Proyecciones Vol. 21, N^o 1, pp. 1-7, May 2002. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172002000100001

PARABOLIC PERTURBATION IN THE FAMILY $z \mapsto 1 + 1/wz^d$

JUAN BOBENRIETH * Universidad de Bío - Bío - Chile

Abstract

Consider the family of rational maps $\mathcal{F}_d = \{z \mapsto f_w(z) = 1 + \frac{1}{wz^d} : w \in \mathbb{C} \setminus \{\mathbf{0}\}\}$ $(\mathbf{d} \in \mathbf{N}, \mathbf{d} \geq \mathbf{2})$, and the hyperbolic component $A_1 = \{w : f_w \text{ has an attracting fixed point }\}$. We prove that if $w_0 \in \partial A_1$ is a parabolic parameter with corresponding multiplier a primitive q-th root of unity, $q \geq 2$, then there exists a hyperbolic component W_q , attached to A_1 at the point w_0 , which contains w-values for which f_w has an attracting periodic cycle of period q.

1991 Mathematics Subject Classification : *Primary 30D05*, 58F23.

^{*}Partially supported by Fondecyt, Project 1990534

1. Introduction

For any $d \in \mathbf{N}, d \geq 2$, the family $\mathcal{F}_d = \{z \mapsto 1 + \frac{1}{wz^d} : w \in \mathbf{C} \setminus \{0\}\}$ is a normal form for the set of rational maps of degree d which have exactly two critical points, one of which maps onto the other under one iteration. These families have been considered in [3], [4] (for the special case d = 2), and in [1](for any d).

It is well known that a rational map f is hyperbolic if and only if all critical points of f tend to attracting cycles under iteration. Since the members of the family \mathcal{F}_d have only one forward orbit of their critical points, f_w is hyperbolic if and only if f_w has an attracting periodic orbit. The connected components of the parametric set $\mathcal{H}_d = \{w : f_w(z) = 1 + 1/wz^d \text{ has an attracting periodic orbit}\}$ are called the hyperbolic components of the family \mathcal{F}_d .

Following the ideas used in [2], we can prove the following one.

Theorem If f_{w_0} has a fixed point z_0 such that the multiplier $\lambda_0 = f'_{w_0}(z_0)$ is a primitive q-th root of unity, $q \ge 2$, then there exists a hyperbolic component W_q , which contains w-values for which f_w has an attracting periodic cycle of period q, with $w_0 \in \partial W_q$. In Section 2 we prove the Theorem.

2. Proof of Theorem

It is clear that for any $u \in \mathbf{C} \setminus \{0, -d\},\$

 $f_{w} \text{ has a fixed point of multiplier } u \iff w = -\frac{d}{u} \left(1 + \frac{u}{d}\right)^{d+1}.$ $f_{w} \text{ has a fixed point of multiplier } u \iff w = -\frac{d}{u} (1 + \frac{u}{d})^{d+1}.$ In fact, $z(u) = \frac{d}{d+u}$ is the fixed point of multiplier u. Let $g_{u}(z) := f \frac{d}{u} (1 + \frac{u}{d})^{d+1} (z)$, that is, $-\frac{d}{u} (1 + \frac{u}{d})^{d+1} (z), \text{ that is,}$ $g_{u}(z) = 1 - \frac{d^{d}u}{(d+u)^{d+1}z^{d}}, \quad u \in \mathbb{C} \setminus \{0, -d\}.$

Therefore, g_u has at $z(u) = \frac{d}{d+u}$ a fixed point of multiplier u. Now, we will make an analytic conjugation :

Let $M_u(z) := z - z(u)$, and consider $h_u := M_u \circ g_u \circ M_u^{-1}$.

For any $u \in \mathbb{C} \setminus \{0, -d\}$, h_u is a rational map analytically conjugate to f_w (where $w = -\frac{d}{u} \left(1 + \frac{u}{d}\right)^{d+1}$), and which has at zero a fixed point of multiplier u.

