Proyecciones Vol. 19, N^o 3, pp. 249-269, December 2000. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-0917200000300003

DIBARIC ALGEBRAS

MARIA APARECIDA COUTO * Universidade Federal do Río Grande do Norte, Brazil and JUAN C. GUTIÉRREZ FERNÁNDEZ[†]

Universidade de São Paulo, Brazil

Abstract

Here we give basic properties of dibaric algebras which are motivated by genetic models. Dibaric algebras are not associative and they have a non trivial homomorphism onto the sex differentiation algebra. We define first join of dibaric algebras next indecomposable dibaric algebras. Finally, we prove the uniqueness of the decomposition of a dibaric algebra, with semiprincipal idempotent, as the join of indecomposable dibaric algebras.

KEY WORDS : Nonassociative algebras, baric algebras, genetic algebras, dibaric algebras.

1991 AMS Subject classification : 17D92.

^{*}Partially supported by CAPES-PICD process BEX0063/98-3. *Partially supported by DGICYT process PB97-1291-C03-01.

1. Introduction

The study of dibaric algebras has as motivation the algebras coming from genetic models in bisexual populations with sex linked genetic inheritance. First, Etherington [3], introduced the idea of treating the male and female components of a population separately and next Holgate [4] formalized this concept with the introduction of the sex differentiation algebra and dibaric algebras. Following the modern notation of Wörz-Busekros [7], we introduce Holgate's definitions bellow. See also the survey [6] for more information. Here F will be a field of characteristic different from two.

Let § be a bi-dimensional commutative F-algebra generated by the elements {m, f}, and with multiplication table $m^2 = 0$, mf = fm = (m + f)/2, and $f^2 = 0$. This algebra § is called *sex differentiation algebra*. Now, an algebra \mathcal{A} will be called *dibaric* if it admits a homomorphism onto the sex differentiation algebra.

Recall that an *F*-algebra is called baric if it admits a homomorphism onto the field *F*. Since $\S^2 = \langle \mathbf{m} + \mathbf{f} \rangle_F$ is an ideal of \S isomorphic to *F* we get that \S^2 is a baric algebra and hence we obtain the following well known result

Lemma 1.1. : If an algebra \mathcal{A} is dibaric, then \mathcal{A}^2 is baric.

Example 1.1. : Let $(, \omega)$ be a baric **R**-algebra, that is, \mathcal{B} is an **R**-algebra and $\omega : \mathcal{B} \longrightarrow \mathbf{R}$ is a homomorphism different from zero. Consider $T : \mathcal{B} \longrightarrow \mathcal{B}$ a linear mapping satisfying $\omega \circ T = \omega$. Thus T leaves the ideal ker (ω) invariant. Now, we introduce the vector space $\mathcal{A} := \mathcal{B} \otimes \mathcal{B} \oplus \mathcal{B}$, where \oplus denotes the direct sum and \otimes denotes the tensor product of vector spaces. We identify the elements $x \otimes y \oplus 0 \in \mathcal{A}$ with $x \otimes y \in \mathcal{B} \otimes \mathcal{B}$ and the elements $0 \oplus z \in \mathcal{A}$ with $z \in \mathcal{B}$. In this space we introduce a commutative multiplication by

$$(x_1 \otimes y_1) (x_2 \otimes y_2) = 0, \ z_1 z_2 = 0$$
$$(x \otimes y) \ z = \frac{1}{2} (xy \otimes T(z) \oplus \omega(z) xy)$$

The algebra \mathcal{A} is the *sex linked duplicate* of the algebra \mathcal{B} with respect to the linear mapping T (see [7] for more information). Obviously, \mathcal{A}

is a dibaric algebra with weight $\gamma : \mathcal{A} \longrightarrow \mathcal{S}$ defined by $\gamma(x \otimes y \oplus z) := \omega(xy)h + \omega(z)m$.

Example 1.2. : Let $A = A_h \oplus A_m$ be the 5-dimensional commutative **R**-algebra with $\mathbf{a}_1, \mathbf{a}_2$ and \mathbf{a}_3 as basis of A_h , with \mathbf{b}_1 and \mathbf{b}_2 as basis of A_m and with multiplication table as follows: $A_h^2 = 0, A_m^2 = 0$ and (for i, j = 1, 2)

$$\mathbf{a}_i \mathbf{b}_j = \frac{1}{2} \left(\delta_{ij} \mathbf{a}_i + (1 - \delta_{ij}) \mathbf{a}_3 + \mathbf{b}_i \right), \quad \mathbf{a}_3 \mathbf{b}_j = \frac{1}{2} \left(\mathbf{a}_1 \mathbf{b}_j + \mathbf{a}_2 \mathbf{b}_j \right)$$

where δ_{ij} is equal to 1 if i = j and is equal to 0 in another case. The algebra A is dibaric with weight $\gamma : A \longrightarrow S$ defined by $\gamma(x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 + y_1\mathbf{b}_1 + y_2\mathbf{b}_2) := (x_1 + x_2 + x_3)h + (y_1 + y_2)m$. This algebra is called the *zygotic algebra* for sex *linked inheritance* for two alleles with *simple Mendelian segregation rates*. We claim, without proof, the following relevant fact: every element $x \in A$ with $\gamma(x) =$ h + m satisfies the plenary train equation $[8 \ x^{[5]} - 6x^{[4]} - 3x^{[3]} + x^{[2]} = 0]$ where the plenary power sare defined inductively by $\mathbf{x}^{[1]} = x$ and $x^{[k+1]} = x^{[k]}x^{[k]}$ for $k \geq 1$. Therefore, if $x \in A$ represents a state of a population ($\gamma(x) = h + m$), then its trajectory $\{x^{[k]}\}_{k=1}^{\infty}$ converge and $x^{[\infty]} = \lim_{k \to \infty} x^{[k]}$ is equal to the idempotent $(8x^{[4]} + 2x^{[3]} - x^{[2]})/9$. We notice that an explicit form of $x^{[\infty]}$, in terms of the corresponding gametic algebra, was given by Lyubich in [5] (see also [7, 8, 9] for more information). Finally, we claim that $8x^{[4]} - 6x^{[3]} - 3x^{[2]} + x^{[1]} \in$ $ann(A) = \mathbf{R}\langle \mathbf{a}_1 + \mathbf{a}_2 - 2\mathbf{a}_3\rangle$ for all $x \in A$ with $\gamma(x) = \mathbf{f} + m$.

2. Dibaric Weight Homomorphisms

In the following \mathcal{A} will be an algebra (not necessarily commutative or associative) over the field F. A function $\gamma : \mathcal{A} \longrightarrow \S$, where \S is the sex differentiation algebra defined above, is called dibaric weight homomorphism if γ is an onto homomorphism of algebras. So, if a, bare elements in \mathcal{A} such that $\gamma(a) = m$ and $\gamma(b) = f$, then we have the following decomposition

(2.1)
$$\mathcal{A} = Fa \oplus Fb \oplus \ker(\gamma),$$

where $\ker(\gamma) := \{x \in \mathcal{A} : \gamma(x) = 0\}$ is an ideal of \mathcal{A} of codimension two.

Notice that for every dibaric weight homomorphism γ and every automorphism $f: \S \longrightarrow \S$, the mapping $f \circ \gamma$ is a dibaric weight homomorphism and ker $(\gamma) = \text{ker}(f \circ \gamma)$. We say that two dibaric weight homomorphisms γ and γ' are equivalent if there exists an automorphism $f: \S \longrightarrow \S$ such that $\gamma' = f \circ \gamma$.

Lemma 2.1. : The sex differentiation algebra has only two automorphisms, the identity and the involution $* : \S \longrightarrow \S$ given by *(m) = f, *(f) = m.

Proof. Let $f : \S{l}\S$ be an onto homomorphism. Then $0 = f(m^2) = f(m)^2$, and analogously, $0 = f(f)^2$ and hence either $f(m) \in Fm$, $f(f) \in Ff$ or $f(m) \in Ff$, $f(f) \in Fm$. Next using that f(m)f(f) = f(mh) = f((m + f)/2) = (f(m) + f(f))/2 we get the result.

From this result, it follows that each equivalence class defined above has exactly two weight. So, if γ and γ' are two different and equivalent dibaric weight homomorphisms, then $\gamma' = * \circ \gamma$. We denote by \mathscr{C} the set of these equivalence classes, that is, an element of \mathscr{C} is $\{\gamma, \gamma^*\}$, where γ is a dibaric weight homomorphism and $\gamma^* := * \circ \gamma$.

