗ ◦ s.

First, we suppose that α1 6= 0 and β1 = 0. Then, for each j, the
equation α1β̄j + β1ᾱj > 0 implies that β̄j 6= 0. Therefore, ᾱj = 0.
Now, because α1 + ᾱj, β1 + β̄j > 0 we obtain that α1 > 0 and β̄j > 0.
In particular, β̄1 > 0 and ᾱ1 = 0. So, from inequality αiβ̄1 + βiᾱ1 > 0
we have that αi > 0 and hence βi = 0. Thus, we have proved that
γ(ei) = αim and γ(ēj) = β̄jf. Then,

αiβ̄j(m + f) = 2γ(ei)γ(ēj) = 2γ(eiēj) = γ
(

∑n
k=1 p(m)

ij,kek +
∑ν

l=1 p(f)
ij,l ēl

)

=
∑n

k=1 p(m)
ij,kαkm +

∑ν
l=1 p(f)

ij,lβ̄lf.

So, we obtain the following equalities,

αiβ̄j =
n

∑

k=1

p(m)
ij,kαk, αiβ̄j =

n
∑

l=1

p(f)
ij,lβ̄l,(2.7)

for 1 ≤ i ≤ n and 1 ≤ j ≤ ν. Now considering the scalars

αmax = max(αi)n
i=1, αmin = min(αi)n

i=1,

β̄max = max(β̄j)ν
j=1, β̄min = min(β̄j)ν

j=1,

and using (2.7), we obtain

αmin =
n

∑

k=1

p(m)
ij,kαmin ≤

n
∑

k=1

p(m)
ij,kαk = αiβ̄j ≤

n
∑

k=1

p(m)
ij,kαmax = αmax.

and also

β̄min =
n

∑

k=1

p(f)
ij,kβ̄min ≤

n
∑

l=1

p(f)
ij,lβ̄l = αiβ̄j ≤

n
∑

l=1

p(f)
ij,lβ̄max = β̄max.



258 María Aparecida Couto and Juan C. Gutiérrez Fernández

In particular, αmin ≤ αminβ̄j and αmaxβ̄j ≤ αmax, and since all scalars
are positive, it follows that 1 ≤ β̄j ≤ 1, for all j. This implies that
β̄j = 1. Analogously β̄min ≤ αiβ̄min and αiβ̄max ≤ β̄max and then
αi = 1, for all i. So, γ(ei) = m and γ(ēj) = f. Therefore γ = s.

Finally, we consider the second case, that is, β1 6= 0 and α1 = 0.
Analogously, we have that γ(ei) = βif and γ(ēj) = ᾱjm. Repeating
the calculations above with the scalars αi and β̄j we get that these are
all equal to 1. Thus, γ = ∗ ◦ s.

So, s and s∗ = ∗ ◦ s are the only positive dibaric weight homomor-
phisms in this algebra.

3. Dibaric Algebras

An ordered pair (A, γ), where A is an algebra and γ : A −→ § is a
dibaric weight homomorphism is called dibaric algebra. Under these
conditions, the homomorphism is called weight function and the affine
subspace H := {x ∈ A | γ(x) = m+ f} of codimension 2, is called unit
subspace. For each x ∈ A with x2 /∈ ker(γ), we have that x2/γ(x2) ∈
H. We denote the kernel of γ, by N, that is,

N = {x ∈ A | γ(x) = 0}.

If B is any set contained in A, we will denote by NB the set N ∩ B,
that is,

NB = {x ∈ B | γ(x) = 0}.

Let (A, γ) be a dibaric algebra. We say that a subalgebraA1 ofA is
a dibaric subalgebra ofA ifA1∩ker(γ) is an ideal of A1 of codimension
2, or equivalently, γ1 ≡ γ|A1 is a dibaric weight homomorphism for A1.
This subalgebra is denoted by (A1, γ1) ⊂ (A, γ). A dibaric algebra A
is not trivial if N is different from zero, that is, A is not isomorphic
to §.

Also, a subalgebra A1 of A is called baric subalgebra if γ(A1) =
〈m + f〉F .

