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Abstract

We prove a de Rham-like theorem for foliated bundles F →
(M,F) π→ B showing that the cohomology H∗(F) is isomorphic
to the equivariant cohomology HΓ

(
B̃, C∞ (F )

)
,Γ = π1 (B)

and B̃ the universal covering of B. When B is an Eilenberg-
Mac Lane space K (Γ, 1) the cohomology H∗ (F) is the coho-
mology of the Γ-module C∞ (F ). This gives algebraic models
for H∗ (F) and geometrial models for the cohomology of the
Γ-module C∞ (F ). Using this isomorphism and a theorem of
J. Palis and J.C. Yoccoz on the triviality of centralizers of dif-
feomorphisms, [14] and [15] we show that H∗(F) is infinite
dimensional for a large class of foliated bundles.
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Introduction

The cohomology of foliated manifolds appears naturally in the
study of locally free actions of Lie groups and characteristic classes
of foliations, [3], [17] and [18]. In this article we study the coho-
mology of foliated bundles F → (M,F)

π→ B suspension of actions
ϕ : Γ → Diff (F ), where B and F are connected C∞ manifolds and
Γ = π1(B). We show in Theorem 2.1 that the foliated cohomology
H∗(F) of a foliated bundle π is isomorphic to the equivariant cohomol-
ogy H∗

Γ(B̃, C∞(F )) where B̃ is the universal covering of B and C∞(F )
has the Γ-module structure given by the action ϕ. This isomorphism
is via a natural de Rham mapping. When B is an Eilenberg-Mac
Lane space K(Γ, 1), i.e. B̃ is contractible then H∗(F) is isomorphic
to the cohomology H∗(Γ, C∞(F )) of the Γ-module C∞(F ), the action
on C∞(F ) being γ · h = h ◦ ϕγ, γ ∈ Γ and h ∈ C∞(F ). In this way
we have both algebraic models for the foliated cohomology H∗(F)
and geometrical models for the cohomology H∗(Γ, C∞(F )) of the Γ-
module C∞(F ). Theorems 2.4 and 3.3 and J. Palis and J.C. Yoccoz
results on the triviality of centralizers of diffeomorphisms, [14], [15]
show that the cohomology H∗(F) of a foliated bundle suspension of
an action ϕ : Γ → Diff (F ) is infinite dimensional for a large class
of actions. In section 4 we discuss the case B = T p and show that
the cohomology of groups gives a procedure for the computation of
H∗(Zp, C∞(F )) which can be used to give an alternative simple way
for computing the cohomology of linear foliations of T n, [2]. We also
state R.U. Luz, [9] computation of the cohomology of the actions of
Zp by affine transformations of T q.

1. The Cohomology of a Foliated Bundle

The foliated cohomology introduced by B.L. Reinhart in [16] appears
naturally in the study of locally free actions of Lie groups and char-
acteristic classes of foliations, [3], [17] and [18].

Let F be a p-dimensional foliation of M and Λ (M) the graded
algebra of all C∞ differential forms on M . If I(F) ⊂ Λ (M) is the an-
nihilating ideal of F , then I(F)q+1 = 0, q = m−p being the codimen-
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sion of F . Thus Λ (F) =
Λ (M)

I(F)
is a graded algebra, called the algebra

of differential forms along F . The elements of Λj(F) may be thought
of as sections of the j-th exterior power of the dual bundle of the tan-
gent bundle TF of F . Since by Frobenius’s theorem dI(F) ⊂ I(F)
the differential d : Λ (M) → Λ (M) induces the foliated differential
df : Λ (F) → Λ (F). The kernel Z(F) of df is the set of df -closed
forms and the image B(F) of df is the set of df -exact forms. The
cohomology H∗(F) of the differential complex (Λ (F) , df ) is the coho-
mology of the foliated manifold (M,F). This is a natural generaliza-
tion to foliations of the de Rham cohomology. Let τ : Λ (M) → Λ (F)
be the canonical projection. We say that ξ ∈ Λj(M) is df -closed if
dξ ∈ I(F) which is equivalent to τ(ξ) ∈ Z(F) and we denote by ξ the
cohomology class of τ(ξ) in Hj(F).

In this article we study the cohomology of a foliated bundle. Let B
and F be connected orientable smooth manifolds, p and q dimensional,
respectively, and ϕ : π1(B) → Diff (F ) be a left action. The foliated
bundle F → (M,F)

π→ B suspension of ϕ is constructed as follows:
let p : B̃ → B be the universal covering of B and xo ∈ B. Associated
to ϕ there is an action

Φ : π1(B, xo) → Diff
(
B̃ × F

)
(1.1)

given by Φγ(x̃, y) = (γ · x̃, ϕ−1
γ (y)) where γ · x̃ denotes the image of x̃

by the deck transformation of B̃ corresponding to the homotopy class
γ of π1(B, xo). The orbit space M of Φ is a manifold and actually
we have a fiber bundle F → M

π→ B. Every object of B̃ × F which
is invariant under Φ induces a corresponding object on M . To the
natural foliation F̃ given by the projection B̃ × F → F , which is
invariant under Φ, corresponds a foliation F on M which is transverse
to the fibers of π. We think of Λ (F) as the set of differential forms ξ

of Λ
(
F̃

)
which are invariant under Φ i.e. Φ∗

γ(ξ) = ξ. We observe that

ξ ∈ Λ
(
F̃

)
invariant under the action Φ is equivalent to

[γ]∗(ξy) = ξϕγ(y)(1.2)

where ξy = j∗y(ξ), jy : B̃ → B̃ × F being the inclusion jy(x̃) = (x̃, y)

and [γ] the automorphism of B̃ × F given by [γ](x̃, y) = (γ · x̃, y).
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The image of π∗ : Λ (B) → Λ (F) is called the space of basic forms.
In [3] to each invariant Borel probability measure µ on F there was
associated an epimorphism