Theorem 2.1. : The application $\{\gamma, \gamma^*\} \mapsto \ker(\gamma)$ is a bijection between the set \mathscr{C} of equivalence class of dibaric weight homomorphisms of \mathcal{A} , and the set of ideals I of \mathcal{A} of codimension two, such that $\mathcal{A}/I \cong \S$.

Corollary 2.1. : Dibaric weight homomorphisms with same kernel are equivalent.

Lemma 2.2. : Different dibaric weight homomorphisms of an algebra \mathcal{A} are linearly independent.

Proof. Let $\gamma_1, \gamma_2, \dots, \gamma_m$ be different dibaric weight homomorphisms of \mathcal{A} and consider scalars $\alpha_1, \dots, \alpha_m$ in F such that

(2.2)
$$\alpha_1 \gamma_1(z) + \alpha_2 \gamma_2(z) + \dots + \alpha_m \gamma_m(z) = 0$$

for all $z \in \mathcal{A}$. We will prove that $\alpha_1 = 0 = \alpha_2 = \cdots = \alpha_m$ using induction over the number m of different dibaric weight homomorphisms of \mathcal{A} . The case m = 1 is trivial. Let m > 1. Then by hypothesis of induction, the lemma is true for m - 1 weights.

Notice that if there exists and index i such that $\alpha_i = 0$, then by hypothesis of induction, we obtain that $\alpha_j = 0$ for j = 1, 2, ..., m, and the result follows.

First, we suppose that all weight homomorphisms have same kernel. Under this assumption, we obtain from Corollary 2.1 that m = 2and $\gamma_2 = \gamma_1^*$. Now, let $z \in \mathcal{A}$ such that $\gamma_1(z) = m$. Then $0 = \alpha_1 \gamma_1(z) + \alpha_2 \gamma_1^*(z) = \alpha_1 m + \alpha_2 f$, and hence it follows that $\alpha_1 = 0 = \alpha_2$.

Finally, we suppose that there exist homomorphisms with different kernels. We can assume that $\ker(\gamma_1) \neq \ker(\gamma_2)$. Under this condition, consider $x \in \mathcal{A}$ such that $\gamma_1(x) \neq 0$ and $\gamma_2(x) = 0$. Since $\operatorname{im}(\gamma_1) = \mathcal{S}$, there exists $y \in \mathcal{A}$ such that $\operatorname{m} + \operatorname{f} = \gamma_1(x)\gamma_1(y) = \gamma_1(xy)$. Multiplying the equation (2.2) by $\gamma_1(xy)$, we obtain

$$(2.3) \alpha_1 \gamma_1(xy) \gamma_1(z) + \alpha_2 \gamma_1(xy) \gamma_2(z) + \dots + \alpha_m \gamma_1(xy) \gamma_m(z) = 0,$$

and replacing $z \to (xy)z$ in equation (2.2) we get

$$(2.4)\alpha_1\gamma_1(xy)\gamma_1(z) + \alpha_2\gamma_2(xy)\gamma_2(z) + \dots + \alpha_m\gamma_m(xy)\gamma_m(z) = 0.$$

for all $z \in \mathcal{A}$. Next subtracting the equation (2.4) from equation (2.3), we get

(2.5)
$$\alpha_2 \left(\gamma_1(xy) \, \gamma_2(z) + \dots + \alpha_m \left(\gamma_1(xy) - \gamma_m(xy) \right) \, \gamma_m(z) = 0.$$

Notice that $\gamma_2(xy) = 0$. Since $\gamma_k(xy) \in \gamma_k(\mathcal{A}^2) = \S^2 = \langle \mathbf{m} + \mathbf{f} \rangle_F$ for $k = 1, \ldots, m$, there exist scalars β_k such that $\gamma_k(xy) = \beta_k(\mathbf{m} + \mathbf{f})$. So, the equation (2.5) can be written as follows

$$(\mathbf{m} + \mathbf{f}) \left(\alpha_2 \gamma_2(z) + \alpha_3 (1 - \beta_3) \gamma_3(z) + \dots + \alpha_m (1 - \beta_m) \gamma_m(z) \right) = 0,$$

and therefore

$$\gamma(z) := \alpha_2 \gamma_2(z) + \alpha_3(1 - \beta_3) \gamma_3(z) + \dots + \alpha_m(1 - \beta_m) \gamma_m(z) \in F(\mathbf{m} - \mathbf{f}).$$

Thus, $\gamma(\mathcal{A}^2) \in F(\mathbf{m} + \mathbf{f}) \cap F(\mathbf{m} - \mathbf{f}) = (0)$. Now, if $\gamma(z) = \lambda_z(\mathbf{m} - \mathbf{f})$ then $0 = \gamma(z^2) = \gamma(z)^2 = -\lambda_z^2(\mathbf{m} + \mathbf{f})$. This implies that $\lambda_z = 0$ and hence $\gamma(z) = 0$. Using the hypothesis of induction on $\gamma(z) = 0$, we have $\alpha_2 = 0$. So, $\alpha_i = 0$ for all j.

From the above result, it follows that the number of different dibaric weight homomorphisms of an algebra \mathcal{A} is at most n, where n is the dimension of \mathcal{A} . We will show that this bound can be improved. For an algebra \mathcal{A} we define inductively

$$\mathcal{A}^{[1]} = \mathcal{A}, \quad \mathcal{A}^{[i]} = \mathcal{A}^{[i-1]} \mathcal{A}^{[i-1]}, \quad i > 1.$$

So, if \mathcal{A} has finite dimension, there exists a natural number r, such that $\mathcal{A}^{[r+1]} = \mathcal{A}^{[r]}$. Under this condition, we can show that the number of different dibaric weight homomorphisms of \mathcal{A} is at most $2 \cdot \dim(\mathcal{A}^{[r]})$. Notice that for a dibaric algebra $\mathcal{A}^2 \neq \mathcal{A}$.

According to Lemma 1.1, if \mathcal{A} is a dibaric algebra with γ as dibaric weight homomorphism, then \mathcal{A}^2 is baric and $\hat{\gamma} : \mathcal{A}^2 \longrightarrow \S^2$, the restriction of $\gamma : \mathcal{A} \longrightarrow \S$ is a baric weight homomorphism for \mathcal{A}^2 . From, now on we identify \S^2 with the field F.

Theorem 2.2. : The application $\{\gamma, \gamma^*\} \mapsto \hat{\gamma}$ is an injection between the set \mathscr{C} of equivalence classes of dibaric weight homomorphism of \mathcal{A} and the set of baric weight homomorphisms of \mathcal{A}^2 .

Proof. First, we note that the elements of \S^2 are invariant by the involution \ast and hence $pq = \ast(pq) = \ast(p) \ast(q)$ for all $p, q \in \S$. From this fact, we obtain that the application is well defined, that is $\hat{\gamma} = \hat{\gamma}^*$.

Next, we will show that the application is injective. Let τ, γ be two dibaric weight homomorphisms, such that $\hat{\tau} = \hat{\gamma}$. We have to show that these two homomorphisms are equivalent but according to Corollary 2.1, it suffices to show that they have the same kernels. So, let $a \in \ker(\gamma)$. Since $\ker(\gamma)$ is an ideal of \mathcal{A} , we have that $a\mathcal{A} \subseteq \ker(\gamma) \cap \mathcal{A}^2$ and using the hypothesis, we have $a\mathcal{A} \subseteq \ker(\tau)$. Then, it follows that $a \in \ker(\tau)$, since in other case we have an element $b \in \mathcal{A}$, such that $\tau(ab) \neq 0$ and this is a contradiction. So, we showed that $\ker(\gamma) \subset \ker(\tau)$ and therefore $\ker(\gamma) = \ker(\tau)$. This implies that the two homomorphisms are equivalent.

In an analogous way we can prove the following lemma

Lemma 2.3. : The application $\omega \mapsto \hat{\omega}$ is an injection between the set of baric weight homomorphisms of a baric algebra \mathcal{B} and the set of baric homomorphisms of \mathcal{B}^2 .