An ideal I is called dibaric ideal if I ⊆ ker(γ), that is, γ|I = {0}.
Naturally a dibaric ideal cannot be a dibaric subalgebra. We say that
a dibaric ideal I is maximal if I 6= N and the only dibaric ideals of A
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that contain I are I and N. Notice that the biggest dibaric ideal of a
dibaric algebra (A, γ) is N.

The annulator, annA := {x ∈ A | xA = (0)} is a dibaric ideal of
A. Also, any subspace of annA is a dibaric ideal. The ideal A2 of
A, is not dibaric, but, according to Lemma 1.1, we have that A2 is a
baric subalgebra.

For any dibaric ideal I, we have that the quotient A/I is a dibaric
algebra. It is called dibaric quotient and is denoted by (A, γ)/I. The
quotient algebra (A, γ)/N is isomorphic to the sex differentiation al-
gebra §.

Given two dibaric algebras (A1, γ1) and (A2, γ2), a dibaric homo-
morphism of dibaric algebras f : (A1, γ1)l(A2, γ2) is a homomorphism
of algebras f : A1 −→ A2 such that γ2 ◦ f = γ1. For example, the
embedding of a dibaric subalgebra and the quotient application are
dibaric homomorphisms. Clearly, the composition of dibaric homo-
morphisms is dibaric. The inverse of a dibaric isomorphism is a dibaric
isomorphism, because if γ2 ◦ f = γ1, this imply that γ2 = γ1 ◦ f−1.
We write (A1, γ1) ∼= (A2, γ2) for isomorphic dibaric algebras, that is,
there is a dibaric isomorphism f : (A1, γ1) −→ (A2, γ2).

Every dibaric algebra (A, γ) is not associative because (A, γ)/ ker(γ)
∼= § and § is not associative. In particular, the subalgebra of End (A)
spanned by the left and right multiplication by elements of A, that is
La(x) = ax and Ra(x) = xa for all a, x ∈ A is not dibaric because
it is associative. This associative algebra is called the multiplication
algebra of A and is denoted by M (A).

Lemma 3.1. : Let f : (A1, γ1) −→ (A2, γ2) be a dibaric ho-
momorphism. Then =(f) is a dibaric subalgebra of A2 and ker(f) is
a dibaric ideal of A1. The bijection induced by f is a dibaric isomor-
phism, that is (A1, γ1)/ ker(f) ∼= im(f).

Lemma 3.2. : A dibaric homomorphism f : (A1, γ1) −→ (A2, γ2)
is an isomorphism if and only if f̂ ≡ f|N1 : N1 −→ N2 is an isomor-
phism, where Ni = ker(γi), for i = 1, 2.
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Proof. Let f : (A1, γ1) −→ (A2, γ2) be a dibaric homomorphism
such that f̂ : N1lN2 is an isomorphism. Consider u, v ∈ A1 satisfying
γ1(u) = m and γ1(v) =f. If a, b ∈ A1 then there exist elements
x, y ∈ N1 and scalars α1, α2, β1, β2 ∈ F uniquely determined such
that a = α1u + α2v + x and b = β1u + β2v + y. Now we assume
that f(a) = f(b). This give us that f(a − b) = 0, and since f is
a dibaric homomorphism, we have that a − b ∈ N1. This implies
that α1 = β1 and α2 = β2. Then, because f(a) = f(b), we obtain
that f(x) = f(y). Now by hypothesis f̂ is an isomorphism and hence
x = y. Consequently, a = b. The reverse is trivial.

An idempotent element e in a dibaric algebra (A, γ), is called
semiprincipal if e = u + v, where γ(u) = m, γ(v) = f, and u2 = 0,
v2 = 0 and uv = vu = (u + v)/2.

Let (A, γ) be a dibaric algebra and e = u + v a semiprincipal
idempotent element in A. Then, we have the decomposition A =
Fu⊕Fv⊕N where Fu⊕Fv is a dibaric subalgebra isomorphic to §.

