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Abstract

We give an example of a non compact riemannian manifold
with finite volume for which the limit corresponding to the clas-
sical definition of the volumetric entropy does not exist. This
confirms the fact that in the non compact finite volume case,
the natural definition is given by the critical exponent of the
mean growth rate for the volume on the riemannian covering.
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1. Introduction

Let (X, g) be an n-dimensional riemannian manifold, and let (X̃, g̃) be
the riemannian covering. Let us fix a base point x ∈ X̃ and consider
the limit values

h+(g) =lim sup
R→∞

log(vol B̃g(x,R))

R
,

h−(g) =lim inf
R→∞

log(vol B̃g(x,R))

R
,

where B̃g(x,R) is the ball of radius R and center x in X̃ and vol
B̃g(x,R) its volume (respect to the metric g̃). These limits do not
depend on the point x. We call them the upper and lower volumetric
entropy respectively.

If X is compact, or more generally if (X̃, g̃) has a co-compact
subgroup of isometries, then one has h+(g) = h−(g), and this value is
called the volumetric entropy of (X, g) and is simply denoted by h(g)

(see [Ma] or [Pa]). Let us remark that, for λ > 0, one has h(λg) = h(g)√
λ

,

and then the value of (h(g))n vol (X, g) is invariant by homotheties.
In the compact case, volumetric entropy appears in a natural way

in the study of many di- fferent problems. For example, a classical
result says that if the volume is normalized, then the volumetric en-
tropy is a lower bound for the topological entropy of the geodesic flow
on the unit tangent bundle, and one has the equality in the negative
curvature case (see [Ma]). In a slightly different context, M.Gromov’s
minimal entropy conjecture, proved in [BCG], says that for oriented
hyperbolic manifolds of dimension ≥ 3, the value of (h(g))n vol (X, g)
is minimal only for metrics that are scalar multiples of the hyperbolic
one. Among other things, this result gives a positive answer to the
minimal volume conjecture (see [Gr]), and also gives a beautiful proof
of the classical Mostow’s rigidity theorem in the compact case.

It is natural to think that this kind of results may be extended to
the non compact finite volume case. This is well known for Mostow’s
theorem, and for the minimal entropy conjecture one has a partial
positive answer (see [CF]). For the minimal volume conjecture, see
[CF] and [Bes].
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One of the problems that appears in the case of non compact fi-
nite volume manifolds is to give a good definition for the volumetric
entropy. Indeed, in this article we give an example of such a manifold
for which the upper and lower volumetric entropies are different (see
section §1). In this way we confirm the fact that in the non com-
pact finite volume case, the natural definition is given by the critical
exponent of the mean growth rate for the volume on the riemannian
covering (see section §2).

2. An example

The motivation of the following example is the fact that for the real
hyperbolic metric ghyp of dimension n one has

vol
(
B̃λ2ghyp

(x,R)
)

= vn−1

∫ R

0
λ

(
sinh

(
r

λ

))n−1

dr,(2.1)

where λ > 0 and vn−1 is the volume of the euclidian sphere of di-
mension n − 1. So, the idea is to consider a manifold for which the
curvature varies between two negatives parameters, and in this way
to obtain a variation for the exponential growth rate of vol B̃g(x,R).

The manifold X that we will construct is homeomorphic to a two-
dimensional cylinder (though, the construction can be done in any
dimension). The riemannian covering X̃ is the real plane endowed
with the conformal metric given by

g̃(x)(u, v) =
exp (f(x2))

x2
2

(u, v)eucl,(2.2)

where x = (x1, x2) ∈ R2, (·, ·)eucl is the euclidian metric and f :

R − {0} → R, exp(f(x2))
x2
2

: R → R+ are smooth functions (to be

defined). The manifold X is then the quotient X̃/Γ, where Γ is the
group generated by the isometry (x1, x2) → (x1+1, x2) (see picture 1).
Let us remark that for a metric obtained by this method, the vertical
lines x = constant are minimal geodesics in X̃.

The construction of the function f will be carried out in several
steps.
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We start by fixing two real numbers a > 1 and b > 1 such that
a
4

= 4b. In the interval (−2, 2) we take f in such a way that exp(f(t))
t2

= 1

for t ∈ (−1, 1) and exp (f(t)) = 1
a2 for t ∈ (−2,−3

2
) ∪ (3

2
, 2).