Proof. Let $\omega, \tau : B \longrightarrow F$ be two baric weight homomorphisms of \mathcal{B} such that $\omega(x) = \tau(x)$ for all $x \in \mathcal{B}^2$. We already know that $\omega = \tau$ if and only if $\ker(\omega) = \ker(\tau)$. If $x \in \ker(\omega)$, then $x^2 \in \ker(\omega) \cap \mathcal{A}^2 = \ker(\tau) \cap \mathcal{A}^2$ and hence $0 = \tau(x^2) = \tau(x)^2$. This forces $\tau(x) = 0$. Thus, we have proved that $\ker(\omega) \subset \ker(\tau)$ that is $\ker(\omega) = \ker(\tau)$ and hence by Lemma 3.3.1 of [5] we have that $\omega = \tau$.

According to [5] the number of baric weight homomorphisms of a baric algebra \mathcal{B} is at most its dimension. Using this fact, Lemma 2.3 and Theorem 2.2 we have the following result:

Corollary 2.2. : Let \mathcal{A} be a dibaric algebra of dimension n and r a natural number such that $\mathcal{A}^{[r+1]} = \mathcal{A}^{[r]}$. Under these conditions, the number of different dibaric weight homomorphisms of \mathcal{A} is at must $2 \cdot \dim(\mathcal{A}^{[r]})$.

Lemma 2.4. : Let \mathcal{A} be a dibaric algebra with γ as dibaric weight homomorphism. If there exists a monomial $p(x) \in F[x], p(x) \neq 0$, such that p(a) = 0, for all $a \in \ker(\gamma)$, then the only dibaric weight homomorphisms of \mathcal{A} are γ and γ^* .

Proof. Let $\tau : \mathcal{A} \longrightarrow \S$ be a dibaric weight homomorphism. If $\tau(a) \neq 0$, then there exists $b \in \mathcal{A}$ such that $\mathbf{m} + \mathbf{f} = \tau(a)\tau(b) = \tau(ab)$. Then $\tau(p(ab)) = p(\tau(ab)) = p(\mathbf{m} + \mathbf{f}) = \mathbf{m} + \mathbf{f}$ and hence $ab \notin \ker(\gamma)$. This forces that $a \notin \ker(\gamma)$. Consequently, $\ker(\gamma) \subset \ker(\tau)$ and $\ker(\gamma) = \ker(\tau)$. Now the result follows form Theorem 2.1.

Example 2.1. : An important example for biological applications is the evolution algebra \mathcal{A}_V described in [5, *Cap.I*]. Consider two positive integer *n* and ν and real scalars $p_{ij,k}^{(m)}$ and $p_{ij,l}^{(h)}$ satisfying

(2.6)
$$p_{ij,k}^{(m)} \ge 0, \qquad p_{ij,l}^{(h)} \ge 0, \qquad \sum_{k=1}^{n} p_{ij,k}^{(m)} = 1, \qquad \sum_{l=1}^{\nu} p_{ij,l}^{(h)} = 1,$$

for $1 \leq i \leq n$, $1 \leq j \leq \nu$. Now we define in the space $\mathbf{R}^n \times \mathbf{R}^{\nu}$ a commutative product as follows

$$e_i e_k = 0, \quad e_i \bar{e}_j = \frac{1}{2} \left(\sum_{k=1}^n p_{ij,k}^{(m)} e_k + \sum_{l=1}^\nu p_{ij,l}^{(f)} \bar{e}_l \right), \quad \bar{e}_j \bar{e}_l = 0$$

where we identify $e_i \equiv (e_i, 0)$, $\bar{e}_j \equiv (0, \bar{e}_j)$ such that $(e_i)_{i=1}^n$ is a canonical basis of \mathbf{R}^n and $(\bar{e}_j)_{j=1}^{\nu}$ is a canonical basis of \mathbf{R}^{ν} . In this way, we obtain a commutative algebra \mathcal{A}_V . The following result is well known

Lemma 2.5. : The mapping $s : \mathcal{A}_V \longrightarrow \S$ given by $s(z) = (\sum_{i=1}^n x_i)m + (\sum_{j=1}^{\nu} y_j)f$ where $z = (x, y) \in \mathcal{A}_V$ is a dibaric weight homomorphism.

Lemma 2.6. : The weight homomorphism $s : \mathcal{A}_V \longrightarrow \S$ is characterized, up to equivalence, as the only positive dibaric weight homomorphism in the sense that the image of $\Omega = \{(x, y) \in \mathcal{A}_V :$ $x_i, y_j \ge 0, \sum_i x_i = 1, \sum_j y_j = 1\}$ is contained in the set $\{\alpha m + \beta f \mid \alpha, \beta \ge 0, \alpha + \beta > 0\}.$

Proof. Let $\gamma : \mathcal{A}_V \longrightarrow \S$, be a positive dibaric weight homomorphism. For $1 \leq i \leq n$ and $1 \leq j \leq \nu$ we have that $\gamma(e_i), \gamma(\bar{e}_j) \in \S$, so

$$\gamma(e_i) = \alpha_i \mathbf{m} + \beta_i \mathbf{f}, \qquad \gamma(\bar{e}_j) = \bar{\alpha}_j \mathbf{m} + \bar{\beta}_j \mathbf{f},$$

where $\alpha_i, \beta_i, \bar{\alpha}_j, \bar{\beta}_j \in \mathbf{R}$. Then, because $(e_i)^2 = 0$, we get $0 = \gamma(e_i^2) = \gamma(e_i)^2 = (\alpha_i \mathbf{m} + \beta_i \mathbf{f})^2 = \alpha_i \beta_i (\mathbf{m} + \mathbf{f})$ and analogously, using that $(\bar{e}_j)^2 = 0$, we obtain that $0 = \bar{\alpha}_j \bar{\beta}_j (\mathbf{m} + \mathbf{f})$. On the other hand, the elements $2e_i \bar{e}_j$ and $e_i + \bar{e}_j$ belong to Ω and their images are

 $\gamma(2e_i\bar{e}_j) = 2\gamma(e_i)\gamma(\bar{e}_j) = 2(\alpha_i\mathrm{m}+\beta_j\mathrm{f})(\bar{\alpha}_j\mathrm{m}+\bar{\beta}_j\mathrm{f}) = (\alpha_i\bar{\beta}_j+\beta_i\bar{\alpha}_j)(\mathrm{m}+\mathrm{f})$ and $\gamma(e_i+\bar{e}_j) = (\alpha_i+\bar{\alpha}_j)\mathrm{m} + (\beta_i+\bar{\beta}_j)\mathrm{f}$. Therefore, we have the following relations,

$$\alpha_i\beta_i=0, \quad \alpha_i+\bar{\alpha}_j>0, \quad \alpha_i\bar{\beta}_j+\beta_i\bar{\alpha}_j>0, \quad \beta_i+\bar{\beta}_j>0, \quad \bar{\alpha}_j\bar{\beta}_j=0.$$

In particular $\alpha_1\beta_1 = 0$ and hence either $\alpha_1 \neq 0$ and $\beta_1 = 0$ or $\alpha_1 = 0$ and $\beta_1 \neq 0$. We will consider the two cases separately. In the first case, we will prove that $\gamma = s$ and in the second case that $\gamma = * \circ s$.

First, we suppose that $\alpha_1 \neq 0$ and $\beta_1 = 0$. Then, for each j, the equation $\alpha_1 \bar{\beta}_j + \beta_1 \bar{\alpha}_j > 0$ implies that $\bar{\beta}_j \neq 0$. Therefore, $\bar{\alpha}_j = 0$. Now, because $\alpha_1 + \bar{\alpha}_j, \beta_1 + \bar{\beta}_j > 0$ we obtain that $\alpha_1 > 0$ and $\bar{\beta}_j > 0$. In particular, $\bar{\beta}_1 > 0$ and $\bar{\alpha}_1 = 0$. So, from inequality $\alpha_i \bar{\beta}_1 + \beta_i \bar{\alpha}_1 > 0$ we have that $\alpha_i > 0$ and hence $\beta_i = 0$. Thus, we have proved that $\gamma(e_i) = \alpha_i m$ and $\gamma(\bar{e}_j) = \bar{\beta}_j f$. Then,

$$\begin{aligned} \alpha_i \bar{\beta}_j(m+\mathsf{f}) &= 2\gamma(e_i)\gamma(\bar{e}_j) = 2\gamma(e_i\bar{e}_j) = \gamma\left(\sum_{k=1}^n p_{ij,k}^{(m)} e_k + \sum_{l=1}^\nu p_{ij,l}^{(f)} \bar{e}_l\right) \\ &= \sum_{k=1}^n p_{ij,k}^{(m)} \alpha_k m + \sum_{l=1}^\nu p_{ij,l}^{(f)} \bar{\beta}_l \mathsf{f}. \end{aligned}$$