Pµ : Λ (F) → Λ (B)

of differential complexes i.e. Pµ is a continuous surjective linear map-
ping which commutes with the differentials: Pµ ◦ df = d ◦ Pµ. Pµ is
defined by the properties:

(i) Pµ ◦ π∗ = id
(ii) Pµ(h) =

∫
F h(x̃, y)dµ(y) if h ∈ Λo(F) (i.e. h ∈ Λo(F̃) is

Φ-invariant).
The split short exact sequence

0 → Ker → Λ (F)
Pµ→ Λ (B) → 0

gives the split short exact cohomology sequences

0 → Hj(Ker) → Hj(F) → Hj(B) → 0, 0 ≤ j ≤ p.

Thus
Hj(F) = Hj(B)⊕Hj(Ker)(1.3)

for 0 ≤ j ≤ p.

2. The Cohomology of a Foliated Bundle as Equiv-
ariant Cohomology

Let F → (M,F)
π→ B be the foliated bundle suspension of an action

ϕ : π1(B, xo) → Diff (F ). The fundamental group Γ = π1(B, xo)
acts freely on the universal covering B̃ of B by deck transformations
γ : x̃ → γ · x̃. A (left) ZΓ-module, also called a Γ-module, consists
of an abelian group A together with a homomorphism of the integral
group ring ZΓ of Γ to the ring of endomorphisms of A, [4], [5] and
[12].

Since Γ acts freely on B̃ the simplicial complex S∗(B̃) is a Γ-
module: if σ : ∆k → B̃ is a singular k-simplex of B̃ then γ ·σ = γ ◦σ is
again a k-simplex of B̃. Thus S∗(B̃) is a Γ-module. The ring C∞(F )
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of all C∞ functions h : F → R also has a Γ-module structure given
by the action ϕ : Γ → Diff (F ). Γ acts on C∞(F ) by γ · h = h ◦ ϕγ.
We also write C∞(F ) for this Γ-module. Let HomΓ(S∗(B̃), C∞(F ))
be the group of all Γ-homomorphisms of S∗(B̃) into C∞(F ). A Γ-
homomorphism is a Z-homomorphism ` : S∗(B̃) → C∞(F ) such that

`(γ · σ) = γ · `(σ) = `(σ) ◦ ϕγ(2.1)

for all σ in S∗(B̃) and γ in Γ.
Thus HomΓ(S∗(B̃), C∞(F )) is a differential complex. The bound-

ary operator δ being, as usual, δ`(σ) = `(∂σ), ∂ the boundary oper-
ator of S∗(B̃). The cohomology H∗

Γ(B̃, C∞(F )) of the above complex
is known as the equivariant cohomology of B̃ with coefficients C∞(F ),
[12].

In this section we prove a de Rham type theorem which says that
the cohomology H∗(F) of a foliated bundle π is isomorphic to the
equivariant cohomology H∗

Γ(B̃, C∞(F )) via the natural de Rham map-
ping. Let F̃ be the foliation on B̃×F given by the natural projection
B̃ × F → F . We have a natural de Rham mapping

k : Λj(F̃) → Hom
(
Sj

(
B̃

)
, C∞ (F )

)
, 0 ≤ j ≤ p

given by

kξ(σ)(y) =
∫

σ
ξy(2.2)

for ξ in Λj(F̃), σ ∈ Sj(B̃) and y ∈ F . This mapping retricts to the

subcomplex Λ (F) of Φ-invariant forms of Λ
(
F̃

)
as a natural de Rham

mapping
k : Λ (F) → HomΓ

(
S∗

(
B̃

)
, C∞ (F )

)
(2.3)

To see this notice that from (1.2) and (2.2) a form ξ in Λj(F̃) is Φ-
invariant if and only if kξ : Sj(B̃) → C∞(F ) is a Γ-homomorphism,
0 ≤ j ≤ p.

2.1 Theorem (de Rham’s Theorem for foliated bundles). Let B and
F be connected paracompact C∞ manifolds and F → (M,F)

π→ B
be the suspension foliated bundle of an action ϕ

ϕ : Γ = π1(B, xo) → Diff (F ) .
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Then the de Rham mapping (2.3) induces an isomorphism

k∗ : Hj(F) → Hj
Γ(B̃, C∞(F )), 0 ≤ j ≤ p,

p = dimB.
The proof follows the same basic pattern of Massey’s proof, [10] of the
classical de Rham’s theorem, based on Milnor’s proof of the Poincaré
duality theorem. For Massey’s proof to work we have to show the
existence of Mayer-Vietoris sequences for the equivariant cohomology.
Mayer-Vietoris sequences for foliated cohomology, are well known, see
[6].

Let U = {Uj} be an open covering of B such that π−1(Uj)
π→ Uj are

trivial and Uj are contractible. Denote by Sj(B̃,U) the Γ-module gen-
erated by “U -small” j-simplices i.e. simplices whose ranges lie in ele-
ments of U and let HΓ((B̃,U), C∞(F )) be the cohomology of the com-
plex HomΓ(Sj(B̃,U), C∞(F )). Let jU : HomΓ(Sj(B̃), C∞(F )) −→
HomΓ(Sj(B̃,U), C∞(F )) be the restriction homomorphism.

