
SOME SPECIAL KLEINIAN GROUPS
AND THEIR ORBIFOLDS ∗
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Abstract

Let us consider an abstract group with the following presen-
tation

G = 〈x1, ..., xn;xki
i = (xj+1x

−1
j )lj = 1〉,

where ki, lj ∈ {2, ...,∞}. We provide conditions in order to
find a faithful, discrete and geometrically finite representation
Θ : G → PSL(2,C), that is, to represent G as a group of
isometries of the hyperbolic three space H3.
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1. Introduction

The main problem of three orbifolds is their classification. W.P.
Thurston [10] observed that geometry and topology are very well re-
lated. There are exactly eight geometries [9], the hyperbolic one being
the most important. Thurston’s conjecture is essentially that all three
orbifolds can be obtained by gluing a finite number of geometric orb-
ifolds (that is, obtained by quotient of some of the geometries by a
discrete group of isometries). To understand this classification prob-
lem, is good to have explicit examples of geometric orbifolds. For it,
triangle and Coxeter groups have been of great interest (see Coxeter-
Moser [1]). Another examples are given by generalized triangle groups
[2], [3], [4], [5]. In this paper, we consider certain type of generalized
Coxeter groups (see next section for definitions). A theorical study of
these groups can be found in [11] and [12]. In [6] we have considered
a generalized Coxeter group of type

G = 〈x1, ..., xn : xk
j = (x−1

j+1xj)
l = 1〉,

and obtained necessary and sufficient conditions to find a faithful,
discrete representation of G into PSL(2,C). We also described the
hyperbolic three orbifolds they uniformize. In this note, we consider
the more general situation, that is,

G = 〈x1, ..., xn : x
kj

j = (x−1
j+1xj)

lj = 1〉,
where kj, lj ∈ {2, 3, ...}∪ {∞}. In section 2 we recall the definition on
generalized Coxeter groups and we define the ones we are interested.
In section 3 we describe a construction of certain hyperbolic polyhe-
dra called n-pyramids. The group generated by the reflections on the
faces of such a n-pyramid is a Coxeter group containing as index two
orientation preserving transformations a group of the above type. In
section 4 we consider as example the particular case n = 3 (that is,
tetrahedra) of finite volume. We list all possible finite volume hyper-
bolic tetrahedra with integer quotients of π as dihedral angles. In this
way, we get faithful discrete and geometrically finite representations
of finite volume Θ : G → PSL(2,C), for

G = 〈x, y, z : xa = yb = zc = (y−1x)d = (z−1y)e = (x−1z)f = 1〉.
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In section 5, we recall the symmetric case, that is, kj = k and lj = l,

of [6]: For n ≥ 3 and l >
n

n− 2
, there are faithful discrete and

geometrically finite representations Θ : G → PSL(2,C). In this case,
the representations extends to a faithful discrete and geometrically
finite one Θ1 : K → PSL(2,C), where

K = 〈x, y : xk = (yx−1y−1x)l = 1〉

is the group containing G as index n subgroup (x1 = x and xj+1 =
yxjy

−1). In the case k 6= 2, we also can extend the representation to
a faithful and discrete one Θ2 : H → PSL(2,C), where

H = 〈x1, ..., xn, t : xk
j = (x−1

j+1xj)
l = (txj)

2 = 1〉.

We must note in this case that the group H contains as index two
the group L = 〈x1, ..., xn, z : xk

j = (x−1
j+1xj)

l = (yxj)
k = 1〉, where

z = t2. Combining the above two representations, we obtain a faithful
discrete one Θ3 : T → PSL(2,C), where

T = 〈x, y, t : xk = yn = (tx)2 = ty−1t−1y = (y−1x−1yx)l = 1〉.

Selberg’s lemma asserts that each finitely generated discrete group of
isometries of H3 contains a finite index torsion free normal subgroup.
Such a subgroup uniformizes a hyperbolic 3-dimensional manifold. In
section 6 we proceed to find such a torsion free normal subgroup of
finite index for some of the above embedded groups. In section 7 we
describe a second construction for embedding G when kj = ∞ and∑n

i=1 lj < (n− 2)π.

2. Generalized Coxeter Groups

A generalized Coxeter group G is by definition an abstract group with
generators x1,..., xn, and relations of the form:

(1) xki
i = 1, where ki ∈ {2, 3, ...} ∪ {∞}, for each i = 1, ..., n;

(2) (x−1
i xj)

lij = 1, where lij = lji ∈ {2, 3, ...} ∪ {∞}, for each i 6=
j ∈ {1, 2, ..., n}.
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If we have ki = 2, for all i ∈ {1, ..., n}, then a generalized Coxeter
group is in fact a Coxeter group.

As for Coxeter groups, each generalized Coxeter group has asso-
ciated a generalized Coxeter diagram (the only difference with the
definition of Coxeter diagram is that we assign a value ki to each ver-
tex xi). For instance, G = 〈x1, x2 : x2

1 = x3
2 = (x−1

2 x1)
3 = 1〉 is a

generalized Coxeter group (this is the alternating group A4). Its gen-
eralized Coxeter diagram is formed by an edge labelled with the value
3, joining two vertices x1 and x2 labelled by 2 and 3, respectively, as
it is shown in figure 1.