So, we obtain the following equalities,

(2.7)
$$\alpha_i \bar{\beta}_j = \sum_{k=1}^n p_{ij,k}^{(m)} \alpha_k, \qquad \alpha_i \bar{\beta}_j = \sum_{l=1}^n p_{ij,l}^{(f)} \bar{\beta}_l,$$

for $1 \leq i \leq n$ and $1 \leq j \leq \nu$. Now considering the scalars

$$\alpha_{\max} = \max(\alpha_i)_{i=1}^n, \quad \alpha_{\min} = \min(\alpha_i)_{i=1}^n,$$
$$\bar{\beta}_{\max} = \max(\bar{\beta}_j)_{j=1}^\nu, \quad \bar{\beta}_{\min} = \min(\bar{\beta}_j)_{j=1}^\nu,$$

and using (2.7), we obtain

$$\alpha_{\min} = \sum_{k=1}^{n} p_{ij,k}^{(m)} \alpha_{\min} \le \sum_{k=1}^{n} p_{ij,k}^{(m)} \alpha_{k} = \alpha_{i} \bar{\beta}_{j} \le \sum_{k=1}^{n} p_{ij,k}^{(m)} \alpha_{\max} = \alpha_{\max}.$$

and also

$$\bar{\beta}_{\min} = \sum_{k=1}^{n} p_{ij,k}^{(f)} \bar{\beta}_{\min} \le \sum_{l=1}^{n} p_{ij,l}^{(f)} \bar{\beta}_{l} = \alpha_{i} \bar{\beta}_{j} \le \sum_{l=1}^{n} p_{ij,l}^{(f)} \bar{\beta}_{\max} = \bar{\beta}_{\max}.$$

In particular, $\alpha_{\min} \leq \alpha_{\min}\bar{\beta}_j$ and $\alpha_{\max}\bar{\beta}_j \leq \alpha_{\max}$, and since all scalars are positive, it follows that $1 \leq \bar{\beta}_j \leq 1$, for all j. This implies that $\bar{\beta}_j = 1$. Analogously $\bar{\beta}_{\min} \leq \alpha_i \bar{\beta}_{\min}$ and $\alpha_i \bar{\beta}_{\max} \leq \bar{\beta}_{\max}$ and then $\alpha_i = 1$, for all i. So, $\gamma(e_i) = m$ and $\gamma(\bar{e}_j) = f$. Therefore $\gamma = s$.

Finally, we consider the second case, that is, $\beta_1 \neq 0$ and $\alpha_1 = 0$. Analogously, we have that $\gamma(e_i) = \beta_i \mathbf{f}$ and $\gamma(\bar{e}_j) = \bar{\alpha}_j \mathbf{m}$. Repeating the calculations above with the scalars α_i and $\bar{\beta}_j$ we get that these are all equal to 1. Thus, $\gamma = * \circ s$.

So, s and $s^* = * \circ s$ are the only positive dibaric weight homomorphisms in this algebra.

3. Dibaric Algebras

An ordered pair (A, γ) , where A is an algebra and $\gamma : A \longrightarrow \S$ is a dibaric weight homomorphism is called dibaric algebra. Under these conditions, the homomorphism is called weight function and the affine subspace $H := \{x \in \mathcal{A} \mid \gamma(x) = m + f\}$ of codimension 2, is called unit subspace. For each $x \in \mathcal{A}$ with $x^2 \notin \ker(\gamma)$, we have that $x^2/\gamma(x^2) \in H$. We denote the kernel of γ , by N, that is,

$$\mathbf{N} = \{ x \in \mathcal{A} \mid \gamma(x) = 0 \}.$$

If B is any set contained in \mathcal{A} , we will denote by N_B the set $N \cap B$, that is,

$$\mathcal{N}_B = \{ x \in \mathcal{B} \mid \gamma(x) = 0 \}.$$

Let (\mathcal{A}, γ) be a dibaric algebra. We say that a subalgebra \mathcal{A}_1 of \mathcal{A} is a dibaric subalgebra of \mathcal{A} if $\mathcal{A}_1 \cap \ker(\gamma)$ is an ideal of \mathcal{A}_1 of codimension 2, or equivalently, $\gamma_1 \equiv \gamma_{|\mathcal{A}_1|}$ is a dibaric weight homomorphism for \mathcal{A}_1 . This subalgebra is denoted by $(\mathcal{A}_1, \gamma_1) \subset (\mathcal{A}, \gamma)$. A dibaric algebra \mathcal{A} is not trivial if N is different from zero, that is, \mathcal{A} is not isomorphic to §.

Also, a subalgebra \mathcal{A}_1 of \mathcal{A} is called baric subalgebra if $\gamma(\mathcal{A}_1) = \langle \mathbf{m} + \mathbf{f} \rangle_F$.

An ideal I is called dibaric ideal if $I \subseteq \ker(\gamma)$, that is, $\gamma|_I = \{0\}$. Naturally a dibaric ideal cannot be a dibaric subalgebra. We say that a dibaric ideal I is maximal if $I \neq \mathbb{N}$ and the only dibaric ideals of \mathcal{A} that contain I are I and N. Notice that the biggest dibaric ideal of a dibaric algebra (\mathcal{A}, γ) is N.

The annulator, $ann\mathcal{A} := \{x \in A \mid xA = (0)\}$ is a dibaric ideal of \mathcal{A} . Also, any subspace of $ann\mathcal{A}$ is a dibaric ideal. The ideal \mathcal{A}^2 of \mathcal{A} , is not dibaric, but, according to Lemma 1.1, we have that \mathcal{A}^2 is a baric subalgebra.

For any dibaric ideal I, we have that the quotient \mathcal{A}/I is a dibaric algebra. It is called dibaric quotient and is denoted by $(\mathcal{A}, \gamma)/I$. The quotient algebra $(\mathcal{A}, \gamma)/\mathcal{N}$ is isomorphic to the sex differentiation algebra §.

Given two dibaric algebras $(\mathcal{A}_1, \gamma_1)$ and $(\mathcal{A}_2, \gamma_2)$, a dibaric homomorphism of dibaric algebras $f : (\mathcal{A}_1, \gamma_1)l(\mathcal{A}_2, \gamma_2)$ is a homomorphism of algebras $f : \mathcal{A}_1 \longrightarrow \mathcal{A}_2$ such that $\gamma_2 \circ f = \gamma_1$. For example, the embedding of a dibaric subalgebra and the quotient application are dibaric homomorphisms. Clearly, the composition of dibaric homomorphisms is dibaric. The inverse of a dibaric isomorphism is a dibaric isomorphism, because if $\gamma_2 \circ f = \gamma_1$, this imply that $\gamma_2 = \gamma_1 \circ f^{-1}$. We write $(\mathcal{A}_1, \gamma_1) \cong (\mathcal{A}_2, \gamma_2)$ for isomorphic dibaric algebras, that is, there is a dibaric isomorphism $f : (\mathcal{A}_1, \gamma_1) \longrightarrow (\mathcal{A}_2, \gamma_2)$.

Every dibaric algebra (\mathcal{A}, γ) is not associative because $(\mathcal{A}, \gamma)/\ker(\gamma)$ \cong § and § is not associative. In particular, the subalgebra of $End(\mathcal{A})$ spanned by the left and right multiplication by elements of \mathcal{A} , that is $L_a(x) = ax$ and $R_a(x) = xa$ for all $a, x \in \mathcal{A}$ is not dibaric because it is associative. This associative algebra is called the multiplication algebra of \mathcal{A} and is denoted by $\mathcal{M}(\mathcal{A})$.

Lemma 3.1. : Let $f : (\mathcal{A}_1, \gamma_1) \longrightarrow (\mathcal{A}_2, \gamma_2)$ be a dibaric homomorphism. Then $\mathfrak{T}(f)$ is a dibaric subalgebra of \mathcal{A}_2 and ker(f) is a dibaric ideal of \mathcal{A}_1 . The bijection induced by f is a dibaric isomorphism, that is $(\mathcal{A}_1, \gamma_1)/\ker(f) \cong im(f)$.