Explicitly,

 $h_u(z) = \frac{u}{d+u} \cdot \frac{(z(d+u)+d)^d - d^d}{(z(d+u)+d)^d}, \qquad u \in \mathbf{C} \setminus \{\mathbf{0}, -\mathbf{d}\}.$ Note that, for any $q \in \mathbf{N}, \quad h_u^q(z) = u^q z \cdot \Phi_{u,q}(z)$, where $\Phi_{u,q}$ is a

Note that, for any $q \in \mathbf{N}$, $h_u^q(z) = u^q z \cdot \Phi_{u,q}(z)$, where $\Phi_{u,q}$ is a rational map with $\Phi_{u,q}(0) = 1$. Hence, in a neighbourhood of z = 0 we have :

$$h_u^q(z) = u^q z + a_2 z^2 + \dots$$

In what follows, u_0 denotes a primitive q-th root of unity, $q \ge 2$ (that is, $u_0^q = 1$, and $u_0^k \ne 1$, for all $1 \le k \le q - 1$). In order to prove the above theorem, we show the following results:

Lemma 1 : $h_{u_0}^q$ has at 0 a fixed point of multiplicity (q+1).

Proof: Since h_{u_0} has at zero a fixed point of multiplier a primitive q-th root of unity, we have that in a neighbourhood of zero,

 $h_{u_0}^q(z) = z + a z^{kq+1} + \dots$ where $a \neq 0$, and $k \in \mathbf{N}$.

From the fact that h_{u_0} has only one forward orbit of critical points, k = 1.

Therefore, $h_{u_0}^q(z) = z + a z^{q+1} + \dots$

Next, we will show that for u near to u_0 , the (q+1)-fold fixed point zero of $h_{u_0}^q$ will split up into (q+1) simple fixed points of h_u^q , which are : 0, and $\{z_1(u), z_2(u), \ldots, z_q(u)\}$; the latter forms a periodic orbit of period q of h_u .

Lemma 2 : There exist $\varepsilon > 0$ and r > 0 such that for each $u \in \mathbf{C}$ with $0 < |u - u_0| < r$, the rational map h_u^q has precisely q fixed points in the punctured disc $0 < |z| < \varepsilon$. Furthermore, these q points form a cycle of length q for h_u .

Proof: Since the zeros of an analytic function (not identically zero) are isolated, there exist ε , $0 < \varepsilon < \frac{d-1}{d+2}$, such that :

$$\begin{aligned} h_{u_0}^k(z) - z &\neq 0 \quad \text{for} \quad 0 < |z| < \varepsilon', \quad \text{and} \quad 1 \le k \le q, \\ \text{where} \quad \varepsilon' &:= \frac{2}{d-1} [(2d-1)^d - d^d] \cdot \varepsilon. \text{ (Note that } \varepsilon < \varepsilon'). \\ \text{Let } \gamma_{\varepsilon} &= \{z \in \mathbf{C} : |z| = \varepsilon\}, \quad \gamma_{\varepsilon'} = \{z \in \mathbf{C} : |z| = \varepsilon'\}, \text{ and} \\ \alpha &:= \min_{1 \le k \le q} \{|h_{u_0}^k(z) - z| : z \in \gamma_{\varepsilon} \cup \gamma_{\varepsilon'}\} \ (>0). \end{aligned}$$

It is clear that there exists r, 0 < r < 1, such that : $|h_u^k(z) - z| \ge \frac{\alpha}{2}$, for all $|u - u_0| < r$, $z \in \gamma_{\varepsilon} \cup \gamma_{\varepsilon'}$, and $1 \le k \le q$. From the Argument Principle, the number $N_{k,\varepsilon}(u)$ (resp. $N_{k,\varepsilon'}(u)$)

From the Argument Principle, the number $N_{k,\varepsilon}(u)$ (resp. $N_{k,\varepsilon'}(u)$) of fixed points of h_u^k in the disk $|z| < \varepsilon$ (Resp. $|z| < \varepsilon'$) for $|u - u_0| < r$ and $1 \le k \le q$, is given by :

$$N_{k,\varepsilon}(u) = \frac{1}{2\pi i} \oint_{|z|=\varepsilon} \frac{(h_u^k)'(z) - 1}{h_u^k(z) - z} dz$$

(resp. $N_{k,\varepsilon'}(u) = \frac{1}{2\pi i} \oint_{|z|=\varepsilon'} \frac{(h_u^k)'(z) - 1}{h_u^k(z) - z} dz$)

From above we conclude that $u \mapsto N_{k,\varepsilon}(u)$, and $u \mapsto N_{k,\varepsilon'}(u)$, are continuous, and hence are constant since they are integer-valued.