There exists a natural form to get algebras with semiprincipal
idempotent elements. If N is an arbitrary algebra over F and
λ1, λ2, ρ1, ρ2 : N −→ N are linear applications, we consider A = §⊕N,
with the multiplication (αm + βf, x1)(µm + ηf, x2) defined by
(

(αη + βµ)
2

(m + f), x1x2 + αλ1(x2) + βρ1(x2) + µλ2(x1) + ηρ2(x1)
)

and weight function by γ(αm+βf, x) := αm+βf, where α, β, µ, η ∈ F
and x1, x2, x ∈ N. We have that γ is different from zero and the
element (m + f, 0) is a semiprincipal idempotent element of A. This
algebra is denoted by [λ1, λ2, ρ1, ρ2, N ].

Conversely, a dibaric algebra (A, γ) with semiprincipal idempotent
e = u + v, is isomorphic to [λ1, λ2, ρ1, ρ2,N ], where N = ker(γ),

λ1 = Lu|N , λ2 = Lv |N , ρ1 = Ru|N , ρ2 = Rv |N .

The applications La|N , Ra|N denote the restriction of the left and right
multiplications by the element a in N, that is, La(x) = ax, Ra(x) =
xa, for every x ∈ N.

If (A, γ) is a dibaric algebra with semiprincipal idempotent element
e = u + v, and I is a dibaric ideal of A, then Fu ⊕ Fv ⊕ I is a
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dibaric subalgebra of A. Naturally if I is maximal, it follows that this
subalgebra is maximal. Conversely, if I is a dibaric ideal, it follows
that the subalgebra defined above is maximal.

4. The Main Theorem

For two dibaric algebras, (A1, γ1) and (A2, γ2), we have the external
product A1 × A2 with the multiplication given by (x1, x2)(y1, y2) =
(x1y1, x2y2). This algebra is not necessarily dibaric, but the subspace

A1 ∨ A2 := {(x1, x2) ∈ A1 ×A2 | γ1(x1) = γ2(x2)}

is a dibaric algebra with dibaric weight homomorphism given by

γ1 ∨ γ2(x1, x2) := γ1(x1) = γ2(x2).

We will call this algebra (A1 ∨ A2, γ1 ∨ γ2) by join of A1 and A2.
The join for baric algebras with idempotent of weight 1 was de-

fined for Roberto Costa and H. Guzzo J. in [1]. Here, we extend this
definition for dibaric algebras.

There exists a natural identification of N1, the dibarideal ofA1 with
the ideal of A1 ∨ A2 given by the set {(x, 0) | x ∈ N1}. Analogously,
we identify N2, the dibarideal of A2, with the ideal of A1 ∨ A2 given
by the set {(0, x) | x ∈ N2}. Take u1, v1 ∈ A1 such that γ1(u1) = m,
γ1(v1) = f, and u2, v2 ∈ A2 such that γ2(u2) = m, γ2(v2) = f. We have
that u = (u1, u2) and v = (v1, v2) are in A1 ∨ A2 with γ1 ∨ γ2(u) = m
and γ1 ∨ γ2(v) =f. Therefore, we write

A1 ∨ A2 = Fu⊕ Fv ⊕ N1 ⊕ N2,

where N1 ⊕ N2 is the dibarideal of A1 ∨ A2.

Lemma 4.1. : The join of dibaric algebras satisfies the following
properties :

(a) (§ ∨ A, Id|§ ∨ γ) ∼= (A, γ); where Id|§ is the identity in § ;
(b) (§ ∨ A, ∗ ∨ γ) ∼= (A, γ);
(c) (A1 ∨ A2, γ1 ∨ γ2) ∼= (A2 ∨ A1, γ2 ∨ γ1);
(d) ((A1∨A2)∨A3, (γ1∨γ2)∨γ3) ∼= (A1∨(A2∨A3), γ1∨(γ2∨γ3)).
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In view of (d) we can define the join (
∨

i∈I Ai,
∨

i∈I γi) of an ar-
bitrary family {(Ai, γi)}i∈I of dibaric algebras, where

∨

i∈I Ai is the
subalgebra of ×i∈IAi, given by

∨

i∈I

Ai := ((xi)i∈I | xi ∈ Ai, γi(xi) = γj(xj), ∀ i, j ∈ I) ,

and the dibaric weight homomorphism is given by (
∨

i∈I γi)((xi)i∈I) :=
γi(xi), where i is a fixed and arbitrary index of I. Notice that for a
family A1, . . . ,Ar of r dibaric algebras with dimension of Ai equal to
ni, we have that

dim
r

∨

i=1
Ai = 2(1− r) +

r
∑

i=1
ni.