Lemma 3.2. : A dibaric homomorphism $f : (\mathcal{A}_1, \gamma_1) \longrightarrow (\mathcal{A}_2, \gamma_2)$ is an isomorphism if and only if $\hat{f} \equiv f_{|\mathcal{N}_1} : \mathcal{N}_1 \longrightarrow \mathcal{N}_2$ is an isomorphism, where $\mathcal{N}_i = \ker(\gamma_i)$, for i = 1, 2. **Proof.** Let $f: (\mathcal{A}_1, \gamma_1) \longrightarrow (\mathcal{A}_2, \gamma_2)$ be a dibaric homomorphism such that $\hat{f}: \mathcal{N}_1 l \mathcal{N}_2$ is an isomorphism. Consider $u, v \in \mathcal{A}_1$ satisfying $\gamma_1(u) = m$ and $\gamma_1(v) = \mathbf{f}$. If $a, b \in \mathcal{A}_1$ then there exist elements $x, y \in \mathcal{N}_1$ and scalars $\alpha_1, \alpha_2, \beta_1, \beta_2 \in F$ uniquely determined such that $a = \alpha_1 u + \alpha_2 v + x$ and $b = \beta_1 u + \beta_2 v + y$. Now we assume that f(a) = f(b). This give us that f(a - b) = 0, and since f is a dibaric homomorphism, we have that $a - b \in \mathcal{N}_1$. This implies that $\alpha_1 = \beta_1$ and $\alpha_2 = \beta_2$. Then, because f(a) = f(b), we obtain that f(x) = f(y). Now by hypothesis \hat{f} is an isomorphism and hence x = y. Consequently, a = b. The reverse is trivial.

An idempotent element e in a dibaric algebra (\mathcal{A}, γ) , is called semiprincipal if e = u + v, where $\gamma(u) = m$, $\gamma(v) = f$, and $u^2 = 0$, $v^2 = 0$ and uv = vu = (u + v)/2.

Let (\mathcal{A}, γ) be a dibaric algebra and e = u + v a semiprincipal idempotent element in \mathcal{A} . Then, we have the decomposition $\mathcal{A} = Fu \oplus Fv \oplus \mathcal{N}$ where $Fu \oplus Fv$ is a dibaric subalgebra isomorphic to §.

There exists a natural form to get algebras with semiprincipal idempotent elements. If N is an arbitrary algebra over F and $\lambda_1, \lambda_2, \rho_1, \rho_2 : N \longrightarrow N$ are linear applications, we consider $\mathcal{A} = \S \oplus N$, with the multiplication $(\alpha m + \beta f, x_1)(\mu m + \eta f, x_2)$ defined by

$$\left(\frac{(\alpha\eta+\beta\mu)}{2}(\mathbf{m}+\mathbf{f}), x_1x_2+\alpha\lambda_1(x_2)+\beta\rho_1(x_2)+\mu\lambda_2(x_1)+\eta\rho_2(x_1)\right)$$

and weight function by $\gamma(\alpha m + \beta f, x) := \alpha m + \beta f$, where $\alpha, \beta, \mu, \eta \in F$ and $x_1, x_2, x \in N$. We have that γ is different from zero and the element (m + f, 0) is a semiprincipal idempotent element of \mathcal{A} . This algebra is denoted by $[\lambda_1, \lambda_2, \rho_1, \rho_2, N]$.

Conversely, a dibaric algebra (\mathcal{A}, γ) with semiprincipal idempotent e = u + v, is isomorphic to $[\lambda_1, \lambda_2, \rho_1, \rho_2, \mathcal{N}]$, where $\mathcal{N} = \ker(\gamma)$,

$$\lambda_1 = L_{u|\mathcal{N}}, \quad \lambda_2 = L_{v|\mathcal{N}}, \quad \rho_1 = R_{u|\mathcal{N}}, \quad \rho_2 = R_{v|\mathcal{N}}.$$

The applications $L_{a|\mathcal{N}}$, $R_{a|\mathcal{N}}$ denote the restriction of the left and right multiplications by the element a in N, that is, $L_a(x) = ax$, $R_a(x) = xa$, for every $x \in \mathbb{N}$.

If (A, γ) is a dibaric algebra with semiprincipal idempotent element e = u + v, and I is a dibaric ideal of \mathcal{A} , then $Fu \oplus Fv \oplus I$ is a

dibaric subalgebra of \mathcal{A} . Naturally if I is maximal, it follows that this subalgebra is maximal. Conversely, if I is a dibaric ideal, it follows that the subalgebra defined above is maximal.

4. The Main Theorem

For two dibaric algebras, $(\mathcal{A}_1, \gamma_1)$ and $(\mathcal{A}_2, \gamma_2)$, we have the external product $\mathcal{A}_1 \times \mathcal{A}_2$ with the multiplication given by $(x_1, x_2)(y_1, y_2) = (x_1y_1, x_2y_2)$. This algebra is not necessarily dibaric, but the subspace

$$\mathcal{A}_1 \lor \mathcal{A}_2 := \{ (x_1, x_2) \in \mathcal{A}_1 \times \mathcal{A}_2 \mid \gamma_1(x_1) = \gamma_2(x_2) \}$$

is a dibaric algebra with dibaric weight homomorphism given by

$$\gamma_1 \lor \gamma_2(x_1, x_2) := \gamma_1(x_1) = \gamma_2(x_2).$$

We will call this algebra $(\mathcal{A}_1 \lor \mathcal{A}_2, \gamma_1 \lor \gamma_2)$ by join of \mathcal{A}_1 and \mathcal{A}_2 .

The join for baric algebras with idempotent of weight 1 was defined for Roberto Costa and H. Guzzo J. in [1]. Here, we extend this definition for dibaric algebras.

There exists a natural identification of N₁, the dibarideal of \mathcal{A}_1 with the ideal of $\mathcal{A}_1 \lor \mathcal{A}_2$ given by the set $\{(x,0) \mid x \in N_1\}$. Analogously, we identify N₂, the dibarideal of \mathcal{A}_2 , with the ideal of $\mathcal{A}_1 \lor \mathcal{A}_2$ given by the set $\{(0,x) \mid x \in N_2\}$. Take $u_1, v_1 \in \mathcal{A}_1$ such that $\gamma_1(u_1) = m$, $\gamma_1(v_1) = f$, and $u_2, v_2 \in \mathcal{A}_2$ such that $\gamma_2(u_2) = m$, $\gamma_2(v_2) = f$. We have that $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are in $\mathcal{A}_1 \lor \mathcal{A}_2$ with $\gamma_1 \lor \gamma_2(u) = m$ and $\gamma_1 \lor \gamma_2(v) = f$. Therefore, we write

$$\mathcal{A}_1 \lor \mathcal{A}_2 = Fu \oplus Fv \oplus \mathcal{N}_1 \oplus \mathcal{N}_2$$

where $N_1 \oplus N_2$ is the dibarideal of $\mathcal{A}_1 \vee \mathcal{A}_2$.

Lemma 4.1. : The join of dibaric algebras satisfies the following properties :

- (a) $(\S \lor \mathcal{A}, Id_{|\S} \lor \gamma) \cong (\mathcal{A}, \gamma)$; where $Id_{|\S}$ is the identity in §;
- (b) $(\S \lor \mathcal{A}, \ast \lor \gamma) \cong (\mathcal{A}, \gamma);$
- (c) $(\mathcal{A}_1 \lor \mathcal{A}_2, \gamma_1 \lor \gamma_2) \cong (\mathcal{A}_2 \lor \mathcal{A}_1, \gamma_2 \lor \gamma_1);$
- (d) $((\mathcal{A}_1 \lor \mathcal{A}_2) \lor \mathcal{A}_3, (\gamma_1 \lor \gamma_2) \lor \gamma_3) \cong (\mathcal{A}_1 \lor (\mathcal{A}_2 \lor \mathcal{A}_3), \gamma_1 \lor (\gamma_2 \lor \gamma_3)).$

In view of (d) we can define the join $(\bigvee_{i \in I} \mathcal{A}_i, \bigvee_{i \in I} \gamma_i)$ of an arbitrary family $\{(\mathcal{A}_i, \gamma_i)\}_{i \in I}$ of dibaric algebras, where $\bigvee_{i \in I} \mathcal{A}_i$ is the subalgebra of $\times_{i \in I} \mathcal{A}_i$, given by

$$\bigvee_{i \in I} \mathcal{A}_i := \left((x_i)_{i \in I} \mid x_i \in \mathcal{A}_i, \ \gamma_i(x_i) = \gamma_j(x_j), \ \forall \ i, j \in I \right),$$

and the dibaric weight homomorphism is given by $(\bigvee_{i \in I} \gamma_i)((x_i)_{i \in I}) := \gamma_i(x_i)$, where *i* is a fixed and arbitrary index of *I*. Notice that for a family $\mathcal{A}_1, \ldots, \mathcal{A}_r$ of *r* dibaric algebras with dimension of \mathcal{A}_i equal to n_i , we have that

$$\dim \bigvee_{i=1}^r \mathcal{A}_i = 2(1-r) + \sum_{i=1}^r n_i.$$

A dibaric algebra (\mathcal{A}, γ) is decomposable if there exist non-trivial dibaric algebras $(\mathcal{A}_1, \gamma_1)$ and $(\mathcal{A}_2, \gamma_2)$ such that $(\mathcal{A}, \gamma) \cong (\mathcal{A}_1, \gamma_1) \lor (\mathcal{A}_2, \gamma_2)$. In another case, we say that \mathcal{A} is indecomposable.