Figure 1

Coxeter groups are natural for the construction of groups generated
by reflections on the sides of some polyhedron. Generalized Coxeter
groups appear as the index two orientation-preserving subgroup.

A natural way to construct groups of isometries of the hyperbolic
three space H3 is by considering a convex hyperbolic polyhedron Q to-
gether the reflections on its faces. Necessary and sufficient conditions
for the group generated by these reflections to be discrete is to have all
internal angles of Q as integral quotients of π (tangencies are aloud).
The sufficiency part is consequence of the Maskit-Poincare’s polyhe-
dron theorem (see page 73 in [7]) and the necessary part is given by
the facts that (i) the composition of two reflections along faces meet-
ing at angle θ will give a rotation along their intersection line on angle
2θ; and (ii) a discrete group only may have finite order rotations.

Let G̃ be the group generated by the reflections on the sides of the
polyhedron Q (satisfying the above property on the internal angles)
and G be the index two subgroup of orientation-preserving isometries.

The group G̃ is a Coxeter group with Coxeter diagram obtained
directly from the shape of the polyhedron Q. The group G is a gener-
alized Coxeter group generated by the products xi = σ0σi, where σ0 is
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the reflection on a fixed face e0 of Q, and σi runs over the reflections
on the other faces of Q. The relations are given by

(1) xki
i = 1, if the faces e0 and ei meet at angle

π

ki

(ki = ∞ if the

faces do not intersect in H3);

(2) (xjx
−1
i )lij = 1, if the faces ei and ej meet at angle

π

lij
(lij = ∞

if the faces do not intersect in H3).

In this note, we consider a certain type of convex hyperbolic poly-
hedron Q ⊂ H3, determined by a collection of circles on the Riemann
sphere so that the group G has presentation

〈x1, ..., xn; xki
i = (xj+1x

−1
j )lj = 1〉,

where n ≥ 3, and ki, lj ∈ {2, ...,∞}.
The generalized Coxeter diagram of G is given as follows (see figure

2 for n = 6):

(i) the vertices ∈are the n root of unity (in the complex plane)
labelled by k1,..., kn, in counterclockwise order, starting at 1;
and

(ii) the edges of the graph are the edges of a n sided polygon de-
termined by the above vertices, labelled by l1,..., ln, in counter-
clockwise order, starting from the edge that joins 1 with e

2π
n ,

and the edges connecting all non-adjacent vertices, all of them
labelled with ∞.

Figure 2
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If we consider n = 2, then G turns out to be a triangular group
(in this case, necessarily, l1 = l2 = l)

〈x1, x2; x
k1
1 = xk2

2 = (x2x
−1
1 )l = 1〉.

It is a classical fact that triangle groups can be embedded as a group
of isometries of the hyperbolic three space. Moreover, the number

δ =
1

k1

+
1

k2

+
1

l
determines the type of group as follows:

(i) if δ < 1, then G is hyperbolic;

(ii) if δ = 1, then G is Euclidean;

(iii) if δ > 1, then G is finite.

In [6] we have shown that, if ki = k and lj = l are integers greater
or equal to two, then the generalized Coxeter group 〈x1, ..., xn; xk

i =
(xj+1x

−1
j )l = 1〉, can be embedded, for (n, k, l) 6= (3, 3, 2), as a group

of isometries of either the hyperbolic three space, the Euclidean three
space or the product of the Euclidean line with either the two-sphere
or the hyperbolic plane. Moreover, if (n, k, l) is different from (3, 2, 2),
(3, 2, 3), (3, 3, 2) and (4, 2, 2), then we have the hyperbolic situation
(see section 5). The case (3, 3, 2) determines a finite group of order 96
non-isomorphic to a dihedral group,, in particular, cannot be embed-
ded as group of isometries of the hyperbolic three space.

3. First Construction: n-Pyramids

Assume that we are given n + 1 different circles C0, C1,..., Cn (n ≥ 3)
on the complex plane. For each circle Cj, we denote by Dext

j and Dint
j

the unbounded and bounded open sets, respectively, determined by it.
Assume that these circles satisfy the following properties (see figure 3
for n = 10):

(1) C0 and Ci intersect transversally for each i = 1, ..., n;

(2) Ci and Ci±1 intersect transversally for each i = 1, ..., n (mod n);

(3) (Ci ∪Dint
i ) ∩ (Cj ∪Dint

j ) = ∅, if j /∈ {i− 1, i, i + 1};
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(4) The angle between C0 and Ci determined in Dext
0 ∩ Dext

i is
π

ki

,

where ki is an integer greater or equal to two;

(5) The angle between Ci and Ci+1 determined in Dext
i ∩Dext

i+1 is
π

li
,

where li is an integer greater or equal to two.