2.2 Lemma. The restriction homomorphism jU induces an isomor-
phism

j∗U : Hj
Γ(B̃, C∞(F ))−̃→Hj

Γ((B̃,U), C∞(F )), 0 ≤ j ≤ p.

Proof: The proof is essentially the same as for the classical isomor-
phism, [7]

Hj(B, C∞(F )) ' Hj((B,U), C∞(F ))

Let Sd : Sj(B̃) → Sj(B̃) be the subdivision homomorphism and

R : Sj(B̃) → Sj+1(B̃)

be the corresponding homotopy operator i.e.

∂ ◦ Sd = Sd ◦ ∂
and
∂ ◦R + R ◦ ∂ = id− Sd





(2.4)

Choose a ZΓ-basis B of the Γ-module S∗
(
B̃

)
. Define Γ-homomor-

phisms sd and T by
sd (σ) = Sd (σ)
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and
T (σ) = R (σ)

for every σ in B
sd (γ · σ) = γ · Sd (σ)
T (γ · σ) = γ ·R (σ)

Thus
∂ ◦ sd = sd ◦ ∂
and
∂ ◦ T + T ◦ ∂ = id− sd





(2.5)

The proof follows now as in the classical case observing that if l is a
Γ-cocycle then l̃ = l◦T is a Γ-homomorphism and δl = l−l◦sd. There
exists an integer n > 0 such that (sd)n (σ) is a linear combination of
U -small singular simplices. Thus l◦(sd)n is cohomologous to l, proving
the lemma.

Proof of Theorem 2.1 We first notice that the theorem is true in
degree zero since both Ho(F) and Ho

Γ(B̃, C∞(F )) are isomorphic to
the subspace C∞(F )Γ of all Γ-invariant C∞ functions h : F → R i.e.
γ · h = h ◦ ϕγ = h for all γ ∈ Γ and the de Rham mapping k∗ is the
identity in this case.

Case 1. U is an open contractible set of B and π−1(U)
π→ U is a

trivial fiber bundle. Let FU be the restriction of F to π−1(U). In this
case we have
(i) Ho(FU) = C∞(F )Γ and Hj(FU) = 0 if j ≥ 1 and
(ii) Ho

Γ(p−1(U), C∞(F )) = C∞(F )Γ and Hj
Γ(p−1(U), C∞(F )) = 0 if

j ≥ 1.
To prove (i) notice that p−1(U) =

⋃
γ∈Γ

γ · Ũ and p : Ũ → U is a

diffeomorphism. Thus if ξ ∈ Λj(FU) is df -closed then by the Poincaré
lemma ξ is df -exact in Ũ × F i.e. there exists a leafwise (j − 1)-form
w such that dfw = ξ. Using the notation in (1.2) extend w to a
Φ-invariant form on p−1(U)× F by [γ]∗wy = wϕγ(y). Thus

df [γ]∗wy = dfwϕγ(y) = ξϕγ(y) = [γ]∗ξy(2.6)

and ξ is df -exact. Thus Hj(FU) = 0 for j ≥ 1. Analogously, if
` : Sj(p

−1(U)) → C∞(F ) is a Γ-cocycle, then the restriction of `
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to Sj(Ũ) is a Z-cocycle and as Ũ is contractible then there exists a
Z-homomorphism ˜̀ : Sj+1(Ũ) → C∞(F ) such that δ ˜̀= `. We also de-
note by ˜̀ the extension of ˜̀ to a Γ-homomorphism ˜̀ : Sj+1(p

−1(U)) →
C∞(F ). Thus δ ˜̀= ` and Hj

Γ(p−1(U), C∞(F )) = 0 if j ≥ 1.

Now it is clear that

h∗ : Hj(FU) → Hj
Γ(p−1(U), C∞(F ))

is an isomorphism.

Case 2. B is the union of two open sets U and V and de Rham’s
theorem is assumed to hold for U , V and U ∩V . We show the theorem
also holds for U ∪V . To prove the theorem in this case we use Mayer-
Vietoris sequences. We denote by FU , FV and FU∩V the restrictions
of the foliation F to π−1(U), π−1(V ) and π−1(U∩V ), respectively. Let
i : π−1(U ∩ V ) → π−1(U), j : π−1(U ∩ V ) → π−1(V ), k : π−1(U) →
π−1(U ∪ V ) and ` : π−1(V ) → π−1(U ∪ V ) be the inclusions. We
consider the mappings

a : Λ∗(F) → Λ∗(FU)⊕ Λ∗(FV )

and

β : Λ∗(FU)⊕ Λ∗(FV ) → Λ∗(FU∩V )

given by

a(w) = (k∗w, `∗w)

and

β(w1, w2) = i∗w1 − j∗w2

We have then the short exact sequence of differential complexes, [6]

0 → Λ∗(F)
a−→ Λ∗(FU)⊕ Λ∗(FV )

β−→ Λ∗(FU∩V ) → 0(2.7)

Now we consider Mayer-Vietoris sequence for equivariant cohomology.
Consider the cochain mappings

a′ : HomΓ(Sr(B̃, U), C∞(F )) → HomΓ(Sr(p
−1(U)), C∞(F ))⊕

⊗HomΓ(Sr(p
−1(V ), C∞(F ))
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and