Lemma 4.2. A dibaric algebra (A, γ) is decomposable if and only if N is decomposable as $M(\mathcal{A})$ module.

Proof. Let (\mathcal{A}, γ) be a decomposable dibaric algebra. Then, there exist two non-trivial dibaric algebras $(\mathcal{A}_1, \gamma_1)$ and $(\mathcal{A}_2, \gamma_2)$ and a dibaric isomorphism $f : (\mathcal{A}, \gamma) \longrightarrow (\mathcal{A}_1 \lor \mathcal{A}_2, \gamma_1 \lor \gamma_2)$. Since the dibarideal of $\mathcal{A}_1 \lor \mathcal{A}_2$ is written as a direct sum of the ideals $N_1 \equiv \{(x, 0), x \in N_1\}$ and $N_2 \equiv \{(0, x), x \in N_2\}$ and f is a dibaric isomorphism, it follows that the dibarideal N of \mathcal{A} is written as the direct sum of the non-trivial ideals $f^{-1}(N_1)$ and $f^{-1}(N_2)$. Therefore N is decomposable.

Conversely, let (\mathcal{A}, γ) be a dibaric algebra such that \mathcal{N} is decomposable as M modulo. Then, there exist N_1, N_2 , two proper M submodules of N such that $N = N_1 \oplus N_2$. So, we can write $\mathcal{A} =$ $Fu \oplus Fv \oplus N_1 \oplus N_2$ where u, v satisfy $\gamma(u) = m$ and $\gamma(v) = h$. Notice that the subspaces N_1 and N_2 are ideals of \mathcal{A} . Then, an element $x \in \mathcal{A}$ is uniquely written as a sum $x = \alpha u + \beta v + x_1 + x_2$, where $\alpha, \beta \in F$ and $x_1 \in N_1, x_2 \in N_2$. This decomposition give us the means to define the projections $\pi_i : \mathcal{A} \longrightarrow N_i$, $\pi_i(x) = x_i$, for i = 1, 2. The mappings π_i , (i = 1, 2) satisfy the following properties:

$$\pi_i(ux) = u\pi_i(x), \ \ \pi_i(xu) = \pi_i(x)u, \ \ \pi_i(vx) = v\pi_i(x), \ \ \pi_i(xv) = \pi_i(x)v,$$

and $\pi_i(xy) = \pi_i(x)\pi_i(y)$ for all $x, y \in \mathbb{N}$. Now, we define over the vector space $\mathcal{A}_i = Fu_i \oplus Fv_i \oplus \mathbb{N}_i$, (i = 1, 2) a product " \cdot " such that, restricted to \mathbb{N}_i , it coincides with the multiplication of \mathbb{N}_i as a subalgebra of \mathcal{A} that is $x_i \cdot y_i = x_i y_i$ for $x_i, y_i \in \mathbb{N}_i$ and

$$\begin{array}{rclrcl} u_{i} \cdot v_{i} &=& \frac{(u_{i} + v_{i})}{2} + \pi_{i}(uv), & v_{i} \cdot u_{i} &=& \frac{(u_{i} + v_{i})}{2} + \pi_{i}(vu), \\ u_{i} \cdot u_{i} &=& \pi_{i}(u^{2}), & v_{i} \cdot v_{i} &=& \pi_{i}(v^{2}), \\ x_{i} \cdot u_{i} &=& x_{i}u, & u_{i} \cdot x_{i} &=& ux_{i}, \\ x_{i} \cdot v_{i} &=& x_{i}v, & v_{i} \cdot x_{i} &=& vx_{i}. \end{array}$$

where $x_i, y_i \in N_i$. The algebra (\mathcal{A}_i, \cdot) has dibaric homomorphism given by $\gamma_i(\alpha u_i + \beta v_i + x_i) = \alpha m + \beta f$, for all $\alpha, \beta \in F$ and $x_i \in N_i$. So, $(\mathcal{A}_1, \gamma_1)$ and $(\mathcal{A}_2, \gamma_2)$ are dibaric algebras and its join $(\mathcal{A}_1, \gamma_1) \lor (\mathcal{A}_2, \gamma_2)$ is isomorphic to (\mathcal{A}, γ) . To see that this last assertion is true, we consider the mapping $f : \mathcal{A} \longrightarrow \mathcal{A}_1 \lor \mathcal{A}_2$, given by

$$f(\alpha u + \beta v + x) = (\alpha u_1 + \beta v_1 + \pi_1(x), \alpha u_2 + \beta v_2 + \pi_2(x)).$$

Simple computations show that f is a dibaric isomorphism.

The above result can be generalized in the following sense: if a dibaric algebra (\mathcal{A}, γ) is written as join of a family of dibaric algebras $\{(\mathcal{A}_i, \gamma_i)\}_{i=i}^n$, that is $(\mathcal{A}, \gamma) = (\bigvee_{i=1}^n \mathcal{A}_i, \bigvee_{i=1}^n \gamma_i)$, then we identify $N_j \equiv \{(0, \ldots, x_j, \ldots, 0) \in \bigvee_{i=1}^n \mathcal{A}_i, x_j \in N_j\}$, where $N_j = \ker(\gamma_j)$ and we have that the dibaric ideal N of \mathcal{A} is written as a direct sum of the M submodules as follows $N = N_1 \oplus \cdots \oplus N_n$.

Conversely, if we have that the dibaric ideal N of an algebra (\mathcal{A}, γ) is written as a direct sum of M submodules of N, that is $N = \bigoplus_{i=1Ni}^{n}$, where N_i is M submodule, then for each index *i* we define an algebra over the vector space $\mathcal{A}_i = Fu_i \oplus Fv_i \oplus N_i$ with a product as in the above lemma where $\pi_i(\alpha u_i + \beta v_i + x) = x_i$ whenever $x = \sum_{j=1}^{n} x_j$ with $x_j \in N_j$. This algebra has weight homomorphisms given by $\gamma_i(\alpha u_i + \beta v_i + \pi_i(x)) = \alpha m + \beta f$. So, $(\mathcal{A}_i, \gamma_i)$ is a dibaric algebras and $f : (\mathcal{A}, \gamma)l(\bigvee_{i=1}^{n} \mathcal{A}_i, \bigvee_{i=1}^{n} \gamma_i)$, defined by

$$f(\alpha u + \beta v + x) = (\alpha u_1 + \beta v_1 + \pi_1(x), \dots, \alpha u_n + \beta v_n + \pi_n(x)),$$

where $\alpha, \beta \in F, x \in \mathbb{N}$, is a dibaric homomorphism.

Corollary 4.1. : If a dibaric algebra (\mathcal{A}, γ) is written as a join of a finite family of dibaric algebras, that is, $(\mathcal{A}, \gamma) \cong (\bigvee_{i=1}^{n} A_i, \bigvee_{i=1}^{n} \gamma_i)$, then $N \cong N_1 \times \cdots \times N_n$, where $N_i := \ker(\gamma_i)$. Conversely, if the dibaric ideal N of an arbitrary dibaric algebra (\mathcal{A}, γ) , is written as a direct sum of ideals I_1, \ldots, I_n , then there exist dibaric algebras $\{(\mathcal{A}_i, \gamma_i)\}_{i=1}^n$, with $\ker(\gamma_i) \cong I_i$, such that $(\mathcal{A}, \gamma) \cong (\bigvee_{i=1}^{n} \mathcal{A}_i, \bigvee_{i=1}^{n} \gamma_i)$.