We will construct inductively a sequence of real numbers

2 = a0 < a1 < b0 < b1 < a2 < a3 < b2 < b3 < ...,

and we will define the function f on each interval defined by this se-
quence. We will also consider a sequence of points Pk defined by P4k =
(0, a2k), P4k+1 = (0, a2k+1), P4k+2 = (0, b2k) and P4k+3 = (0, b2k+1).
The origin (0, 0) will be our base point, and we will denote it simply
by O. We will use some terms as ball, distance, radius and diameter,
always considered respect to the metric g̃. Let us remark that in some
steps of the construction we will use the fact that, for any metric of
the form (2.2), the distance between the points O and Pk depends
only on the values of f on the segment of the geodesic x = 0 between
O and Pk.
(i) From a2k to a2k+1.

We define exp (f(t)) = 1
a2 for t ∈ (−a2k+1,−a2k) ∪ (a2k, a2k+1),

where a2k+1 is such that

v1

∫ dist(P4k,P4k+1)
2

0
1
a
sinh(ar)dr

≥ v1

2a2 exp
(

a·dist(P4k,P4k+1)
2

)
,

(2.3)

dist (P4k, P4k+1) > dist (O, P4k) .(2.4)

It is easy to see that in the ball whose diameter is the segment of
the geodesic joining P4k and P4k+1, the curvature is constant and equal
to −a2. This ball is contained in the ball B̃g(O, dist (P4k, P4k+1)). We
then obtain, from (2.1), (2.3) and (2.4),

vol
(
B̃g(O, dist (P4k, P4k+1))

)
≥ v1

2a2 exp
(

a·dist(P4k,P4k+1)
2

)

≥ v1

2a2 exp
(

a·dist(P4k,P4k+1)
4

)
.

By taking R2k = dist (P4k, P4k+1) we obtain

log
(
vol B̃g(O,R2k)

)

R2k

≥ log( v1

2a2 )

R2k

+
a

4
.(2.5)
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(ii) From a2k+1 to b2k.
With the purpose of remaining in negative curvature we will define

the points b
(i)
2k , i = 0, · · · , 6, as follows. Let ε > 0 be such that 6(1−ε) =

log
(

1

a2

)
= log(256). Let us consider a smooth function h : R → R

such that h(t) = 0 for t ≤ 0, h(t) = 1 − ε for t ≥ 1 and inf(h
′′
) >

−1. We set b
(0)
2k = a2k+1, and recursively we define b

(i+1)
2k in such a

way that
(

b
(i+1)
2k

−b
(i)
2k

b
(i+1)
2k

)2

≥ − inf(h′′)
2

. Then define f(t) = log
(

1
a2

)
+

i(1 − ε) + h
(

t−b
(i)
2k

b
(i+1)
2k −b

(i)
2k

)
for t ∈ [b

(i)
2k , b

(i+1)
2k ], and f(t) = f(−t) for

t ∈ [−b
(i+1)
2k ,−b

(i)
2k ]. Finally, we set b2k = b

(6)
2k .

(iii) From b2k to b2k+1.
We set exp(f(t)) = 1

b2
for t ∈ [−b2k+1,−b2k] ∪ [b2k, b2k+1], where

b2k+1 is a parameter to be defined. We will use an auxiliary point
P ,

4k+3 = (0, b,
2k+1), which is also to be defined.

Let us define R2k+1 = dist (O, P4k+3) . For x ∈ B̃g(O, R2k+1) let us
take a minimal geodesic

γ(s) = (γ1(s), γ2(s))

joining O and x. We consider the times si,j, j = 1, 2, that satisfy the
following conditions:

if s ∈ [si,1, si,2] then γ2(s) ≤ b2k,

if s ∈ [si,2, si+1,1] then γ2(s) ≥ b2k.

We set li,1 = log
(
γ |[si,1,si,2]

)
and li,2 = log

(
γ |[si,1,si,2]

)
. We will

obtain some a-priori estimates of |si,2 − si,1| and |si+1 − si,2| with
respect to R2k+1.

