Proyecciones
Vol. 21, ${ }^{o}$ 1, pp. 1-7, May 2002.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/S0716-09172002000100001

PARABOLIC PERTURBATION IN THE FAMILY $z \mapsto 1+1 / w z^{d}$

JUAN BOBENRIETH *
Universidad de Bío - Bío - Chile

Abstract

Consider the family of rational maps $\mathcal{F}_{d}=\left\{z \mapsto f_{w}(z)=\right.$ $\left.1+\frac{1}{w z^{d}}: w \in \mathbf{C} \backslash\{\mathbf{0}\}\right\} \quad(\mathbf{d} \in \mathbf{N}, \mathbf{d} \geq \mathbf{2})$, and the hyperbolic component $A_{1}=\left\{w: f_{w}\right.$ has an attracting fixed point $\}$. We prove that if $w_{0} \in \partial A_{1}$ is a parabolic parameter with corresponding multiplier a primitive q-th root of unity, $q \geq 2$, then there exists a hyperbolic component W_{q}, attached to A_{1} at the point w_{0}, which contains w-values for which f_{w} has an attracting periodic cycle of period q.

1991 Mathematics Subject Classification : Primary 30D05, 58F23.

[^0]
1. Introduction

For any $d \in \mathbf{N}, d \geq 2$, the family $\mathcal{F}_{d}=\left\{z \mapsto 1+\frac{1}{w z^{d}}: w \in \mathbf{C} \backslash\{0\}\right\}$ is a normal form for the set of rational maps of degree d which have exactly two critical points, one of which maps onto the other under one iteration. These families have been considered in [3], [4] (for the special case $d=2$), and in [1](for any d).

It is well known that a rational map f is hyperbolic if and only if all critical points of f tend to attracting cycles under iteration. Since the members of the family \mathcal{F}_{d} have only one forward orbit of their critical points, f_{w} is hyperbolic if and only if f_{w} has an attracting periodic orbit. The connected components of the parametric set $\mathcal{H}_{d}=\{w$: $f_{w}(z)=1+1 / w z^{d}$ has an attracting periodic orbit $\}$ are called the hyperbolic components of the family \mathcal{F}_{d}.

Following the ideas used in [2], we can prove the following one.

Theorem If $f_{w_{0}}$ has a fixed point z_{0} such that the multiplier $\lambda_{0}=$ $f_{w_{0}}^{\prime}\left(z_{0}\right)$ is a primitive q-th root of unity, $q \geq 2$, then there exists a hyperbolic component W_{q}, which contains w-values for which f_{w} has an attracting periodic cycle of period q, with $w_{0} \in \partial W_{q}$.
In Section 2 we prove the Theorem.

2. Proof of Theorem

It is clear that for any $u \in \mathbf{C} \backslash\{0,-d\}$,
f_{w} has a fixed point of multiplier $u \Longleftrightarrow w=-\frac{d}{u}\left(1+\frac{u}{d}\right)^{d+1}$.
f_{w} has a fixed point of multiplier $u \Longleftrightarrow w=-\frac{d}{u}\left(1+\frac{u}{d}\right)^{d+1}$.
In fact, $z(u)=\frac{d}{d+u}$ is the fixed point of multiplier u.
Let $g_{u}(z):=f_{-\frac{d}{u}\left(1+\frac{u}{d}\right)^{d+1}}(z)$, that is,
$g_{u}(z)=1-\frac{d^{d} u}{(d+u)^{d+1} z^{d}}, \quad u \in \mathbf{C} \backslash\{0,-d\}$.
Therefore, g_{u} has at $z(u)=\frac{d}{d+u}$ a fixed point of multiplier u. Now, we will make an analytic conjugation :

Let $M_{u}(z):=z-z(u)$, and consider $h_{u}:=M_{u} \circ g_{u} \circ M_{u}^{-1}$.
For any $u \in \mathbf{C} \backslash\{0,-d\}, \quad h_{u}$ is a rational map analytically conjugate to f_{w} (where $w=-\frac{d}{u}\left(1+\frac{u}{d}\right)^{d+1}$), and which has at zero a fixed point of multiplier u.
Explicitly,

$$
h_{u}(z)=\frac{u}{d+u} \cdot \frac{(z(d+u)+d)^{d}-d^{d}}{(z(d+u)+d)^{d}}, \quad u \in \mathbf{C} \backslash\{\mathbf{0},-\mathbf{d}\} .
$$

Note that, for any $q \in \mathbf{N}, \quad h_{u}^{q}(z)=u^{q} z \cdot \Phi_{u, q}(z)$, where $\Phi_{u, q}$ is a rational map with $\Phi_{u, q}(0)=1$. Hence, in a neighbourhood of $z=0$ we have:

$$
h_{u}^{q}(z)=u^{q} z+a_{2} z^{2}+\ldots .
$$

In what follows, u_{0} denotes a primitive q-th root of unity, $q \geq 2$ (that is, $u_{0}^{q}=1$, and $u_{0}^{k} \neq 1$, for all $1 \leq k \leq q-1$). In order to prove the above theorem, we show the following results:

Lemma 1 : $h_{u_{0}}^{q}$ has at 0 a fixed point of multiplicity $(q+1)$.