We say that a dibaric algebra (\mathcal{A}, γ) satisfies the ascendent chain condition (a.c.c.) if $N = \ker(\gamma)$ satisfies (a.c.c.) as M module, where M is the multiplication algebra of \mathcal{A} . Analogously, we say that a dibaric algebra (\mathcal{A}, γ) satisfy the descendent chain condition (d.c.c.) if N satisfy (d.c.c.) as M (\mathcal{A}) module.

Lemma 4.3. : Let $(\mathcal{A}_1 \vee \mathcal{A}_2, \gamma_1 \vee \gamma_2)$ be the join of two dibaric algebras $(\mathcal{A}_1, \gamma_1)$ and $(\mathcal{A}_2, \gamma_2)$. Then (e_1, e_2) is a semiprincipal idempotent in $\mathcal{A}_1 \vee \mathcal{A}_2$ if and only if e_1, e_2 are semiprincipal idempotent elements in \mathcal{A}_1 and \mathcal{A}_2 , respectively. Therefore, it follows that $\mathcal{A}_1 \vee \mathcal{A}_2$ has a semiprincipal idempotent if and only if \mathcal{A}_1 and \mathcal{A}_2 have a semiprincipal idempotent.

Proof. (\Rightarrow) Let $e := (e_1, e_2) = (u_1, u_2) + (v_1, v_2)$ be a semiprincipal idempotent element in $\mathcal{A}_1 \lor \mathcal{A}_2$, with $u_1, v_1 \in \mathcal{A}_1$ and $u_2, v_2 \in \mathcal{A}_2$. Under these conditions, we have that $(u_1, u_2)^2 = (0, 0)$. So, it follows that $(u_1^2, u_2^2) = (0, 0)$, therefore $u_1^2 = 0$ and $u_2^2 = 0$. Analogously, $(v_1, v_2)^2 = (0, 0)$, and so $v_1^2 = 0$ and $v_2^2 = 0$. On the other hand, $(u_1, u_2)(v_1, v_2) = (u_1v_1, u_2v_2) = ((u_1, u_2) + (v_1, v_2))/2$. Then, $u_1v_1 = (u_1+v_1)/2$ and $u_2v_2 = (u_2+v_2)/2$. Finally, we have $(\gamma_1 \lor \gamma_2)(u_1, u_2) = \gamma_1(u_1) = \gamma_2(u_2) = m$ and $(\gamma_1 \lor \gamma_2)(v_1, v_2) = \gamma_1(v_1) = \gamma_2(v_2) = f$. Hence, $e_1 = u_1 + v_1$ and $e_2 = u_2 + v_2$ are semiprincipal idempotent elements in \mathcal{A}_1 and \mathcal{A}_2 , respectively.

(\Leftarrow) If $e_1 = u_1 + v_1 \in \mathcal{A}_1$ and $e_2 = u_2 + v_2 \in \mathcal{A}_2$ are semiprincipal idempotent elements, the ordered pair $(e_1, e_2) = (u_1, u_2) + (v_1, v_2) \in \mathcal{A}_1 \lor \mathcal{A}_2$ because $\gamma_1(e_1) = \mathbf{m} + \mathbf{f} = \gamma_2(e_2)$. This element satisfy

 $(e_1, e_2)^2 = (e_1^2, e_2^2) = (e_1, e_2)$ and $(u_1, u_2)^2 = (u_1^2, u_2^2) = (0, 0), (v_1, v_2)^2 = (v_1^2, v_2^2) = (0, 0).$ Finally, we have that $(u_1, u_2)(v_1, v_2) = (u_1v_1, u_2v_2) = (u_1, u_2)/2 + (v_1, v_2)/2.$ Therefore (e_1, e_2) is a semiprincipal idempotent in $\mathcal{A}_1 \vee \mathcal{A}_2$.

The above result can be generalized in the following sense: if (\mathcal{A}, γ) has a semiprincipal idempotent e = u+v and this algebra is isomorphic to the join of a finite family $\{(\mathcal{A}_i, \gamma_i)\}_{i=1}^n$ of dibaric subalgebras, then each algebra \mathcal{A}_i has a semiprincipal idempotent $e_i = u_i + v_i$. To prove it, we use induction over n and the associativity of the join of dibaric algebras. Therefore, we have the corollary below.

Corollary 4.2. : If $(A, \gamma) \cong (\bigvee_{i=1}^n \mathcal{A}_i, \bigvee_{i=1}^n \gamma_i)$, then \mathcal{A} has a semiprincipal idempotent if and only if \mathcal{A}_i have semiprincipal idempotents, for all i.

Lemma 4.4. : Let (\mathcal{A}, γ) be a dibaric algebra with e = u + v as semiprincipal idempotent element such that $(\mathcal{A}, \gamma) \cong (\bigvee_{i=1}^{n} \mathcal{A}_{i}, \bigvee_{i=1}^{n} \gamma_{i})$. Then for every *i*, there exists a dibaric subalgebra of \mathcal{A} isomorphic to $(\mathcal{A}_{i}, \gamma_{i})$ with e = u + v as semiprincipal idempotent.

Proof. We will suppose that $(\mathcal{A}, \gamma) = (\bigvee_{i=1}^{n} \mathcal{A}_{i}, \bigvee_{i=1}^{n} \gamma_{i})$. If e = u + v is a semiprincipal idempotent element in $\bigvee_{i=1}^{n} \mathcal{A}_{i}$, with

$$e = (e_1, \dots, e_n), \quad u = (u_1, \dots, u_n) = u \text{ and } v = (v_1, \dots, v_n),$$

then $e_i = u_i + v_i$ is a semiprincipal idempotent in \mathcal{A}_i . On the other hand $\bigvee_{i=1}^n \mathcal{A}_i$ can be written as

$$\bigvee_{i=1}^{n} \mathcal{A}_{i} = Fu \oplus Fv \oplus \mathrm{N}_{1} \oplus \cdots \oplus \mathrm{N}_{n};$$

where

$$N_j = \{(0, \dots, x_j, \dots, 0) \in \bigvee_{i=1}^n \mathcal{A}_i \mid x_j \in \ker(\gamma_j)\}$$

is an barideal of $\bigvee_{i=1}^{n} \mathcal{A}_{i}$. So, since e = u + v is a semiprincipal idempotent element and N_{j} is a barideal of \mathcal{A} , for $j = 1, 2, \ldots, n$, it

follows that $Fu \oplus Fv \oplus N_j$ is a dibaric subalgebra of $\bigvee_{i=1}^n \mathcal{A}_i$. Finally, the linear mapping $f_j : Fu \oplus Fv \oplus N_j \longrightarrow \mathcal{A}_j$ defined by $f_j(\alpha u + \beta v + x) = \alpha u_j + \beta v_j + x$ for all $\alpha, \beta \in F$ e $x \in N_j$ is a dibaric isomorphism.

Lemma 4.5. : If a dibaric algebra (\mathcal{A}, γ) with semiprincipal idempotent e = u + v satisfying the descendent chain condition, then there exists a finite number of indecomposable dibaric subalgebras $\{(\mathcal{A}_i, \gamma_i)\}_{i=1}^n$ of (\mathcal{A}, γ) , such that $(\mathcal{A}, \gamma) \cong (\mathcal{A}_1 \vee \cdots \vee \mathcal{A}_n, \gamma_1 \vee \cdots \vee \gamma_n)$.

Proof. Since (\mathcal{A}, γ) satisfy the descendent chain condition, it follows that N satisfies d.c.c. as $M(\mathcal{A})$ module. So, there exist indecomposable $M(\mathcal{A})$ submodules N_1, \ldots, N of N such that N = $N_1 \oplus N_2 \oplus \cdots \oplus N_m$. Therefore, for each $j, \mathcal{A}_j = Fu \oplus Fv \oplus N_j$ is a dibaric subalgebra of \mathcal{A} such that $(\mathcal{A}, \gamma) \cong (\bigvee_{i=1}^n \mathcal{A}_i, \bigvee_{i=1}^n \gamma_i)$. Finally, we will show that \mathcal{A}_j is indecomposable, for each j. We observe that a dibaric ideal I of \mathcal{A}_j is a dibaric ideal of \mathcal{A} , because $I\mathcal{A} = I(Fu \oplus Fv \oplus N_1 \oplus \cdots \oplus N_n) = I\mathcal{A}_j \subseteq I$. Analogously $\mathcal{A}I \subseteq I$. So, the $M(\mathcal{A})$ submodules of N_j are equal to the ; $M(\mathcal{A})$ submodules of N_j . Since N_j is indecomposable as $M(\mathcal{A})$ -module, it follows that N_j is indecomposable as $M(\mathcal{A}_j)$ -module. So, \mathcal{A}_j is indecomposable.