The hyperbolic polyhedron Q ⊂ H3 bounded by the hyperbolic
planes determined by all the above circles is a fundamental polyhedron
for this group, which is topologically a truncated n-pyramid. We must
note that this n-pyramid has vertices either in H3, the boundary Ĉ =
C ∪ {∞} or beyond infinity (in which case, we say that the pyramid
is truncated at that vertex)..

If we denote by σj the reflection on the circle Cj, then the group G̃
generated by them is a discrete group of isometries of the hyperbolic
space having presentation

G̃ = 〈σ0, ..., σn : σ2
j = (σ0σi)

ki = (σi+1σi)
li = 1〉.

The polyhedron Q is a fundamental domain for its action of the hy-
perbolic space H3. Its index two subgroup G of orientation-preserving
isometries has presentation

G = 〈x1, ..., xn : xki
i = (xj+1x

−1
j )lj = 1〉,

where xi = σ0σi. The hyperbolic polyhedron Q ∪ σ0(Q) is a funda-
mental polyhedron for G.
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Figure 3

For (i) n ≥ 4 and (ii) n = 3 and
1

l1
+

1

l2
+

1

l3
< 1, the polyhe-

dron Q∪σ0(Q) has at least two ends on the Riemann sphere (vertices
beyond the infinite). Each of these ends determines a connected com-
ponent of the region of discontinuity of G. Two of them are permuted
by each generator xi. The other components have as stabilizer a tri-
angular group. It follows that, under the above assumption, the group
G has no invariant component. Moreover, except for the special case
k1 = · · · = kn = 2 (in which case the circle C0 is the limit set of G
and G̃) the group G has an infinite number of components. The quo-
tient by G of the two components which are permuted has signature
(0, n; l1, ..., ln) and the other quotients are spheres with three branch
values. The quotient H3/G is the orbifold with the three sphere (mi-
nus some points) as underlying space and singular locus a planar graph
obtained as a n-pyramid (the points deleted from the three sphere are
some of the vertices of this pyramid). Figure 4 shows the graph n = 6.
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Figure 4

4. Example: Finite Volume Tetrahedra

The 3-pyramids we are looking for in the above construction are all
possible hyperbolic (truncated) tetrahedra with integer quotients of
π as angles between its faces. In this section we proceed to recall all
possible finite volume of these tetrahedra (that is, without vertices be-
yond infinite) [8]. In particular, this section describe all finite volume
representations of the group

G = 〈x, y, z : xa = yb = zc = (y−1x)d = (z−1y)e = (x−1z)f = 1〉.

Let us observe that each possible tetrahedron (not necessarily of
finite volume) determines at most 24 presentations as desired for the
same group G. This is because we can use any of the four faces for
the choice of the reflection σ0 and we have then 6 possibilities for the
election of σ1, σ2 and σ3. We will say that all of them are equivalent.

Theorem 1. Modulo equivalence, all possible finite volume repre-
sentations of the group G = 〈x, y, z : xa = yb = zc = (y−1x)d =
(z−1y)e = (x−1z)f = 1〉, are given by the following possibilities for
(a, b, c, d, e, f):
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I Non-Compact Cases:

1. (2, 2, c, 3, 3, 3), c = 3, 4, 5, 6,

2. (3, 3, 3, 3, 3, 3),

3. (2, 3, 3, 3, 3, 3),

4. (2, 2, c, 4, 4, 2), c = 3, 4,

5. (2, 2, c, 4, 2, 4), c = 3, 4,

6. (2, c, 2, 4, 4, 2), c = 3, 4,

7. (2, 3, 2, 3, 6, 2),

8. (3, 2, c, 4, 4, 2), c = 3, 4,

9. (4, 2, 4, 4, 4, 2),

10. (3, 2, 2, 2, 3, 6),

11. (c, 2, 2, 2, 6, 3), c = 3, 4, 5, 6,

12. (c, 2, 3, 3, 6, 2), c = 3, 4, 5, 6,

II Compact Cases:

1. (2, 2, 3, 5, 3, 2),

2. (2, 2, c, 5, 2, 3), c = 4, 5,

3. (3, 5, 3, 2, 2, 2),

4. (2, c, 3, 3, 2, d), c = 4, 5, d = 3, 4

5. (2, 5, 3, 3, 2, 5)

Proof : Let us consider a hyperbolic tetrahedron with faces F1,
F2, F3 and F4, so that the angle between the faces Fi and Fj is π/ri,j,
where ri,j ∈ {2, 3, ...} (see figure 5). If we want this tetrahedron to
have finite volume, we also need to have:

(1)
1

r1,4

+
1

r3,4

+
1

r1,3

≥ 1;
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(2)
1

r1,4

+
1

r2,4

+
1

r1,2

≥ 1;

(3)
1

r2,4

+
1

r3,4

+
1

r2,3

≥ 1.

(4)
1

r1,2

+
1

r2,3

+
1

r1,3

≥ 1.