β′ : HomΓ(Sr(p
−1(U)), C∞(F ))⊕HomΓ(Sr(p

−1(V )), C∞(F )) →
→ HomΓ(Sr(p

−1(U ∩ V )), C∞(F ))

where U = {U, V } and 0 ≤ r ≤ p. These mappings are defined in
the usual way, [9]. Clearly a′ is a monomorphism. It follows from
the Mayer-Vietoris sequence for singular cohomology that β′ is an epi-
morphism. For if ˜̀ : Sr(p

−1(U ∩ V )) → C∞(F ) is a Γ-homomorphism
consider the Z-homomorphism ` : Sr(U ∩ V ) → C∞(F ) given by
`(σ) = ˜̀(σ̃) for every σ̃ in the ZΓ-basis B fixed before and σ̃ ∈
Sr(p

−1(U ∩ V )). Thus there exist Z-homomorphisms `1 : Sr(U) →
C∞(F ) and `2 : Sr(V ) → C∞(F ) such that ` = i∗(`1) − j∗(`2) where
we also denote by i and j the inclusions of U ∩ V in U and V , respec-
tively. We define Γ-homomorphisms ˜̀

1 : Sr(p
−1(U)) → C∞(F ) and

˜̀
2 : Sr(p

−1(V )) → C∞(F ) by ˜̀
1(σ̃) = `1(p ◦ σ̃) = `1(σ) for every σ̃ in

B ∩ Sr(p
−1(U)) and analogously for ˜̀

2. Clearly β′(˜̀1, ˜̀
2) = ˜̀. Thus

we have the short exact sequence of cochain complexes

0 → HomΓ(S∗((B̃, U), C∞(F ))
a′−→ HomΓ(S∗(p−1(U), C∞(F ))⊕

⊕HomΓ(S∗(p−1(V ), C∞(F ))
β′−→ HomΓ(S∗(p−1(U∩V )), C∞(F )) → 0

(2.8)

Finally, we put the sequences (2.7) and (2.8) into a commutative
diagram where the first vertical mapping is the composite of de Rham
mapping k and the restriction homomorphism jU and the last two
mappings are de Rham mappings. Now taking the cohomology se-
quences associated to (2.7) and (2.8) the theorem is proved in this
case using Lemma 2.2 and the five lemma, [12].

Case 3. B =
∞⋃
i=1

Ui, where U1 ⊂ U2 ⊂ . . . ,⊂ Un ⊂ Un+1 ⊂ . . . is a

nested sequence of open sets with compact closures. It is assumed that
de Rham’s theorem holds for each Ui; we will show that it also holds
for B. To carry out the proof in this case, we need to use inverse
limits as in Massey’s proof, [10] and [11]. The inclusions Ui ⊂ B
induce cochain mappings Λ∗(F) → Λ∗(Fi), Fi being the restriction of



184 M. S. Pereira and N. M. Dos Santos

F to π−1(Ui). The inverse sequence Λ∗(Fi) satisfies the Mittag-Leffler
condition, thus

lim1Λj(Fi) = 0 for all j

and there is the natural short exact sequence

0 → lim1Hj−1(Fi) → Hj(Fi) → lim invHj(Fi) → 0(2.9)

Similarly for the cochain complexes HomΓ(S∗(Ui), C
∞(F )) i.e. we also

have the short exact sequences

0 → lim1 Hj−1
Γ (π−1(Ui), C

∞(F )) → Hj
Γ(B̃, C∞(F )) →

→ lim invHj
Γ(π−1(Ui), C

∞(F )) → 0
(2.10)

Now apply the de Rham homomorphism from sequence (2.2) to
the sequence (2.3) and one easily prove the theorem in this case.

Case 4. B is an open set of Rp. Thus B is a countable union of
open sets Ui as in Case 1 with compact closures. By Cases 1 and 2,

de Rham’s theorem holds for finite unions
n⋃

i=1
Ui, by induction on n.

To complete the proof in this case one passes to the limit as n → ∞
using Case 3.

Case 5. B is paracompact. In this case B is a countable union of
open sets Ui diffeomorphic to Rp and with compact closures. Let

Vn =
n⋃

i=1
Ui. We can prove by induction on n using Cases 2 and 4 that

de Rham’s theorem holds true for each Vn and each Vn is compact.
Then it follows from Case 3 that de Rham’s theorem holds for B.

Let as before ϕ : Γ → Diff(F ) be an action, Γ = π1(B) and
F → (M,F)

π→ B the suspension foliated bundle of ϕ. Let H be the
submodule of the Γ-module C∞(F ) generated by the generated by
the functions h-γ · h, γ ∈ Γ. Let C∞(F )Γ denote the set of functions
h ∈ C∞(F ) which are invariant under the action of Γ i. e. γ · h =
h ◦ ϕγ = h ; C∞ (F )Γ is the largest submodule of C∞ (F ) on which
Γ acts trivially. The group of co-invariants of C∞ (F ) is denoted by
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C∞ (F )Γ and is the quotient
C∞ (F )

H . A simple computation shows

that H0
Γ

(
B̃, C∞ (F )

)
= C∞ (F )Γ. If the universal covering B̃ of B

is contractible (or equivalently πi (B) = 0 for i º 2) i. e. B is
an Eilenberg - Mac Lane space K (Γ, 1), then the augmented cellular
chain complex

· · · → Sj+1

(
B̃

)
→ Sj

(
B̃

)
→ · · ·S0

(
B̃

)
ε→ Z → 0(2.11)

is a free resolution of Z over ZΓ, [5]. In this case the groups Hj
Γ

(
B̃, C∞ (F )

)

are called the cohomology groups of the Γ-module C∞ (F ) and denoted
by Hj (Γ, C∞ (F )) , 0 ≤ j ≤ p. Theorem 2.1 gives a geometrical inter-
pretation for the cohomology of the Γ-module C∞ (F ) and an alter-
native way of understanding the cohomology of a foliated bundle.