First of all, let us remark that there exists a constant C̃k > 0
satisfying

(u, v)eucl ≥ g̃(y)(u, v) ≥ (u, v)eucl

C̃k

(2.6)

for all y = (y1, y2) such that y2 ≤ b2k. We then have |si,2−si,1| ≤ C̃k·li,1.
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On the other hand, a little of hyperbolic geometry shows that (see
[Bea], theorem 7.2)

sinh

(
b · li,2

2

)
=
|si+1,1 − si,2|

2b2k

,

and then

|si+1,1 − si,2| = 2b2k · sinh

(
b · li,2

2

)
.

Therefore,

∑

i

|si,2 − si,1|+ |si+1,1 − si,2| ≤ C̃k

∑

i

li,1 + 2b2k

∑

i

sinh

(
b · li,2

2

)

≤ C̃kdist(O, x) + b2k

∑

i

exp

(
b · li,2

2

)

≤ C̃kdist(O, x) + b2k exp

(∑

i

b · li,2
2

)

≤ C̃kdist(O, x) +

b2k exp

(
b · dist(O, x)

2

)

≤ C ,
k exp

(
b · dist(O, x)

2

)

≤ C ,
k exp

(
b ·R2k+1

2

)
,

where C ,
k is independent of x and b,

2k+1.
Let Ck be a constant such that

2C ,
kb2k exp

(
b ·R

2

)
+

2v1

b2
exp (2b ·R) ≤ Ck exp(3b ·R)(2.7)

for all R ∈ R. We fix b,
2k+1 and b2k+1 once and for all in such a way

that

R2k+1 ≥ dist (P4k, P4k+1) et dist(P4k+3, P
,
4k+3) ≥ R2k+1,(2.8)

log(Ck)

R2k+1

≤ 1

k
.(2.9)
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It is not difficult to see that in the set B̃g(O,R2k+1) ∩ {x : |x2| >
b2k} the curvature is constant and equal to −b2. A simple triangular
inequality shows that

vol
(
B̃g(O,R2k+1) ∩ {x : x2 > b2k}

)

≤ 2v1

∫ R2k+1+dist(P4k,P4k+1)
0

sinh(b·r)
b

dr.
(2.10)

We then obtain, from (2.6) and (2.10),

vol
(
B̃g(O,R2k+1)

)
≤ 2C ,

kb2k exp
(

b·R2k+1

2

)

+2v1

b2
exp (b · (R2k+1 + dist (P4k, P4k+1))) .

From this inequality, from (2.7) and (2.9), we finally obtain

log
(
vol B̃g(O,R2k+1)

)

R2k+1

≤ log(Ck)

R2k+1

+ 3b ≤ 1

k
+ 3b.(2.11)

(iv) From b2k+1 to a2k+2.

We proceed in an analogous way to (ii). We set a
(0)
2k+2 = b2k+1,

and we define recursively a
(i+1)
2k+2 in such a way that

(
a
(i+1)
2k+2−a

(i)
2k+2

a
(i+1)
2k+2

)2

≥
− inf(h′′)

2
, i = 0, · · · , 5. For t ∈ [a

(i)
2k+2, a

(i+1)
2k+2 ] set f(t) = log

(
1
b2

)
− i(1−

ε) − h
(

t−a
(i)
2k+2

a
(i+1)
2k+2

−a
(i)
2k+2

)
, and set f(t) = f(−t) for t ∈ [−a

(i+1)
2k+2 ,−a

(i)
2k+2].

Finally, we define a2k+2 = a
(6)
2k+2.
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Now we collect some properties of the manifold X.
By (2.5) one has h+(g) ≥ a

4
, and from (2.11) we obtain h−(g) ≤ 3b.

Since a
4

= 4b, one has h+(g) > h−(g).
To prove that X is a complete manifold, let us consider the compact

sets Kn = π([−n, n]× [−n, n]), where π : X̃ → X is the covering map.
By Hofp-Rinow’s theorem, we have to prove that if π ((xn, yn)) is a
sequence in X such that 0 ≤ xn < 1 and (xn, yn) does not belong to
Kn, then distX (π(O), π(xn, yn)) goes to infinity as n → ∞. But this
follows directly from the inequality

distX(π(O), π(xn, yn)) ≥ distX̃(O, (xn, yn)) ≥
∫ n

0

dt

b · t =
log(n)

b
.