Figure 5

If we consider the hyperbolic plane H ⊂ H3 containing the face
F4, then the faces F1, F2 and F3 determine a hyperbolic triangle on
H. Let us denote by θi ∈ (0, π) the angle of this triangle formed by
the lines fi and fi+1, where fi = Fi ∩ F4 for i = 1, 2, 3. We have that

(5) cos

(
π

r1,2

)
= − cos

(
π

r1,4

)
cos

(
π

r2,4

)
+cos (θ1) sin

(
π

r1,4

)
sin

(
π

r2,4

)
;

(6) cos

(
π

r2,3

)
= − cos

(
π

r2,4

)
cos

(
π

r3,4

)
+cos (θ2) sin

(
π

r2,4

)
sin

(
π

r3,4

)
;

(7) cos

(
π

r1,3

)
= − cos

(
π

r1,4

)
cos

(
π

r3,4

)
+cos (θ3) sin

(
π

r1,4

)
sin

(
π

r3,4

)
.

(8) θ1 + θ2 + θ3 < π.

In fact, to construct a tetrahedron (of finite volume) in H3 as above,
we only need to have the existence of a hyperbolic triangle with angles
θ1, θ2 and θ3 satisfying (5), (6) and (7).
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Non-Compact Case. We assume at least one vertex of the tetrahe-
dron on the boundary of the hyperbolic space (see figure 6). We may
assume then:

(4)
1

r1,2

+
1

r2,3

+
1

r1,3

= 1.

Figure 6

Adding inequalities (1), (2) and (3) gives us

1

r1,4

+
1

r2,4

+
1

r3,4

≥ 1.

In particular, modulo permutation of faces (a topological isometry
of the tetrahedron), we obtain the above list.

Compact Case

If the tetrahedra is compact, then its faces cut the boundary Ĉ as
shown in figure 7.
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Figure 7

In this case, all possible tetrahedra as desired are given in the above
list.

5. The Symmetric Case

In this part, we consider the case n ≥ 3 and ki = k and lj = l. Let us

assume we have k, l ∈ {2, 3, ...,∞}, so that l >
n

n− 2
.

Under this condition, we are able to construct a regular hyperbolic
n-gone F in the unit disc model of the hyperbolic plane H2, which is
invariant under the rotation y(z) = e

2π
n z and with each interior angle

θ, where

cos
(

π

l

)
= − cos

(
π

k

)2

+ cos (θ) sin
(

π

k

)2

.

For k = 2 we have that there is such a regular n-gone with θ =
π

l
.

For k > 2, we have that there is a regular n-gone with internal
angle π/l. Denote by e1,..., en the geodesic lines that determine the
boundaries of F .

It is easy to check that for n ≥ 4 the lines ei and ej do not intersect
in the closure of the unit disc if j 6= i− 1, i, i + 1. This is consequence
of the fact that the sum of internal angles of a hyperbolic triangle is
always less than π.
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Let us consider a circle Cr, centered at the origin and radius r ∈
(0, 1]. The lines ei and the circle Cr intersect if and only if r ∈ [r0, 1],
where r0 is given to obtain tangency.

Let us measure the angle of intersection between ei and Cr at the
common exterior of the discs bounded by each of them. As conse-
quence of the symmetry of F , we have that such an angle is the same

for all i = 1, ..., n. If we denote by θr such angle, we get that θr ∈ [0,
π

2
],

θr0 = 0, θ1 =
π

2
and θr is an increasing function on r ∈ [r0, 1]. It fol-

lows that there exists r1 ∈ [r0, 1] for which θr1 =
π

k
(if k = ∞, then

r1 = r0) and, we obtain the following:

Theorem 2. Let n ≥ 3 and k, l ∈ {2, 3, ...,∞} be so that l >
n

n− 2
.

Then we can embed the generalized Coxeter group G = 〈x1, ..., xn :
xk

i = (x−1
i+1xi)

l = 1〉 as a group of isometries of H3.

In this symmetric case, we have an extra isometry given by y. If
we add to G this extra isometry, we get a Kleinian group K with
presentation

K = 〈x, y : xk = yn = (yx−1y−1x)l = 1〉,
where x = x1, and containing G as a normal subgroup of index n.
The Riemann surface that K uniformizes has signature (0, 3; n, n, l)
and the hyperbolic orbifold it uniformizes is the three sphere (with
some deleted points) and branched locus given by a one-bridge of a
link of two circles as shown in figure 8.

Figure 8
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In the case that k 6= 2, if we denote by η the reflection on the
boundary of the hyperbolic plane F , then we have that for t = ησ0

the group H generated by x1,..., xn and t is a group of isometries of
H3 with presentation:

H = 〈x1, ..., xn, t : xk
i = (x−1

i+1xi)
l = (txi)

2 = 1〉.
In this case, H3/H is topologically the three sphere (with some deleted
points) and branched locus as shown in the following figure for n = 6:

Figure 9

At this point, let us note that H has a subgroup L that also con-
tains G:

L = 〈x1, ..., xn, z : xk
i = (x−1

i+1xi)
l = (zxi)

k = 1〉,
(z = t2) so that the hyperbolic orbifold uniformized by it is the one
shown in figure 9 by replacing the values “2” by the value “k”.