Proof : Since $h_{u_{0}}$ has at zero a fixed point of multiplier a primitive q-th root of unity, we have that in a neighbourhood of zero,

$$
h_{u_{0}}^{q}(z)=z+a z^{k q+1}+\ldots \text { where } a \neq 0, \text { and } k \in \mathbf{N} .
$$

From the fact that $h_{u_{0}}$ has only one forward orbit of critical points, $k=1$.

Therefore, $\quad h_{u_{0}}^{q}(z)=z+a z^{q+1}+\ldots$.

Next, we will show that for u near to u_{0}, the $(q+1)$-fold fixed point zero of $h_{u_{0}}^{q}$ will split up into $(q+1)$ simple fixed points of h_{u}^{q}, which are: 0 , and $\left\{z_{1}(u), z_{2}(u), \ldots, z_{q}(u)\right\}$; the latter forms a periodic orbit of period q of h_{u}.

Lemma 2: There exist $\varepsilon>0$ and $r>0$ such that for each $u \in \mathbf{C}$ with $0<\left|u-u_{0}\right|<r$, the rational map h_{u}^{q} has precisely q fixed points in the punctured disc $0<|z|<\varepsilon$. Furthermore, these q points form a cycle of length q for h_{u}.

Proof : Since the zeros of an analytic function (not identically zero) are isolated, there exist $\varepsilon, \quad 0<\varepsilon<\frac{d-1}{d+2}$, such that:

$$
h_{u_{0}}^{k}(z)-z \neq 0 \quad \text { for } \quad 0<|z|<\varepsilon^{\prime}, \quad \text { and } \quad 1 \leq k \leq q,
$$

where $\quad \varepsilon^{\prime}:=\frac{2}{d-1}\left[(2 d-1)^{d}-d^{d}\right] \cdot \varepsilon$. (Note that $\left.\varepsilon<\varepsilon^{\prime}\right)$.
Let $\gamma_{\varepsilon}=\{z \in \mathbf{C}:|z|=\varepsilon\}, \quad \gamma_{\varepsilon^{\prime}}=\left\{z \in \mathbf{C}:|z|=\varepsilon^{\prime}\right\}$, and

$$
\alpha:=\min _{1 \leq k \leq q}\left\{\left|h_{u_{0}}^{k}(z)-z\right|: z \in \gamma_{\varepsilon} \cup \gamma_{\varepsilon^{\prime}}\right\}(>0) .
$$

It is clear that there exists $r, 0<r<1$, such that :
$\left|h_{u}^{k}(z)-z\right| \geq \frac{\alpha}{2}$, for all $\left|u-u_{0}\right|<r, z \in \gamma_{\varepsilon} \cup \gamma_{\varepsilon \prime}$, and $1 \leq k \leq q$.
From the Argument Principle, the number $N_{k, \varepsilon}(u)\left(\right.$ resp. $\left.N_{k, \varepsilon^{\prime}}(u)\right)$ of fixed points of h_{u}^{k} in the disk $|z|<\varepsilon\left(\right.$ Resp. $\left.|z|<\varepsilon^{\prime}\right)$ for $\left|u-u_{0}\right|<$ r and $1 \leq k \leq q$, is given by :

$$
\begin{gathered}
\quad N_{k, \varepsilon}(u)=\frac{1}{2 \pi i} \oint_{|z|=\varepsilon} \frac{\left(h_{u}^{k}\right)^{\prime}(z)-1}{h_{u}^{k}(z)-z} d z \\
\left(\operatorname{resp} . N_{k, \varepsilon^{\prime}}(u)=\frac{1}{2 \pi i} \oint_{|z|=\varepsilon^{\prime}} \frac{\left(h_{u}^{k}\right)^{\prime}(z)-1}{h_{u}^{k}(z)-z} d z\right)
\end{gathered}
$$

From above we conclude that $u \mapsto N_{k, \varepsilon}(u)$, and $u \mapsto N_{k, \varepsilon^{\prime}}(u)$, are conti- nuous, and hence are constant since they are integer-valued.