Therefore,

$$N_{k,\varepsilon}(u) = N_{k,\varepsilon}(u_0) \quad \text{and} \quad N_{k,\varepsilon'}(u) = N_{k,\varepsilon'}(u_0)$$

for $|u - u_0| < r$ and for $1 \le k \le q$.
Hence, $|u - u_0| < r \Rightarrow$
$$\begin{cases} N_{k,\varepsilon}(u) = N_{k,\varepsilon'}(u) = 1 &, \text{ if } 1 \le k \le (q-1) \\ N_{k,\varepsilon}(u) = N_{k,\varepsilon'}(u) = (q+1) &, \text{ if } k = q. \end{cases}$$

We conclude that 0 is the unique fixed point of $h_u^k (1 \le k \le (q-1))$ in the disk $|z| < \varepsilon'$. On the other hand, for $0 < |u - u_0| < r$, h_u^q has at zero a simple fixed point, and has other q fixed points in the punctured disk $0 < |z| < \varepsilon$. Note that for $|u - u_0| < r$, h_u^q has no fixed points in $\varepsilon < |z| < \varepsilon'$, because $N_{q,\varepsilon}(u) = N_{q,\varepsilon'}(u)$.

no fixed points in $\varepsilon < |z| < \varepsilon'$, because $N_{q,\varepsilon}(u) = N_{q,\varepsilon'}(u)$. Furthermore, using the facts that $\varepsilon < \frac{d-1}{d+2}$, r < 1, a simple calculation shows that :

$$\forall \ u \in \{u : |u - u_0| < r\}, \qquad |z| < \varepsilon \quad \Rightarrow \quad |h_u(z)| < \varepsilon'.$$

Hence, if $z_1(u)$ denotes one of the fixed points of h_u^q with 0 < $|z_1(u)| < \varepsilon$, then $z_j(u) = h_u^j(z_1(u))$, for $0 \le j \le (q-1)$, are the q fixed points of h_u^q in the punctured disk $0 < |z| < \varepsilon$ (they are clearly different pairwise).

Therefore, $\{z_1(u), h_u(z_1(u)), \ldots, h_u^{q-1}(z_1(u))\}$ are the *q* fixed points of h_u^q in the punctured disk $0 < |z| < \varepsilon$, and they form a cycle of length q of h_u , for $u \in \{u : 0 < |u - u_0| < r\}$.

For $u \in \{u : 0 < |u - u_0| < r\}, \lambda(u)$ denotes the multiplier of the periodic cycle of period q of h_u , contained in the punctured disk $0 < |z| < \varepsilon.$

Lemma 3 : $u \mapsto \lambda(u)$ is an analytic function in the disk $\{u :$ $|u - u_0| < r$. Furthermore, $\lambda(u_0) = 1$.

Proof: For $0 < |u - u_0| < r$, let $\{z_1(u), z_2(u), \ldots, z_q(u)\}$ be the periodic cycle of period q of h_u , contained in the punctured disk $0 < |z| < \varepsilon$. Furthermore, for $u = u_0$, let $z_1(u_0) = z_2(u_0) = \ldots =$ $z_q(u_0) = 0.$

Consider the polynomial $P_u(z) = \prod_{j=1}^q (z - z_j(u))$. We know that $P_u(z) = z^q + a_{q-1}(u)z^{q-1} + \ldots + a_1(u)z +$ $a_0(u)$, where,

$$a_{q-k}(u) = (-1)^k \cdot \sum_{1 \le j_1 < j_2 < \dots < j_k \le q} z_{j_1}(u) z_{j_2}(u) \dots z_{j_k}(u)$$

are the elementary symmetric functions in $z_1(u), z_2(u), \ldots, z_q(u)$. Consider the polynomials :

$$\sigma_k(u) = \sum_{j=1}^q (z_j(u))^k, \qquad k = 1, 2 \dots, q$$

A calculation shows that each elementary symmetric function can be written as a polynomial in $\sigma_1(u), \sigma_2(u), \ldots, \sigma_q(u)$. Indeed, we have that :

$$a_{q-1}(u) = -\sigma_1(u) \ a_{q-2}(u) = \frac{1}{2} [(\sigma_1(u))^2 - \sigma_2(u)]$$
$$a_{q-3}(u) = \frac{1}{6} [3\sigma_1(u)\sigma_2(u) - 2\sigma_3(u) - (\sigma_1(u))^3] \text{ and, so on}$$