We also have in the case k 6= 2 the group T generated by H and y
has presentation (writing x = x1)

T = 〈x, y, t : xk = yn = (tx)2 = ty−1t−1y = (y−1x−1yx)l = 1〉
The orbifold H3/T is topologically the three sphere branched at a

graph as shown in figure 9.
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Figure 10

If we consider the group

M = 〈x, y, z : xk = yn = (zx)k = zy−1z−1y = (y−1x−1yx)l = 1〉,

then the orbifold H3/M is topologically the three sphere branched at
a graph as shown in figure 9 by replacing the values “2” by the value
“k”.

6. Some examples of Hyperbolic Three-manifolds

Once we have a generalized Coxeter group G embedded as a group of
isometries of the hyperbolic three space H3, Selberg’s lemma asserts
the existence of a torsion-free normal subgroup H of finite index. The
group H uniformizes a hyperbolic three manifold admitting as a group
of automorphisms the finite group G/H. In the following examples, we
proceed to compute explicitly a surjective homomorphism onto some
finite group so that its kernel is torsion-free.
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Example 1

If we consider the symmetric situation with n = 4, l = 2 and k = 3,
we have the group

G = 〈x1, x2, x3, x4 : x3
1 = x3

2 = x3
3 = x3

4 = 1, (x−1
2 x1)

2 = (x−1
3 x2)

2 =
(x−1

4 x3)
2 = (x−1

1 x4)
2 = 1〉.

If we consider the permutations

• a = (5, 4, 2)(8, 3, 6),

• b = (6, 3, 1)(7, 4, 5)

• c = (2, 4, 7)(1, 8, 6) and

• d = (8, 1, 3)(5, 2, 7),

then we have that S4 = 〈a, b, c, d〉 and they satisfy the relations

a3 = b3 = c3 = d3 = (b−1a)2 = (c−1b)2 = (d−1c)2 = (a−1g)2 = 1.

Considering the surjective homomorphism φ : G → S4, defined by
φ(x1) = a, φ(x2) = b, φ(x3) = c and φ(x4) = d, we have that its
kernel F is a torsion free, finite index normal subgroup of G. In par-
ticular, M = H3/F is a non-compact hyperbolic 3-manifold of finite
volume admitting the group S4 as group of isometries so that M/S4

is topologically the three dimensional sphere (with five deleted points)
branched at a 4-pyramid with branched values 2 and 3. Moreover, the
quotient admits an isometry of order four which can be lifted to M .
It follows that M admits a group of isometries of order 96.

Figure 11
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Example 2 :

If we consider the symmetric situation with n = 3, l = 3 and k = 4,
we have the group

G = 〈x1, x2, x3 : x4
1 = x4

2 = x4
3 = 1, (x−1

2 x1)
3 = (x−1

3 x2)
3 = (x−1

1 x3)
3 = 1〉.

If we consider the permutations (see figure 11):

• a = (1, 2, 3, 4)(5, 6, 7, 8),

• b = (1, 4, 8, 5)(2, 3, 7, 6) and

• c = (2, 1, 5, 6)(3, 4, 8, 7),

then we have that S4 = 〈a, b, c〉 and they satisfy the relations

a4 = b4 = c4 = (b−1a)3 = (c−1b)3 = (a−1c)2 = 1.

Considering the surjective homomorphism φ : G → S4, defined
by φ(x1) = a, φ(x2) = b and φ(x3) = c, we have that its kernel F
is a torsion free, finite index normal subgroup of G. In particular,
M = H3/F is a non-compact hyperbolic 3-manifold of infinite vol-
ume admitting the group S4 as group of isometries so that M/S4 is
topologically the three dimensional sphere (with four deleted points)
branched at a 3-pyramid with branched values 3 and 4. Moreover, the
quotient admits an isometry of order three which can be lifted to M .
It follows that M admits a group of isometries of order 72

Example 3

If we consider the symmetric situation with n = 3, l = 5 and k = 5,
we have the group

G = 〈x1, x2, x3 : x5
1 = x5

2 = x5
3 = 1, (x−1

2 x1)
5 = (x−1

3 x2)
5 = (x−1

1 x3)
5 = 1〉.
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If we consider the permutations

• a = (1, 2, 3, 4, 5)(8, 10, 12, 14, 6)(7, 9, 11, 13, 15)(17, 18, 19, 20, 16),

• b = (1, 5, 6, 7, 8)(17, 9, 2, 4, 15)(12, 13, 20, 19, 11)(3, 14, 16, 18, 10)
and

• c = (5, 4, 14, 15, 6)(16, 7, 1, 3, 13)(9, 10, 11, 19, 18)(17, 8, 2, 12, 20),

then we have that A5 = 〈a, b, c〉 and they satisfy the relations

a5 = b5 = c5 = (b−1a)5 = (c−1b)3 = (a−1c)2 = 1.