Therefore,

$$
\begin{aligned}
& N_{k, \varepsilon}(u)=N_{k, \varepsilon}\left(u_{0}\right) \quad \text { and } \quad N_{k, \varepsilon^{\prime}}(u)=N_{k, \varepsilon^{\prime}}\left(u_{0}\right) \\
& \quad \text { for }\left|u-u_{0}\right|<r \quad \text { and } \quad \text { for } \quad 1 \leq k \leq q .
\end{aligned}
$$

Hence, $\left|u-u_{0}\right|<r \Rightarrow$

$$
\left\{\begin{array}{llll}
N_{k, \varepsilon}(u)=N_{k, \varepsilon^{\prime}}(u)=1 & , & \text { if } & 1 \leq k \leq(q-1) \\
N_{k, \varepsilon}(u)=N_{k, \varepsilon^{\prime}}(u)=(q+1) & , & \text { if } & k=q .
\end{array}\right.
$$

We conclude that 0 is the unique fixed point of $h_{u}^{k}(1 \leq k \leq$ $(q-1))$ in the disk $|z|<\varepsilon^{\prime}$. On the other hand, for $0<\left|u-u_{0}\right|<$ $r, \quad h_{u}^{q}$ has at zero a simple fixed point, and has other q fixed points in the punctured disk $0<|z|<\varepsilon$. Note that for $\left|u-u_{0}\right|<r, \quad h_{u}^{q}$ has no fixed points in $\varepsilon<|z|<\varepsilon^{\prime}$, because $N_{q, \varepsilon}(u)=N_{q, \varepsilon^{\prime}}(u)$.

Furthermore, using the facts that $\varepsilon<\frac{d-1}{d+2}, \quad r<1$, a simple calculation shows that:

$$
\forall u \in\left\{u:\left|u-u_{0}\right|<r\right\}, \quad|z|<\varepsilon \Rightarrow \quad\left|h_{u}(z)\right|<\varepsilon^{\prime}
$$

Hence, if $z_{1}(u)$ denotes one of the fixed points of h_{u}^{q} with $0<$ $\left|z_{1}(u)\right|<\varepsilon$, then $z_{j}(u)=h_{u}^{j}\left(z_{1}(u)\right)$, for $0 \leq j \leq(q-1)$, are the q fixed points of h_{u}^{q} in the punctured disk $0<|z|<\varepsilon$ (they are clearly different pairwise).

Therefore, $\left\{z_{1}(u), h_{u}\left(z_{1}(u)\right), \ldots \ldots, h_{u}^{q-1}\left(z_{1}(u)\right)\right\}$ are the q fixed points of h_{u}^{q} in the punctured disk $0<|z|<\varepsilon$, and they form a cycle of length q of h_{u}, for $u \in\left\{u: 0<\left|u-u_{0}\right|<r\right\}$.

For $u \in\left\{u: 0<\left|u-u_{0}\right|<r\right\}, \quad \lambda(u)$ denotes the multiplier of the periodic cycle of period q of h_{u}, contained in the punctured disk $0<|z|<\varepsilon$.

Lemma $3: u \mapsto \lambda(u)$ is an analytic function in the disk $\{u:$ $\left.\left|u-u_{0}\right|<r\right\}$. Furthermore, $\lambda\left(u_{0}\right)=1$.

Proof : For $0<\left|u-u_{0}\right|<r$, let $\left\{z_{1}(u), z_{2}(u), \ldots, z_{q}(u)\right\}$ be the periodic cycle of period q of h_{u}, contained in the punctured disk $0<|z|<\varepsilon$. Furthermore, for $u=u_{0}$, let $z_{1}\left(u_{0}\right)=z_{2}\left(u_{0}\right)=\ldots \ldots=$ $z_{q}\left(u_{0}\right)=0$.

Consider the polynomial $P_{u}(z)=\prod_{j=1}^{q}\left(z-z_{j}(u)\right)$.
We know that $P_{u}(z)=z^{q}+a_{q-1}(u) z^{q-1}+\ldots . .+a_{1}(u) z+$ $a_{0}(u)$, where,

$$
a_{q-k}(u)=(-1)^{k} \cdot \sum_{1 \leq j_{1}<j_{2}<\ldots<j_{k} \leq q} z_{j_{1}}(u) z_{j_{2}}(u) \ldots z_{j_{k}}(u)
$$

are the elementary symmetric functions in $z_{1}(u), z_{2}(u), \ldots, z_{q}(u)$.
Consider the polynomials :

$$
\sigma_{k}(u)=\sum_{j=1}^{q}\left(z_{j}(u)\right)^{k}, \quad k=1,2 \ldots, q
$$

A calculation shows that each elementary symmetric function can be written as a polynomial in $\sigma_{1}(u), \sigma_{2}(u), \ldots, \sigma_{q}(u)$. Indeed, we have that:

$$
\begin{aligned}
& a_{q-1}(u)=-\sigma_{1}(u) a_{q-2}(u)=\frac{1}{2}\left[\left(\sigma_{1}(u)\right)^{2}-\sigma_{2}(u)\right] \\
& a_{q-3}(u)=\frac{1}{6}\left[3 \sigma_{1}(u) \sigma_{2}(u)-2 \sigma_{3}(u)-\left(\sigma_{1}(u)\right)^{3}\right] \text { and, so on. }
\end{aligned}
$$