The manifold X has negative curvature outside a compact set: if
(x1, x2) ∈ X̃ and |x2| ≥ 2, then K(x1, x2) < 0. Indeed, this is clear for
points (x1, x2) such that |x2| belongs to [a2k, a2k+1] or [b2k, b2k+1] for
some k ∈ N. In general, from the well known formula

K(x1, x2) = −
∆ log

(
exp(f(x1,x2))

x2
2

)

exp(f(x1,x2))
x2
2

,

we see that the curvature is negative if and only if f
′′
(x2) > − 2

|x2|2 . If

|x2| ∈ [b
(i)
2k , b

(i+1)
2k ], i = 0, · · · , 5, then by the construction of the points

b
(i)
2k and the function f , one has

f
′′
(x2) ≥ inf(h

′′
)

(
b
(i+1)
2k − b

(i)
2k

)2 > − 2

|x2|2 ,

which proves that the curvature at (x1, x2) is negative. The case

|x2| ∈ [a
(i)
2k+2, a

(i+1)
2k+2 ] is analogous. In fact, from the construction and

the above arguments one concludes easily that the curvature has a
negative upper bound outside a compact set.

Finally, (X, g) has finite volume, since one has

vol (X, g) ≤
∫ 2

−2
dx2 + 2

∫ ∞

2

dx2

(bx2)2
= 4 +

1

b2
.
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Remark. It would be more interesting to construct an example
of a finite volume non compact manifold with negative curvature and
different upper and lower topological entropies. We think that one
could apply the method of the above construction to yield such a
manifold, by taking an hyperbolic one and endowing it with a metric
with negative curvature having a well chosen variation on one of its
ends.

3. The critical exponent

Let (X, g) be a riemannian manifold of dimension n. We fix a point
x ∈ X̃ and we consider the value of the following integral

Is(x) =
∫

X̃
exp (−s · dist (x, y)) dvg̃(y).

Clearly, there exist a parameter δ(x) ∈ [−∞,∞] such that Is(x) is
finite for s > δ(x) and is equal to infinity for s < δ(x). It is easy
to see that this parameter does not depend on the point x ∈ X̃. For
simplicity, we will denote it by δ.

Proposition. One has the equality h+(g) = δ.

Proof. First, we will prove that h+(g) ≥ δ. We can suppose that
h+(g) < ∞, and then we have to prove that Is(x) < ∞ for s > h+(g).
By taking λ = 1

2
(s − h+(g)) > 0 one has s − λ > h+(g). Then, there

exist a constant C = C(x) such that for all r > 0 one has

vol B̃g(x, r) ≤ C exp((s− λ)r).

This gives

∫

B̃g(x,R)
exp(−s · dist(x, y))dvg̃(y) =

∫ R

0
exp(−sr)volS̃g(x, r)dr

=
∫ R

0
exp(−sr)

d

dt
(volB̃g(x, r))dr

= s
∫ R

0
exp(−st)volB̃g(x, r)dr+=



On the volumetric entropy in the non compact case 107

exp(−sR)volB̃g(x,R),

where S̃g(x, r) is the sphere of center x and radius r in X̃, and vol
S̃g(x, r) is its volume with respect to the (n− 1)-dimensional induced
metric. We then obtain, for R > 0,

∫
B̃g(x,R) exp (−s · dist (x, y)) dvg̃(y) ≤ Cs

∫ R
0 exp(−λr)dr

+ C exp(−λR) ≤ C( s
λ

+ 1),

which implies that h+(g) ≥ δ.

To prove the opposite inequality, we have to verify that s + ε ≥
h+(g) for all s > δ and all ε > 0. Let us denote by Rε the (unbounded)
set of positive real numbers R such that

log(vol B̃g(x,R))

R
> h+(g)− ε.

For R ∈ Rε we have

∫

X̃
exp(−s · dist(x, y))dvg̃(y) >

∫

B̃g(x,R)
exp(−s · dist(x, y))dvg̃(y)

> exp(−sR) volB̃g(x,R)

> exp(R(h+(g)− s− ε)).

The left member of this inequality is finite for s > δ and the set Rε

is unbounded. Therefore, one has necessarily h+(g)− s− ε ≤ 0.

A slight modification of of the first part of the above proof allows
to show that δ ≥ h−(g). As a consequence we reobtain in the compact
case the well known equality δ = h(g). In the non compact case, it
is natural to take this equality as a definition of volumetric entropy,
that is h(g) = δ = h+(g).
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