Associated to the action ϕ we also have a short exact sequence

0 → HomΓ(S∗(B̃),H)
i→ HomΓ(S∗(B̃), C∞(F ))

ρ→
→ Hom (S∗ (B) , C∞ (F )Γ) → 0

(2.12)

The mapping ρ is defined as follows: let Σj be the submodule
of Sj(B̃) generated by the elements σ − γ · σ for σ ∈ Sj(B̃) and

γ ∈ Γ. Notice that Sj(B) =
Sj(B̃)

Σj

and if ` : Sj(B̃) → C∞(F ) is a Γ-

homomorphism, then `(Σj) ⊂ H and ` induces a Z-homomorphism ˆ̀ :

Sj(B) → C∞(F )Γ. The mapping ρ is defined by ρ(`) = ˆ̀. Clearly the
kernel of ρ is HomΓ(S∗(B̃),H). To show ρ is an epimorphism, choose
a ZΓ-basis B for Sj(B̃). If ˆ̀ : Sj(B) → C∞(F )Γ is a homomorphism,

choose a function hσ in each coset ˆ̀(p∗σ), σ ∈ B and let `(σ̃) =
hσ. This defines a Γ-homomorphism ` : Sj(B̃) → C∞(F ) and clearly

ρ(`) = ˆ̀. We notice that the sequence (2.12) is in general not split.
Associated to (2.12) we have the long exact cohomology sequence

0 → Ho
Γ(B̃,H) → Ho

Γ(B̃, C∞ (F )) → H0 (B, C∞ (F )Γ)
∆→ H1

Γ

(
B̃,H

)
→

→ H1
Γ(B̃, C∞ (F )) → H1 (B,C∞ (F )Γ)

∆→ ...
(2.13)

Let G be a connected Lie group and Γ be a discrete cocompact

subgroup of G i.e. the right coset space B =
G

Γ
is a compact manifold.
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Each right translation Rg : G → G induces a diffeomorphism Ro
g on

B and the right action induces a right action of Gon B. Let G be the
Lie algebra of G. If E ∈ G is a left invariant vector field on G and
a : R × G → G its flow, then at(g) = Rat(e)(g) i.e. the restriction of

the right action G × G
R→ G to the 1-parameter subgroup at(e)is the

flow of E. Thus the restriction of Ro to at(e)gives a flow Eo on B and
we have an injective homomorphism of G into the Lie algebra χ(B) of
all C∞ vector fields on B. Let Gobe the image of this homomorphism.
Associated to a left action ϕ of Γ on a q-manifold F there is a left
action Φ : Γ → Diff (G× F ) given by Φγ(g, y) = (γg,γ−1 (y)). The

orbit space M =
G× F

Γ
is a manifold and we have the foliated bundle

F → (M,F)
π→ B suspension of ϕ. We notice that the mappings

Rg × id on G× F induce automorphisms Hg of the foliated bundle π
i.e. Hg preserves the leaves of F and π ◦Hg = Ro

g ◦ π. Thus we have
an action

H : G → Aut (π)(2.14)

of G as automorphisms of π, called the canonical action of π. The
restriction of H to Γ gives an action H∗of Γ as automomorphisms of the
cohomology H∗(F), [17]. Also the right translations Rγ of G induce
automorphisms R∗

γ of the equivariant cohomology H∗
Γ(G,C∞(F )).

2.3 Proposition. The action R∗ of Γ as automorphisms of

H∗
Γ(G, C∞(F )) is trivial i.e. R∗

γ = id for all γ ∈ Γ.

Proof: Given a Γ-cocycle ` : Sj(G) → C∞(F ), 0 ≤ j ≤ p, p = dimG
we show R∗

γ(`) − ` is a Γ-coboundary. Choose any smooth path c :
I → G, c(0) = e and c(1) = γ. We have a homotopy h : G× I → G,
h(x, t) = x c(t)and let h∗ : S∗(G × I) → S∗(G)be the induced chain
mapping. Consider the prism operators, [7]

P : Sj(G) → Sj+1(G× I), 0 ≤ j ≤ p.

Since

∂P + P∂ = j1
∗ − jo

∗(2.15)
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where jt(x) = (x, t), t = 0, 1, the homotopy h and (2.8) give

∂h∗P + h∗P∂ = (Rγ)∗ − id.

Since ` is a Γ-cocycle we get

R∗
γ (`)− ` = δ ̂̀

where ˆ̀= `◦h∗P . To show that ˆ̀ is a Γ-homomorphism we show that
h∗P : Sj(G) → Sj(G) is a Γ-homomorphism. In fact, for each γ ∈ Γ
we have, [7]

(Lγ × id)∗P = P (Lγ)∗.(2.16)

Now observing that

h ◦ (Lγ × id) = Lγ ◦ h(2.17)

we see that (Lγ)∗ commutes with h∗P , i.e. h∗P is a Γ-homomorphism.