Figure 12

Considering the surjective homomorphism φ : G → A5, defined by
φ(x1) = a, φ(x2) = b and φ(x3) = c, we have that its kernel F is a tor-
sion free, finite index normal subgroup of G. In particular, M = H3/F
is a non-compact hyperbolic 3-manifold of infinite volume admitting
the group A5 as group of isometries so that M/A5 is topologically
the three dimensional sphere (with four deleted points) branched at a
3-pyramid with branched values 5. Moreover, the quotient admits an
isometry of order three which can be lifted to M . It follows that M
admits a group of isometries of order 180.
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Example 4

If we consider the symmetric situation with n = 5, l = 5 and k = 3,
we have the group

G = 〈x1, x2, x3, x4, x5 : x3
1 = x3

2 = x3
3 = x3

4 = x3
5 = 1, (x−1

2 x1)
5 =

(x−1
3 x2)

5 = (x−1
4 x3)

5 = (x−1
5 x4)

5 = (x−1
1 x5)

5 = 1〉.
If we consider the permutations (see figure 12):

• a1 = (8, 5, 2)(7, 4, 10)(6, 3, 9)(17, 14, 11)(12, 18, 15)(19, 16, 13),

• a2 = (10, 1, 3)(9, 5, 12)(8, 4, 11)(18, 6, 13)(14, 19, 7)(20, 17, 15),

• a3 = (12, 2, 4)(11, 1, 14)(10, 5, 13)(19, 8, 15)(6, 20, 9)(16, 18, 7),

• a4 = (14, 3, 5)(13, 2, 6)(12, 1, 15)(20, 10, 7)(8, 16, 11)(17, 19, 9) and

• a5 = (6, 4, 1)(15, 3, 8)(14, 2, 7)(16, 12, 9)(10, 17, 13)(18, 20, 11),

then we have that A5 = 〈a1, a2, a3, a4, a5〉 and they satisfy the
relations

a3
1 = a3

2 = a3
3 = a3

4 = a3
5 = 1, (a−1

2 a1)
5 = (a−1

3 a2)
5 = (a−1

4 a3)
5 =

(a−1
5 a4)

5 = (a−1
1 a5)

5 = 1.
Considering the surjective homomorphism φ : G → A5, defined by

φ(xj) = aj, for j = 1, 2, 3, 4, 5, we have that its kernel F is a torsion
free, finite index normal subgroup of G. In particular, M = H3/F
is a non-compact hyperbolic 3-manifold of infinite volume admitting
the group A5 as group of isometries so that M/A5 is topologically
the three dimensional sphere (with six deleted points) branched at
a 5-pyramid with branched values 3 and 5. Moreover, the quotient
admits an isometry of order five which can be lifted to M . It follows
that M admits a group of isometries of order 300.

Example 5

If we consider the situation with n = 3, k = 3, l1 = l2 = 3, l3 = 2,
then we have the group

G = 〈x1, x2, x3 : x3
1 = x3

2 = x3
3 = 1, (x−1

2 x1)
3 = (x−1

3 x2)
3 = (x−1

1 x3)
2 = 1〉.
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If we consider the permutations

• a = (2, 3, 4),

• b = (4, 1, 3) and

• c = (4, 1, 2),

then we have that A4 = 〈a, b, c〉 and they satisfy the relations

a3 = b3 = c3 = (b−1a)3 = (c−1b)3 = (a−1c)2 = 1.

Figure 13

Considering the surjective homomorphism φ : G → S4, defined by
φ(x1) = a, φ(x2) = b and φ(x3) = c, we have that its kernel F is a tor-
sion free, finite index normal subgroup of G. In particular, M = H3/F
is a non-compact hyperbolic 3-manifold of finite volume admitting the
group A4 as group of isometries so that M/A4 is topologically the
three dimensional sphere (with two deleted points) branched at a 3-
pyramid with branched values 3 and 2. Moreover, the quotient admits
an isometry of order two which can be lifted to M . It follows that M
admits a group of isometries of order 24

Example 6

If we consider the situation with n = 3, k = 5, l1 = l2 = 3, l3 = 5,
then we have the group

G = 〈x1, x2, x3 : x5
1 = x5

2 = x5
3 = 1, (x−1

2 x1)
3 = (x−1

3 x2)
3 = (x−1

1 x3)
5 = 1〉.
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If we consider the permutations (see figure 12):

• a = (1, 2, 3, 4, 5)(8, 10, 12, 14, 6)(7, 9, 11, 3, 15)(17, 18, 19, 20, 16),

• b = (8, 7, 6, 5, 1)(15, 4, 2, 9, 17)(11, 19, 20, 13, 12)(10, 18, 16, 14, 3)
and

• c = (5, 4, 14, 15, 6)(16, 7, 1, 3, 13)(9, 10, 11, 19, 18)(17, 8, 2, 12, 20),

then we have that A5 = 〈a, b, c〉 and they satisfy the relations

a5 = b5 = c5 = (b−1a)3 = (c−1b)3 = (a−1c)5 = 1.