On the other hand, by the Residue Theorem we have that for $0<\left|u-u_{0}\right|<r$, and $1 \leq k \leq q$,

$$
\sigma_{k}(u)=\frac{1}{2 \pi i} \oint_{|z|=\varepsilon} z^{k} \frac{\left(h_{u}^{q}\right)^{\prime}(z)-1}{h_{u}^{q}(z)-z} d z
$$

Note that the above formula holds also for $u=u_{0}$.
Hence, by the Leibniz's rule we conclude that:

$$
\forall k \in\{1,2, \ldots, q\}, \quad u \mapsto \sigma_{k}(u)
$$

is holomorphic in the disk $\left|u-u_{0}\right|<r$.
Therefore, $a_{0}(u), a_{1}(u), \ldots, a_{q-1}(u)$ are holomorphic functions in the disk $\left|u-u_{0}\right|<r$.

For the multiplier, we have :

$$
\lambda(u)=\left(h_{u}^{q}\right)^{\prime}\left(z_{1}(u)\right)=\prod_{j=1}^{q} h_{u}^{\prime}\left(z_{j}(u)\right)=\prod_{j=1}^{q} \frac{u d^{d+1}}{\left[z_{j}(u)(d+u)+d\right]^{d+1}}
$$

Hence,

$$
\lambda(u)=\frac{d^{(d+1) q} u^{q}}{\left[\prod_{j=1}^{q}\left(z_{j}(u)(d+u)+d\right)\right]^{d+1}} \quad, \quad \forall \quad\left|u-u_{0}\right|<r
$$

Since, $\forall u \in\left\{u:\left|u-u_{0}\right|<r\right\}, \prod_{j=1}^{q}\left(z_{j}(u)(d+u)+d\right)=(-(d+$ $u))^{q} \prod_{j=1}^{q}\left(\frac{-d}{d+u}-z_{j}(u)\right)=(-(d+u))^{q} P_{u}\left(\frac{-d}{d+u}\right)$,
we conclude that $u \mapsto \lambda(u)$ is analytic in $\left|u-u_{0}\right|<r$. Finally, is clear that $\lambda\left(u_{0}\right)=1$.

Proof of Theorem: If $f_{w_{0}}(z)=1+1 / w_{0} z^{d}$ has a fixed point z_{0} with corresponding multiplier $u_{0}=f_{w_{0}}^{\prime}\left(z_{0}\right)$ a primitive $q-$ th root of unity, $q \geq 2$, then $h_{u_{0}}$ has at zero a fixed point of multiplier u_{0}.

By lemma 2, there exists $r>0$ such that for each $u \in \mathbf{C}$ with $0<\left|u-u_{0}\right|<r$, the rational map h_{u} has a periodic orbit $\left\{z_{1}(u), z_{2}(u), \ldots \ldots, z_{q}(u)\right\}$ of period q. Furthermore, by lemma 3 the multiplier $\lambda(u)$ of that periodic orbit, is an analytic function
in the disk $B\left(u_{0}, r\right):= \begin{cases}u & : \\ & \left.\left|u-u_{0}\right|<r\right\} \text {, where } \lambda\left(u_{0}\right)=1 . \lambda\end{cases}$ is clearly non- constant, and therefore is open. Then we conclude that there exists a hyperbolic component of period q, W_{q}, such that $w_{0} \in \partial W_{q}$.

References

[1] R. Bamon and J.Bobenrieth, 'The rational maps $z \mapsto 1+$ $1 / w z^{d}$ have no Herman rings', Proceedings of the American Mathematical Society, (2) 127, pp.633-636, (1999).
[2] H. Jellouli, 'Indice holomorphe et multiplicateur', The Mandelbrot set, theme and variations (ed Tan Lei), London Mathematical Society Lecture Note Series 274 (Cambridge University Press, 2000), pp. 253-264.
[3] M. Lyubich, 'The dynamics of rational transforms : the topological picture', Russian Math. Surveys, (4) 41, pp. 43-117, (1986).
[4] J. Milnor, 'Geometry and dynamics of quadratic rational maps', Experimental Mathematics, (1) 2, pp. 37-83, (1993).

Received : June 2001.

Juan Bobenrieth

Departamento de Matemáticas
Facultad de Ciencias
Universidad del Bío-Bío
Casilla 5-C
Concepción
Chile
e-mail : jbobenri@ubiobio.cl

[^0]: *Partially supported by Fondecyt, Project 1990534