Theorem 4.1. : (Krull-Schmidt) Let (\mathcal{A}, γ) be a dibaric algebra with semiprincipal idempotent element e = u + v that satisfies d.c.c. and a.c.c.. If

$$(\mathcal{A},\gamma) = (\mathcal{A}_1 \lor \cdots \lor \mathcal{A}_n, \gamma_1 \lor \cdots \lor \gamma_n), \ (\mathcal{A},\gamma) = (B_1 \lor \cdots \lor B_m, \chi_1 \lor \cdots \lor \chi_m).$$

where each $(\mathcal{A}_i, \gamma_i)$ and (B_j, χ_j) are indecomposable dibaric subalgebras of (\mathcal{A}, γ) , then n = m and reindexing, we have that $(\mathcal{A}_i, \gamma_i) \cong (B_i, \chi_i)$, for each $i \in \{1, \ldots, n\}$.

Proof. Since we have two decompositions of \mathcal{A} in indecomposable dibaric subalgebras, then $N = \ker(\gamma)$ is decomposed in indecomposable M submodules as follows

$$\mathbf{N} = \mathbf{N}_1 \oplus \cdots \oplus \mathbf{N}_n, \quad \mathbf{N} = \mathcal{P}_1 \oplus \cdots \oplus \mathcal{P}_m.$$

where $N_i = \ker(\gamma_i)$ and $\mathcal{P}_j = \ker(\chi_j)$. According to the Krull-Schmidt's Theorem for \mathcal{A} modules, we have that m = n and with a reindexation $N_i \cong \mathcal{P}_i$ as \mathcal{A} -modules. By the same Theorem, we can write

(4.1) $N = N_1 \oplus N_2 \oplus \cdots \oplus N_k \oplus \mathcal{P}_{k+1} \oplus \cdots \oplus \mathcal{P}_n,$

for $0 \leq k \leq n$. Let j be a fixed index. First we will show that $N_j \cong \mathcal{P}_j$ as algebras. We consider the two decomposition of (4.1)

$$N_1 \oplus N_2 \oplus \cdots \oplus N_{j-1} \oplus N_j \oplus \mathcal{P}_{j+1} \oplus \cdots \oplus \mathcal{P}_n,$$

 $N_1 \oplus N_2 \oplus \cdots \oplus N_{j-1} \oplus \mathcal{P}_j \oplus \mathcal{P}_{j+1} \oplus \cdots \oplus \mathcal{P}_n.$

So, if $x \in \mathbb{N}$, then x can be written in two different ways

$$x = x_1 + \dots + x_n, \qquad x = x'_1 + \dots + x'_n$$

where $x_j \in N_j$; $x'_j \in \mathcal{P}_j$; $x_r, x'_r \in N_r$ for $1 \leq r \leq j-1$, and $x_s, x'_s \in \mathcal{P}_s$ for $j+1 \leq s \leq n$. Let τ_j be the injection of N_j in N and $\pi_j : N \longrightarrow \mathcal{P}_j$ the projection define via $\pi_j(x) := x'_j$ for all $x \in N$. Then the composition $p_j := \pi_j \circ \tau_j$ of N_j in \mathcal{P}_j is an isomorphism of algebras. For $x, y \in N_j$ we have that $p_j(xy) = (xy)'_j = \{(x'_1 + \cdots + x'_n)(y'_1 + \cdots + y'_n)\}'_j = \{x'_1y'_1 + \cdots + x'_ny'_n\}'_j = x'_jy'_j = p_j(x)p_j(y)$ and hence p_j is a homomorphism of algebras. By to prove that p_j is injective, we consider $x \in \ker(p_j)$. Then $0 = p_j(x) = x'_j$ and so, $x \in N \cap (N_1 \oplus N_2 \oplus \cdots \oplus N_{j-1} \oplus \mathcal{P}_{j+1} \oplus \cdots \oplus \mathcal{P}_n) = \{0\}$. Therefore x = 0. Next, by to prove that p_j is onto, we take $y \in \mathcal{P}_j$. Then, $y = y'_j = \pi_j(y) = \pi_j(y_1 + \cdots + y_n) = \pi_j(y_1) + \cdots + \pi_j(y_n) = 0 + \cdots + \pi_j(y_j) + 0 + \cdots + 0 = \pi_j(y_j)$ where, according to above decomposition, $y_j \in N_j$.

Finally, we will define a dibaric isomorphism between the algebras \mathcal{A}_j and \mathcal{B}_j . According to Lemma 4.4 we can assume, without lost of generality, that $(\mathcal{A}_j, \gamma_j)$ and (\mathcal{B}_j, χ_j) have the same semiprincipal idempotent element denoted by e = u + v. Then, we define the application $f_j : \mathcal{A}_j \longrightarrow \mathcal{B}_j$, by

$$f_j(\alpha u + \beta v + x) = \alpha u + \beta v + p_j(x)$$

where $\alpha, \beta \in F$ e $x \in N_j$. It is clear that f_j is a linear isomorphism and also that $\gamma_j = \chi_j \circ f_j$. Therefore, only rest to show that f_j is a homomorphism of algebras. Notice that if $w \in \langle u, v \rangle$ and $x \in \mathcal{N}_j$, then

$$p_j(wx) = wp_j(x), \qquad p_j(xw) = p_j(x)w_j$$

because $p_j(wx) = \{w(x'_1 + \dots + x'_n)\}'_j = \{wx'_1 + \dots + wx'_n\}'_j = wx'_j = wp_j(x)$. Analogously, we have the other equality. So, if $a = \alpha u + \beta v + x$, $b = \eta u + \mu v + y$ are in \mathcal{A}_j , then

$$f_{j}(ab) = f_{j} \left(\frac{1}{2} (\alpha \mu + \beta \eta)(u+v) + \alpha uy + \beta vy + \eta xu + \mu xv + xy \right)$$

$$= \frac{1}{2} (\alpha \mu + \beta \eta)(u+v) + \alpha p_{j}(uy) + \beta p_{j}(vy) + \eta p_{j}(xu) + \mu p_{j}(xv) + p_{j}(xy)$$

$$= \frac{1}{2} (\alpha \mu + \beta \eta)(u+v) + \alpha u p_{j}(y) + \beta v p_{j}(y) + \eta p_{j}(x)u + \mu p_{j}(x)v + p_{j}(x) p_{j}(y)$$

$$= ((\alpha u + \beta v + p_{j}(x))(\eta u + \mu v + p_{j}(y)) = f_{j}(a)f_{j}(b).$$

References

- R. Costa and H. Jr Guzzo, Indecomposable baric algebras, Linear Algebra Appl. 183, pp. 223-236, (1993).
- [2] R. Costa and H. Jr Guzzo, Indecomposable baric algebras II, Linear Algebra Appl. 196, pp. 233-242, (1994).
- [3] I.M.H. Etherington, On non-associative combinations, Proc. Edinb. Math. Soc. 59, pp. 153-162, (1939).
- [4] P. Holgate, Genetic Algebras associated with sex linkage, Proc. Edinb. Math. Soc. 17, pp. 113-120, (1970).
- [5] Y. Lyubich, Mathematical Structure in Populations Genetics, Springer-Verlag, (1983).
- [6] M. Lynn Reed, Algebraic structures of genetic inheritance, Bull. Amer. Math. Soc (N. S.) 34, No. 2, pp. 107-131, (1997).
- [7] A. Wörz-Busekros, Algebras in Genetics, Springer-Verlag vol. 36, (1980).

- [8] A. Wörz-Busekros, The zygotic algebra for sex linkage, J. Math. Biol. 1, pp. 37-46, (1974).
- [9] A. Wörz-Busekros, The zygotic algebra for sex linkage II, J. Math. Biol. 2, pp. 359-371, (1975).

Received : April 2000.

María Aparecida Couto

Departamento de Matemática Universidade Federal do Rio Grande do Norte Caixa Postal 1524 - Campus Universitário Lagoa Nova - CEP 59072-970 Natal - RN Brasil

Juan Carlos Gutiérrez Fernández

Departamento de Matemática Instituto de Matemática e Estatística Universidade de São Paulo Caixa Postal 66.281 São Paulo - SP, 05315-970 Brasil e-mail : jcgf@ime.usp.br