Considering the surjective homomorphism φ : G → A5, defined by
φ(x1) = a, φ(x2) = b and φ(x3) = c, we have that its kernel F is a tor-
sion free, finite index normal subgroup of G. In particular, M = H3/F
is a non-compact hyperbolic 3-manifold of infinite volume admitting
the group A5 as group of isometries so that M/A5 is topologically
the three dimensional sphere (with four deleted points) branched at
a 3-pyramid with branched values 3 and 5. Moreover, the quotient
admits an isometry of order two which can be lifted to M . It follows
that M admits a group of isometries of order 120.

Example 7

Let us consider l > n
n−2

and the group

G = 〈x1, ..., xn : xk
j = (x−1

j+1xj)
l = 1〉.

Theorem 4 asserts that G can be embedded as group of isometries of
H3. In this particular case, the commutator subgroup [G,G] turns
out to be a torsion free normal subgroup of index kln, and

G/[G,G] ∼= Z/kZ× Z/lZ× · · · × Z/lZ.

In particular, [G,G] uniformizes a hyperbolic three manifold M
with a group of automorphisms containing the above finite Abelian
group. Also it admits an extra automorphism of order n, so it admits
a group of order at least nkln as group of automorphisms.
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Example 8: The compact tetrahedra.

8.1

Let us consider n = 3, l1 = 2, l2 = 3, l3 = 3, k1 = 3, k2 = 5 and
k3 = 2. In this case, the group

G = 〈x1, x2, x3 : x3
1 = x5

2 = x2
3 = (x−1

2 x1)
2 = (x−1

3 x2)
3 = (x−1

1 x3)
3 = 1〉,

is a co-compact group of isometries of the hyperbolic space H3. If we
set H to be the normalizer of (x1x2x3)

2 in G, then we get that H is a
torsion free normal subgroup of index 60 (this can be obtained using
the program GAP). In particular, M = H3/H is a compact hyperbolic
three manifold with a group of isometries K isomorphic to A5, so that
M/K = H3/G.

8.2

Let us consider n = 3, l1 = 2, l2 = 3, l3 = 4, k1 = 3, k2 = 4 and
k3 = 2. In this case, the group

G = 〈x1, x2, x3 : x3
1 = x4

2 = x2
3 = (x−1

2 x1)
2 = (x−1

3 x2)
3 = (x−1

1 x3)
4 = 1〉,

is a co-compact group of isometries of the hyperbolic space H3. If
we set H to be the normalizer of (x1x2x3)

2 in G, then we get that H
is a torsion free normal subgroup of index 96 (this can be obtained
using the program GAP). In particular, M = H3/H is a compact
hyperbolic three manifold with a group of isometries K of order 96,
so that M/K = H3/G.

8.3

Let us consider n = 3, l1 = 2, l2 = 3, l3 = 5, k1 = 2, k2 = 5 and
k3 = 2. In this case, the group

G = 〈x1, x2, x3 : x2
1 = x5

2 = x2
3 = (x−1

2 x1)
2 = (x−1

3 x2)
3 = (x−1

1 x3)
5 = 1〉,

is a co-compact group of isometries of the hyperbolic space H3. The
hyperbolic volume of H3/G is

Vol(H3/G) = 0.186651.
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If we set H to be the normalizer of (x1x2x3)
3 in G, then we get that

H is a torsion free normal subgroup of index 60 (this can be obtained
using the program GAP). In particular, M = H3/H is a compact
hyperbolic three manifold with a group of isometries K isomorphic to
A5, so that M/K = H3/G and

Vol(M) = 11.1991.

8.4

Let us consider n = 3, l1 = 2, l2 = 3, l3 = 5, k1 = 3, k2 = 5 and
k3 = 2. In this case, the group

G = 〈x1, x2, x3 : x3
1 = x5

2 = x2
3 = (x−1

2 x1)
2 = (x−1

3 x2)
3 = (x−1

1 x3)
5 = 1〉,

is a co-compact group of isometries of the hyperbolic space H3. If we
set H to be the normalizer of (x1x2x3)

2 in G, then we get that H is a
torsion free normal subgroup of index 60 (this can be obtained using
the program GAP). In particular, M = H3/H is a compact hyperbolic
three manifold with a group of isometries K isomorphic to A5, so that
M/K = H3/G.