2.4 Theorem. Let G be a connected Lie group, Γ a discrete cocom-
pact subgroup of G and F → (M,F)

π→ B be the suspension foliated
bundle of an action ϕ of Γ on a q-manifold F . Assume .̇. is generated
by the iterates of a diffeomorphism ϕγ where γ ∈ Γ is in the center of
G. If the only ϕ-invariant functions are the constants, then there is a
natural isomorphism

Hj
Γ(G,C∞(F )) ' Hom (Hj (B) , C∞ (F )Γ)

for 0 ≤ j ≤ p, p = dimG.

Proof: The Theorem follows from the cohomology sequence (2.6) if
we show that Hj

Γ (G,H) = 0 for 0 ≤ j ≤ p. To show that H is acyclic
choose a probability measure µ on F which is invariant under ϕγ and
let C∞

o (F ) be the subspace of functions h in C∞(F ) with µ-measure
zero i.e.

∫
F h dµ = 0. Thus H ⊂C∞

o (F ) and each function h in H can
be written uniquely as h = χ − χ ◦ ϕγ, χ ∈ C∞

o (F ). It follows that

each Γ-cocycle ` : Sj(G) → H can be written uniquely as ` = ˆ̀− γ · ˆ̀
where ˆ̀ : Sj(G) → C∞

o (F ) is a Γ-cocycle i.e.

`(σ) = ˆ̀(σ)− ˆ̀(σ) ◦ ϕγ(2.18)
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for σ ∈ Sj(G), 0 ≤ j ≤ p. Since γ is in the center of G then ` =
ˆ̀− R∗

γ(
ˆ̀) and by Proposition 2.3 ` is a Γ-coboundary, proving the

theorem.

3. On the Group of Co-invariants of and Action
ϕ : Γ → Diff (F ).

Let Γ be a finitely generated group. The main result of this section is
that for a large set of actions ϕ of Γ on a closed manifold F the space

C∞ (F )Γ =
C∞ (F )

H of co-invariants of C∞(F ) is infinite dimensional.

A distribution on F is a continuous linear functional λ : C∞ (F ) →
R. A distribution λ is invariant under an action ϕ : Γ → Diff(F )
if λ(h ◦ ϕγ) = λ(h) for all γ ∈ Γ and h ∈ C∞ (F )Γ. So it defines a
continuous linear functional on the co-invariants C∞ (F )Γ. We denote
by Dϕ the space of ϕ-invariant distributions.

A signed measure is a continuous linear functinal µ on the space
C0 (F ) of all continuous functions on F . We denote by Mϕ the space of
ϕ-invariant measures. Clearly Mϕ is a linear subespace of Dϕ. We re-
mark that C∞ (F )Γ is infinite dimensional if Dϕ is infinite dimensional.
If ϕ has subexponential growth, [13] then there exists a ϕ-invariant
probability measure µ : C0 (F ) → R. If dimDϕ = 1, then Mϕ = Dϕ

and the C∞ closure of H is C∞
0 (F ) = kerµ ∩ C∞ (F ). This follows

from the Hahn-Banach theorem.

3.1 Example. Let Ra : S1 → S1 be a rotation Ra(z) = e2πiaz, z ∈ S1,
a irrational and ϕ : Z → Diff(S1) be the action generated by Ra.
Here dimDϕ = 1. If a is a diophantine number then H i̋s closed and
H = C∞

o (F ) and the group of co-invariants has dimension one. If α is
Liouville then H is not closed and the group of co-invariants is infinite
dimensional. A proof of this facts uses standard argument on Fourier
series, [2].

A set M ⊂ F if minimal for an action ϕ : Γ → Diff(F ) if it
is closed and invariant under ϕ and has no proper closed invariant
subset. If F is compact then every action has a minimal set.
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3.2 Proposition. Let ϕ : Γ → Diff (F ) be an action of a countable
generated group Γ on a closed manifold F . If ϕ has subexponential
growth and infinitely many minimal sets, then C∞ (F )Γ is an infinite
dimensional vector space.

Proof: We show that the space Mϕ of invariant measures is infinite
dimensional. In fact, given any positive integer n choose n distinct
minimal sets M1, . . . ,Mn. Since ϕ has subexponential growth then
by [13] there exist invariant probability measures µ1, . . . , µn such that
sup pµj ⊂ Mj, 1 ≤ j ≤ n. These measures are linearly independent.
For, let f1, . . . , fn be smooth functions with disjoint support such that
f−1

j (1) = Mj, 1 ≤ j ≤ n. If c1µ2 + · · ·+cnµn = 0, then 0 = cjµj(fj) =
cj, 1 ≤ j ≤ n, finishing the proof. 2

The centralizer group of a diffeomorphism ϕ : F → F is the set
of elements in Diff(F ) which commute with ϕ and is denoted by
C(ϕ). We denote by Z(ϕ) the cyclic group generated by ϕ. The
group Diff(F ) of all C∞ diffeomorphisms of F is endowed with the
C∞ topology. We say that ϕ has trivial centralizer if Z(ϕ) = C(ϕ).
A question posed by S. Smale, [19] is whether there exists an open
dense set of diffeomorphisms in Diff(F ) having trivial centralizer.
The question was answered affirmatively in the case of the circle by
N. Kopell in [8]. J. Palis and J.C. Yoccoz gave an affirmative answer
for a large set in Diff(F ), [14]. Smale’s question can be related with
the question whether for a large set of foliated bundles the foliated
cohomology is infinite dimensional. In fact, it is believed that the set
of foliations with finite dimensional cohomology is a very small set.