A dibaric algebra (A, γ) is decomposable if there exist non-trivial
dibaric algebras (A1, γ1) and (A2, γ2) such that (A, γ) ∼= (A1, γ1) ∨
(A2, γ2). In another case, we say that A is indecomposable.

Lemma 4.2. A dibaric algebra (A, γ) is decomposable if and
only if N is decomposable as M(A) module.

Proof. Let (A, γ) be a decomposable dibaric algebra. Then,
there exist two non-trivial dibaric algebras (A1, γ1) and (A2, γ2) and
a dibaric isomorphism f : (A, γ) −→ (A1 ∨ A2, γ1 ∨ γ2). Since
the dibarideal of A1 ∨ A2 is written as a direct sum of the ideals
N1 ≡ {(x, 0), x ∈ N1} and N2 ≡ {(0, x), x ∈ N2} and f is a dibaric
isomorphism, it follows that the dibarideal N of A is written as the
direct sum of the non-trivial ideals f−1(N1) and f−1(N2). Therefore
N is decomposable.

Conversely, let (A, γ) be a dibaric algebra such that N is de-
composable as M modulo. Then, there exist N1, N2, two proper M
submodules of N such that N = N1 ⊕ N2. So, we can write A =
Fu⊕ Fv ⊕N1 ⊕N2 where u, v satisfy γ(u) = m and γ(v) = h. Notice
that the subspaces N1 and N2 are ideals of A. Then, an element x ∈ A
is uniquely written as a sum x = αu + βv + x1 + x2, where α, β ∈ F
and x1 ∈ N1, x2 ∈ N2. This decomposition give us the means to define
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the projections πi : A −→ Ni, πi(x) = xi, for i = 1, 2. The mappings
πi, (i = 1, 2) satisfy the following properties:

πi(ux) = uπi(x), πi(xu) = πi(x)u, πi(vx) = vπi(x), πi(xv) = πi(x)v,

and πi(xy) = πi(x)πi(y) for all x, y ∈ N. Now, we define over the
vector space Ai = Fui ⊕ Fvi ⊕ Ni, (i = 1, 2) a product “ · ” such
that, restricted to Ni, it coincides with the multiplication of Ni as a
subalgebra of A that is xi · yi = xiyi for xi, yi ∈ Ni and

ui · vi = (ui+vi)
2 + πi(uv), vi · ui = (ui+vi)

2 + πi(vu),
ui · ui = πi(u2), vi · vi = πi(v2),
xi · ui = xiu, ui · xi = uxi,
xi · vi = xiv, vi · xi = vxi.

where xi, yi ∈ Ni. The algebra (Ai, ·) has dibaric homomorphism given
by γi(αui + βvi + xi) = αm + βf, for all α, β ∈ F and xi ∈ Ni. So,
(A1, γ1) and (A2, γ2) are dibaric algebras and its join (A1, γ1)∨(A2, γ2)
is isomorphic to (A, γ). To see that this last assertion is true, we
consider the mapping f : A −→ A1 ∨ A2, given by

f(αu + βv + x) = (αu1 + βv1 + π1(x), αu2 + βv2 + π2(x)).

Simple computations show that f is a dibaric isomorphism.
The above result can be generalized in the following sense: if a

dibaric algebra (A, γ) is written as join of a family of dibaric algebras
{(Ai, γi)}n

i=i, that is (A, γ) = (
∨n

i=1Ai,
∨n

i=1 γi), then we identify Nj ≡
{(0, . . . , xj, . . . , 0) ∈ ∨n

i=1Ai, xj ∈ Nj}, where Nj = ker(γj) and we
have that the dibaric ideal N of A is written as a direct sum of the M
submodules as follows N = N1 ⊕ · · · ⊕ Nn.