8.5

Let us consider n = 3, l1 = l2 = l3 = 2, k1 = k3 = 3 and k2 = 5. In t
his case, the group

G = 〈x1, x2, x3 : x3
1 = x5

2 = x3
3 = 1, (x−1

2 x1)
2 = (x−1

3 x2)
2 = (x−1

1 x3)
2 = 1〉,

is a co-compact group of isometries of the hyperbolic space H3. We
have that H3/G is the three sphere branched at a tetrahedron with
three edges (with a common vertex) of order 2 and the others three of
orders 3, 3 and 5. If we set H to be the normalizer of (x1x2x3)

3 in G,
then we get that H is a torsion free normal subgroup of index 660 (this
can be obtained using the program GAP). In particular, M = H3/H
is a compact hyperbolic three manifold with a group of isometries K
of order 660, so that M/K = H3/G.
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8.6

Let us consider n = 3, l1 = l2 = 2, l3 = 3, k1 = 2, k2 = 3 and k3 = 5.
In this case, the group

G = 〈x1, x2, x3 : x2
1 = x3

2 = x5
3 = (x−1

2 x1)
2 = (x−1

3 x2)
2 = (x−1

1 x3)
3 = 1〉,

is a co-compact group of isometries of the hyperbolic space H3. If
we set H to be the normalizer of (x1x2x3)

4 in G, then we get that H
is a torsion free normal subgroup of index 360 (this can be obtained
using the program GAP). In particular, M = H3/H is a compact
hyperbolic three manifold with a group of isometries K of order 360,
so that M/K = H3/G.

8.7

Let us consider n = 3, l1 = 2, l2 = 3, l3 = 3, k1 = 3, k2 = 4 and
k3 = 2. In this case, the group

G = 〈x1, x2, x3 : x3
1 = x4

2 = x2
3 = (x−1

2 x1)
2 = (x−1

3 x2)
3 = (x−1

1 x3)
3 = 1〉,

is a co-compact group of isometries of the hyperbolic space H3.
If we set H to be the normalizer of (x1x2x3)

4 in G, then we get
that H is a torsion free normal subgroup of index 2448 (this can be
obtained using the program GAP). In particular, M = H3/H is a
compact hyperbolic three manifold with a group of isometries K of
order 2448, so that M/K = H3/G.

8.8

Let us consider n = 3, l1 = 2, l2 = 3, l3 = 5, k1 = 2, k2 = 54 and
k3 = 2. In this case, the group

G = 〈x1, x2, x3 : x2
1 = x4

2 = x2
3 = (x−1

2 x1)
2 = (x−1

3 x2)
3 = (x−1

1 x3)
5 = 1〉,

is a co-compact group of isometries of the hyperbolic space H3 and

Vol(H3/G) = 0.0717702.

If we set H to be the normalizer of (x1x2x3)
6 in G, then we get

that H is a torsion free normal subgroup of index 6840 (this can be
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obtained using the program GAP). In particular, M = H3/H is a
compact hyperbolic three manifold with a group of isometries K of
order 6840, so that M/K = H3/G and

Vol(M) = 490.908.

7. Second Construction: Infinite Volume

Let us start with a configuration of circles C0, C1,..., Cn, D0, D1,...,
Dn, where n ≥ 3, so that:

(1) Cj ∩Di = ∅;

(2) Cj is orthogonal to C0, for j = 1, ..., n;

(3) Dj is orthogonal to D0, for j = 1, ..., n;

(4) Cj ∩ Ci = ∅, for i, j ∈ {1, ..., n} and j /∈ {i− 1, i, 1 + 1};

(5) Dj ∩Di = ∅, for i, j ∈ {1, ..., n} and j /∈ {i− 1, i, 1 + 1};

(6) Ci and Ci+1 intersect at an angle of the form π
li
, where li ∈

{2, ...} ∪ {∞};

(7) Di and Di+1 intersect with angle π
li
.

(8) There is a Jordan curve γ, contained in some of the two poly-
gons determined by the configuration of circles C1,..., Cn, so that
the configuration of circles D0,..., Dn is contained in the topo-
logical disc determined by γ that does not contains the other
configuration of circles Cj.
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Figure 14

For each j ∈ {1, 2, ..., n}, we choose a loxodromic transformation
xj so that

(1) xj(Cj) = Dj;

(2) xj(Cj ∩ Cj+1) = Dj ∩Dj+1.

As an application of the Klein-Maskit’s combination theorems [7],
we have that the group G generated by x1,..., xn, is a Kleinian group
with fundamental polyhedron domain given by the hyperbolic polyhe-
dron bounded by the geodesic planes determined by the circles C1,...,
Cn, D1,..., Dn. Moreover, the group G has presentation

G = 〈x1, ..., xn : (x−1
j+1xj)

lj = 1〉.



48 Rubén Hidalgo

It follows that this is the type of groups we are considering with
the property that kj = ∞, for all j = 1, ..., n.

In this construction, there is a common region R bounded by the
two circles C0 and D0 (the region containing the Jordan curve γ). If
xj has the property that xj(R) ⊂ R, for all j = 1, ..., n, then the three
orbifold uniformized by this group is topologically the three sphere
minus two points and the branch locus is a collection of n pairwise
disjoint (planar) rays connecting the two deleted points with branch-
ing numbers l1,..., ln, respectively. Each deleted point determines a
Riemann sphere as conformal boundary having n branched points of
orders l1,..., ln.

Figure 15

8. Ending remark

The general case, that is n ≥ 4 and non-symmetric, is more compli-
cated. Already in the case n = 4 it is not easy to write nice inequalities
on the values ki and lj to ensure the non-intersecting of the circles Ci

and Cj for j /∈ {i− 1, i, i + 1}.
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