Suppose the group Γ is generated by γ1, . . . , γp. We say that an
action ϕ : Γ → Diff(F ) is generated by the iterates of a diffeomor-
phism ψ ∈ Diff(F ) if ϕγj

= ψkj , kj ∈ Z, 1 ≤ j ≤ p. In this case every
function h in H can be written as χ− χ ◦ ϕ = h for χ ∈ C∞(F ). We
remark that if Γ has a non-trivial center then Palis-Yoccoz results on
the centralizer of diffeomorphisms say that the actions of Γ on F which
are generated by the iterates of some diffeomorphism ψ ∈ Diff(F )
form a large class. Next we extend Theorem 2.1 of [1] to these actions.

The orbit of an action ϕ through a point x ∈ F is the set O(x) of
all points ϕγ(x), γ ∈ Γ. The closure O (x) of O(x) will be refferred to
as an orbit closure of ϕ.
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3.3 Theorem. Let ϕ be an action of a finitely generated group Γ
on a closed manifold F . Suppose ϕ is generated by the iterates of a
diffeomorphism ψ with infinitely many orbit closures. Then the space
of co-invariants C∞(F )Γ of ϕ is infinite dimensional.

Proof: If ψ has infinitely many minimals, the result follows from
Proposition 3.2. Assume ψ has a finite number of minimals. Let
C = {O (xi), i = 0, 1, 2, . . .} be a countable family of distinct orbit

closures. By Lemma 2.2 of [1] we may assume that A =
∞⋂

j=0
a(xi)

and W =
∞⋂

j=0
w(xi) are both non void (here a(xi) and ω(xi) denote

the a-limit and ω-limit sets of xi, respectively). The inclusion gives a
partial ordering on C. So there are two possibilities.

Case 1. C has an infinite totally ordered subset C ′.
Case 2. Any totally ordered subset C ′ of C is finite.

Case 1. Let n > 0 be any integer. By assumption there exist n + 1
distinct orbit closures in C ′, say

O (x0) ⊂ O (x1) ⊂ . . . ⊂ O (xn).

Choose n non-negative C∞ functions fi : F → R such that

f−1
i (1) = xi, supp fiare disjoint from O (x0)

and if suppfi ∩ O (xj) 6= ∅ then i ≤ j.
(3.1)

We claim that f1, ..., fn are linearly independent in C∞ (F )Γ i. e.
if c1f1 + ... + cnfn = h, h ∈ H, and cj ∈ R, 1 ≤ j ≤ n, then
c1 = ... = cn = 0. In fact, since suppfi are disjoint from O (x0), if
h ∈ H then χ− χ ◦ ψ = h for some χ ∈ C∞(F ) and from this we see

that χ(xo)−χ(ϕk(xo)) =
k−1∑
j=0

h(ϕj(xo)) = 0 for each integer k. Thus χ

is constant on O (x0) and we may as well assume that χ vanishes on
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O (x0). Thus χ vanishes on A and W . Now

χ(x1)− χ
(
ϕk (x1)

)
= c1

∑k−1
j=0 f1(ϕ

j(x1))

and

χ(x1)− χ
(
ϕk (x1)

)
= −c1

∑k
j=1 f1(ϕ

−j(x1))





(3.2)

for each integer k > 0.
Since χ vanishes on A and W , (3.2) gives

χ(x1) = c1 limj→∞
∑kj−1

j=0 f1(ϕ
j(x1))

and

χ(x1) = −c1 limj→∞
∑lj

j=0 f1(ϕ
−j(x1))





(3.3)

for some subsequences (kj) and (lj). Since the function fi are non
negative and take the value 1 on xi, then the above limits are positive.
Thus (3.3) gives c1 = 0. Similarly we show that c2 = ... = cn = 0.
Thus dimC∞ (F )Γ = ∞.

Case 2. In this case given any positive integer n there exist n+1orbit
closures O (x0), . . . ,O (x0) such that O(xi) is disjoint from O(xj) if
i 6= j. Thus we may choose open neighborhoods Vi of each xi, 1 ≤ i ≤
n such that Vi∩Vj = φ if i 6= j. Now choose non-negative C∞ functions
fi : F → R such that f−1

i (1) = xi and suppfi ⊂ Vi, 1 ≤ i ≤ n. Now
as in Case 1 we show that these functions are linearly independent in
C∞(F )Γ, proving the theorem.

4. Foliated Bundles over the Torus T p

Since the torus T P is a K (Zp, 1) space then the cohomology of a
foliated bundle F → (M,F)

π→ T p is, by Theorem 2.1, isomorphic
to the cohomology of the Zp-module C∞(F )In this section we give a
procedure for the computation of this cohomology.