Conversely, if we have that the dibaric ideal N of an algebra (A, γ)
is written as a direct sum of M submodules of N, that is N =

⊕n
i=1Ni,

where Ni is M submodule, then for each index i we define an algebra
over the vector space Ai = Fui ⊕ Fvi ⊕ Ni with a product as in the
above lemma where πi(αui + βvi + x) = xi whenever x =

∑n
j=1 xj

with xj ∈ Nj. This algebra has weight homomorphisms given by
γi(αui + βvi + πi(x)) = αm + βf. So, (Ai, γi) is a dibaric algebras and
f : (A, γ)l(

∨n
i=1Ai,

∨n
i=1 γi), defined by

f(αu + βv + x) = (αu1 + βv1 + π1(x), . . . , αun + βvn + πn(x)),
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where α, β ∈ F, x ∈ N, is a dibaric homomorphism.

Corollary 4.1. : If a dibaric algebra (A, γ) is written as a join of
a finite family of dibaric algebras, that is, (A, γ) ∼= (

∨n
i=1 Ai,

∨n
i=1 γi),

then N ∼= N1×· · ·×Nn, where Ni := ker(γi). Conversely, if the dibaric
ideal N of an arbitrary dibaric algebra (A, γ), is written as a direct
sum of ideals I1, . . . , In, then there exist dibaric algebras {(Ai, γi)}n

i=1,
with ker(γi) ∼= Ii, such that (A, γ) ∼= (

∨n
i=1Ai,

∨n
i=1 γi).

We say that a dibaric algebra (A, γ) satisfies the ascendent chain
condition (a.c.c.) if N = ker(γ) satisfies (a.c.c.) as M module, where
M is the multiplication algebra of A. Analogously, we say that a
dibaric algebra (A, γ) satisfy the descendent chain condition (d.c.c.)
if N satisfy (d.c.c.) as M (A) module.

Lemma 4.3. : Let (A1∨A2, γ1∨γ2) be the join of two dibaric alge-
bras (A1, γ1) and (A2, γ2). Then (e1, e2) is a semiprincipal idempotent
in A1 ∨A2 if and only if e1, e2 are semiprincipal idempotent elements
in A1 and A2, respectively. Therefore, it follows that A1 ∨ A2 has a
semiprincipal idempotent if and only ifA1 andA2 have a semiprincipal
idempotent.

Proof. (⇒) Let e := (e1, e2) = (u1, u2)+ (v1, v2) be a semiprinci-
pal idempotent element in A1 ∨A2, with u1, v1 ∈ A1 and u2, v2 ∈ A2.
Under these conditions, we have that (u1, u2)2 = (0, 0). So, it fol-
lows that (u2

1, u
2
2) = (0, 0), therefore u2

1 = 0 and u2
2 = 0. Analogously,

(v1, v2)2 = (0, 0), and so v2
1 = 0 and v2

2 = 0. On the other hand,
(u1, u2)(v1, v2) = (u1v1, u2v2) = ((u1, u2) + (v1, v2))/2. Then, u1v1 =
(u1 +v1)/2 and u2v2 = (u2 +v2)/2. Finally, we have (γ1∨γ2)(u1, u2) =
γ1(u1) = γ2(u2) = m and (γ1 ∨ γ2)(v1, v2) = γ1(v1) = γ2(v2) = f.
Hence, e1 = u1 + v1 and e2 = u2 + v2 are semiprincipal idempotent
elements in A1 and A2, respectively.

(⇐) If e1 = u1 + v1 ∈ A1 and e2 = u2 + v2 ∈ A2 are semiprincipal
idempotent elements, the ordered pair (e1, e2) = (u1, u2) + (v1, v2) ∈
A1 ∨ A2 because γ1(e1) = m + f = γ2(e2). This element satisfy
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(e1, e2)2 = (e2
1, e

2
2) = (e1, e2) and (u1, u2)2 = (u2

1, u
2
2) = (0, 0), (v1, v2)2 =

(v2
1, v

2
2) = (0, 0). Finally, we have that (u1, u2)(v1, v2) = (u1v1, u2v2) =

(u1, u2)/2+(v1, v2)/2. Therefore (e1, e2) is a semiprincipal idempotent
in A1 ∨ A2.