On the other hand, by the Residue Theorem we have that for $0 < |u - u_0| < r$, and $1 \le k \le q$,

$$\sigma_k(u) = \frac{1}{2\pi i} \oint_{|z|=\varepsilon} z^k \frac{(h_u^q)'(z) - 1}{h_u^q(z) - z} dz$$

Note that the above formula holds also for $u = u_0$.

Hence, by the Leibniz's rule we conclude that :

$$\forall k \in \{1, 2, \ldots, q\}, \quad u \mapsto \sigma_k(u)$$

is holomorphic in the disk $|u - u_0| < r$.

Therefore, $a_0(u), a_1(u), \ldots, a_{q-1}(u)$ are holomorphic functions in the disk $|u - u_0| < r$.

For the multiplier, we have :

$$\lambda(u) = (h_u^q)'(z_1(u)) = \prod_{j=1}^q h_u'(z_j(u)) = \prod_{j=1}^q \frac{ud^{d+1}}{[z_j(u)(d+u) + d]^{d+1}}$$

Hence,

$$\lambda(u) = \frac{d^{(d+1)q} u^q}{\left[\prod_{j=1}^q (z_j(u)(d+u) + d)\right]^{d+1}} \quad , \quad \forall \quad |u - u_0| < r$$

Since, $\forall u \in \{u : |u - u_0| < r\}, \prod_{j=1}^q (z_j(u)(d+u) + d) = (-(d+u))^q \prod_{j=1}^q (\frac{-d}{d+u} - z_j(u)) = (-(d+u))^q P_u\left(\frac{-d}{d+u}\right),$

we conclude that $u \mapsto \lambda(u)$ is analytic in $|u - u_0| < r$. Finally, is clear that $\lambda(u_0) = 1$.

Proof of Theorem: If $f_{w_0}(z) = 1 + 1/w_0 z^d$ has a fixed point z_0 with corresponding multiplier $u_0 = f'_{w_0}(z_0)$ a primitive q-th root of unity, $q \ge 2$, then h_{u_0} has at zero a fixed point of multiplier u_0 .

By lemma 2, there exists r > 0 such that for each $u \in \mathbf{C}$ with $0 < |u - u_0| < r$, the rational map h_u has a periodic orbit $\{z_1(u), z_2(u), \ldots, z_q(u)\}$ of period q. Furthermore, by lemma 3 the multiplier $\lambda(u)$ of that periodic orbit, is an analytic function

in the disk $B(u_0, r) := \{u : |u - u_0| < r\}$, where $\lambda(u_0) = 1$. λ is clearly non- constant, and therefore is open. Then we conclude that there exists a hyperbolic component of period q, W_q , such that $w_0 \in \partial W_q$.

References

- [1] R. BAMON and J.BOBENRIETH, 'The rational maps $z \mapsto 1 + 1/wz^d$ have no Herman rings', *Proceedings of the American Mathematical Society*, (2) 127, pp. 633-636, (1999).
- [2] H. JELLOULI, 'Indice holomorphe et multiplicateur', *The Mandel-brot set, theme and variations* (ed Tan Lei), London Mathematical Society Lecture Note Series 274 (Cambridge University Press, 2000), pp. 253-264.
- [3] M. LYUBICH, 'The dynamics of rational transforms : the topological picture', *Russian Math. Surveys*, (4) 41, pp. 43-117, (1986).
- [4] J. MILNOR, 'Geometry and dynamics of quadratic rational maps', Experimental Mathematics, (1) 2, pp. 37-83, (1993).

Received : June 2001.

Juan Bobenrieth

Departamento de Matemáticas Facultad de Ciencias Universidad del Bío-Bío Casilla 5-C Concepción Chile e-mail : jbobenri@ubiobio.cl