The above result can be generalized in the following sense: if (A, γ)
has a semiprincipal idempotent e = u+v and this algebra is isomorphic
to the join of a finite family {(Ai, γi)}n

i=1 of dibaric subalgebras, then
each algebra Ai has a semiprincipal idempotent ei = ui + vi. To prove
it, we use induction over n and the associativity of the join of dibaric
algebras. Therefore, we have the corollary below.

Corollary 4.2. : If (A, γ) ∼= (
∨n

i=1Ai,
∨n

i=1 γi), then A has a
semiprincipal idempotent if and only if Ai have semiprincipal idem-
potents, for all i.

Lemma 4.4. : Let (A, γ) be a dibaric algebra with e = u + v as
semiprincipal idempotent element such that (A, γ) ∼= (

∨n
i=1Ai,

∨n
i=1 γi).

Then for every i, there exists a dibaric subalgebra of A isomorphic to
(Ai, γi) with e = u + v as semiprincipal idempotent.

Proof. We will suppose that (A, γ) = (
∨n

i=1Ai,
∨n

i=1 γi). If e =
u + v is a semiprincipal idempotent element in

∨n
i=1Ai, with

e = (e1, . . . , en), u = (u1, . . . , un) = u and v = (v1, . . . , vn),

then ei = ui + vi is a semiprincipal idempotent in Ai. On the other
hand

∨n
i=1Ai can be written as

n
∨

i=1
Ai = Fu⊕ Fv ⊕ N1 ⊕ · · · ⊕ Nn,

where

Nj = {(0, . . . , xj, . . . , 0) ∈
n
∨

i=1
Ai | xj ∈ ker(γj)}

is an barideal of
∨n

i=1Ai. So, since e = u + v is a semiprincipal idem-
potent element and Nj is a barideal of A, for j = 1, 2, . . . , n, it
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follows that Fu ⊕ Fv ⊕ Nj is a dibaric subalgebra of
∨n

i=1Ai. Fi-
nally, the linear mapping fj : Fu ⊕ Fv ⊕ Nj −→ Aj defined by
fj(αu + βv + x) = αuj + βvj + x for all α, β ∈ F e x ∈ Nj is a
dibaric isomorphism.

Lemma 4.5. : If a dibaric algebra (A, γ) with semiprincipal
idempotent e = u + v satisfying the descendent chain condition, then
there exists a finite number of indecomposable dibaric subalgebras
{(Ai, γi)}n

i=1 of (A, γ), such that (A, γ) ∼= (A1∨· · ·∨An, γ1∨· · ·∨γn).

Proof. Since (A, γ) satisfy the descendent chain condition, it
follows that N satisfies d.c.c. as M (A) module. So, there exist
indecomposable M (A) submodules N1, . . . , N of N such that N =
N1 ⊕ N2 ⊕ · · · ⊕ Nm. Therefore, for each j, Aj = Fu ⊕ Fv ⊕ Nj

is a dibaric subalgebra of A such that (A, γ) ∼= (
∨n

i=1Ai,
∨n

i=1 γi).
Finally, we will show that Aj is indecomposable, for each j. We ob-
serve that a dibaric ideal I of Aj is a dibaric ideal of A, because
IA = I(Fu⊕ Fv ⊕ N1 ⊕ · · · ⊕ Nn) = IAj ⊆ I. Analogously AI ⊆ I.
So, the M (A)submodules of Nj are equal to the ; M (A) submodules
of Nj. Since Nj is indecomposable as M (A)-module, it follows that Nj

is indecomposable as M (Aj)-module. So, Aj is indecomposable.

Theorem 4.1. : (Krull-Schmidt) Let (A, γ) be a dibaric al-
gebra with semiprincipal idempotent element e = u + v that satisfies
d.c.c. and a.c.c.. If

(A, γ) = (A1∨· · ·∨An, γ1∨· · ·∨γn), (A, γ) = (B1∨· · ·∨Bm, χ1∨· · ·∨χm).

where each (Ai, γi) and (Bj, χj) are indecomposable dibaric subalge-
bras of (A, γ), then n = m and reindexing, we have that (Ai, γi) ∼=
(Bi, χi), for each i ∈ {1, . . . , n}.

Proof. Since we have two decompositions of A in indecomposable
dibaric subalgebras, then N = ker(γ) is decomposed in indecompos-
able M submodules as follows

N = N1 ⊕ · · · ⊕ Nn, N = P1 ⊕ · · · ⊕ Pm.
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where Ni = ker(γi) and Pj = ker(χj). According to the Krull-
Schmidt’s Theorem for A modules, we have that m = n and with
a reindexation Ni

∼= Pi as A-modules. By the same Theorem, we can
write

N = N1 ⊕ N2 ⊕ · · · ⊕ Nk ⊕Pk+1 ⊕ · · · ⊕ Pn,(4.1)

for 0 ≤ k ≤ n. Let j be a fixed index. First we will show that Nj
∼= Pj

as algebras. We consider the two decomposition of (4.1)

N1 ⊕ N2 ⊕ · · · ⊕ Nj−1 ⊕ Nj ⊕ Pj+1 ⊕ · · · ⊕ Pn,

N1 ⊕ N2 ⊕ · · · ⊕ Nj−1 ⊕ Pj ⊕Pj+1 ⊕ · · · ⊕ Pn.

So, if x ∈ N, then x can be written in two different ways

x = x1 + · · ·+ xn, x = x′1 + · · ·+ x′n

where xj ∈ Nj; x′j ∈ Pj; xr, x′r ∈ Nr for 1 ≤ r ≤ j − 1, and xs, x′s ∈ Ps

for j + 1 ≤ s ≤ n. Let τj be the injection of Nj in N and πj : N −→
Pj the projection define via πj(x) := x′j for all x ∈ N. Then the
composition pj := πj ◦ τj of Nj in Pj is an isomorphism of algebras.
For x, y ∈ Nj we have that pj(xy) = (xy)′j = {(x′1 + · · · + x′n)(y′1 +
· · · + y′n)}′j = {x′1y′1 + · · · + x′ny

′
n}′j = x′jy

′
j = pj(x)pj(y) and hence pj

is a homomorphism of algebras. By to prove that pj is injective, we
consider x ∈ ker(pj). Then 0 = pj(x) = x′j and so, x ∈ N∩ (N1⊕N2⊕
· · · ⊕ Nj−1 ⊕ Pj+1 ⊕ · · · ⊕ Pn) = {0}. Therefore x = 0. Next, by to
prove that pj is onto, we take y ∈ Pj. Then, y = y′j = πj(y) = πj(y1 +
· · ·+yn) = πj(y1)+· · ·+πj(yn) = 0+· · · 0+πj(yj)+0+· · ·+0 = πj(yj)
where, according to above decomposition, yj ∈ Nj.

Finally, we will define a dibaric isomorphism between the algebras
Aj and Bj. According to Lemma 4.4 we can assume, without lost
of generality, that (Aj, γj) and (Bj, χj) have the same semiprincipal
idempotent element denoted by e = u + v. Then, we define the appli-
cation fj : Aj −→ Bj, by

fj(αu + βv + x) = αu + βv + pj(x)

where α, β ∈ F e x ∈ Nj. It is clear that fj is a linear isomorphism
and also that γj = χj ◦ fj. Therefore, only rest to show that fj is
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a homomorphism of algebras. Notice that if w ∈ 〈u, v〉 and x ∈ Nj,
then

pj(wx) = wpj(x), pj(xw) = pj(x)w,

because pj(wx) = {w(x′1 + · · ·+ x′n)}′j = {wx′1 + · · ·+ wx′n}′j = wx′j =
wpj(x). Analogously, we have the other equality. So, if a = αu+βv+x,
b = ηu + µv + y are in Aj, then

fj(ab) = fj

(

1
2(αµ + βη)(u + v) + αuy + βvy + ηxu + µxv + xy

)

= 1
2(αµ + βη)(u + v) + αpj(uy) + βpj(vy) + ηpj(xu)+

µpj(xv) + pj (xy)
= 1

2(αµ + βη)(u + v) + αupj(y) + βvpj(y) + ηpj(x)u+
µpj(x)v + pj (x) pj (y)

= ((αu + βv + pj(x)) (ηu + µv + pj(y)) = fj(a)fj(b).
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