Let Λ(Rp)∗ be the exterior algebra over Z generated by the canon-
ical 1-forms dx1, . . . , dxp with trivial Zp-action. Consider the graded
Zp-module

Λ(Rp)∗ ⊗ C∞(F ) = C∞(F ) +
p∑

j=1

Λj(Rp)∗ ⊗ C∞(F )(4.1)
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We think of the elements of Λj(Rp)∗ ⊗ C∞(F ) as “differential forms”
ξ =

∑
I

hIdxI where dxI = dxi1 ∧ . . . ∧ dxij , I = (i1, . . . , ij), 1 ≤ i1 <

· · · < ij ≤ p, hI ∈ C∞(F ). We define differential operators:
(i) d : C∞ (F ) → Λ1 (Rp)∗ ⊗ C∞ (F ),

dh =
p∑

j=1

∂j h dxj where ∂j h = h− ej h and(4.2)

(ii) d : Λj (Rp)∗ ⊗ C∞ (F ) → Λj+1 (Rp)∗ ⊗ C∞ (F )
is given on the generators by d(h dxI) = d h ∧ dxI . The cohomology
of the differential complex (Λ(Rp)∗ ⊗ C∞(F ), d) is the cohomology of
the Zp-module C∞(F ). For a proof of this fact, see [12, Chap. VI.6].

4.1 Example. We describe the cocycles and coboundaries in the

particular case p = 3. Notice that dimΛj(Rp)∗ =
(

p
j

)
=

p!

j!(p− j)!
.

Recall that Ho(Γ, A) = AΓ is group of invariants for any Γ-module A.
(i) A 1-cochain ξ is determined by its value on the generators dx1,
dx2 and dx3 of Λ1(R3)∗. So a 1-cochain is the same as a “1-form”
ξ = f1 dx1 + f2 dx2 + f3 dx3 where fi ∈ C∞(F ), i = 1, 2, 3. ξ is a
1-cocycle if dξ = (∂1f2− ∂2f1)dx1dx2 + (∂1f3− ∂3f1)dx1dx3 + (∂2f3−
∂3f2)dx2dx3 = 0. So ξ is a 1-cocycle ⇔ ∂ifj = ∂jfi, 1 ≤ i < j ≤ 3.
From this we have the equations

f1 − e2 · f1 = f2 − e1 · f2, f1 − e3 · f1 = f3 − e1 · f3

and
f2 − e3 · f2 = f3 − e2 · f3





(4.3)

ξ is a 1-coboundary if there is h ∈ C∞ (F ) such that

h− ejh = fj, 1 ≤ j ≤ 3(4.4)

(ii) A 2-cochain ξ = f12 dx1dx2 + f13 dx1dx3 + f23 dx2dx3 is 2-cocycle
if

dξ = (∂1f23 − ∂2f13 + ∂3f12)dx1dx2dx3 = 0

i.e. if the coefficients satisfy the equation

(f12 − e3 · f12)− (f13 − e2 · f13) + (f12 − e3 · f13) = 0(4.5)
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Notice that a 2-cocycle is a coboundary if there exists a 1-cochain
λ = h1dx1 + h2dx2 + h3dx3 such that ξ = dλ and from this we get
the equations fij = ∂ihj − ∂jhi for 1 ≤ i < j ≤ 3. Thus we have the
system of equations

(h2 − e1 · h2)− (h1 − e2 · h1) = f12

(h3 − e1 · h3)− (h1 − e3 · h1) = f13

(h3 − e2 · h3)− (h2 − e3 · h2) = f23

(4.6)

(iii) A 3-cocycle ξ = h dx1dx2dx3 is a coboundary if there is a 2-cochain
λ = h12dx1dx2 + h13dx1dx3 + h23dx2dx3 such that dλ = ξ and from
this we derive the equation h = ∂3h12 − ∂2h13 + ∂1h23 i.e.

h = (h12 − e3 · h12)− (h13 − e2 · h13) + (h23 − e1 · h23)(4.7)

5. The Cohomolgy of Actions of Zp on the Affine
Group of T q

Let Affin(T q) be the group of affine transformations of the torus T q

and ϕ : Zp → Affin(T q) be an action (homomorphism). Let ϕ∗ be the
induced action of Zp on the ring C∞(T q), ϕ∗(f) = f ◦ ϕ and C∞

ϕ (T q)
the corresponding Zp-module.

By the cohomology of the action ϕ we mean the cohomology of the
Zp-module C∞

ϕ (T q). This cohomology was computed by J. L. Arraut
and N. M. dos Santos for actions for Zp by translations of T q in [2]
and, more generally, for actions of Zp by affine transformations of T q

by R. U. Luz in [9].
We now discuss briefly these results. The derivative A = Dϕ gives

an action of Zp on S`(q, Z). The cohomology of the action ϕ depends
on both the arithmetic nature of ϕ and the algebraic properties of A.
The set σ(A) of all eigenvalues of all A(`), ` ∈ Zp is referred to as the
spectrum of A. If ϕ is minimal (i.e. every orbit is dense) then σ(A) =
{1}, [9]. The isotropy groups I(k) of the action tA : Zp × Zq → Zq,
tA(`, k) = tA(`)k play an important role on the cohomology of ϕ. Let
G be a non-trivial isotropy group of tA and {`1, . . . , `r} be a basis of
G. Consider the matrix M whose columns are ϕ(`j)(0), 1 ≤ j ≤ r.
We say that ϕ satisfies a Diophantine condition for G if there exist β,
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c > 0 such that

‖kM‖ ≥ c

|k|1+β for all k ∈ Zq − {0}, I(k) = G(5.1)

where ‖x‖ = inf{|x− `| , ` ∈ Zr}.

Definition. An action ϕ : Zp → Affin(T q) is Diophantine if 1. tA has
only non-trivial isotropy groups and there exist only a finite number of
them. 2. ϕ satisfies a Diophantine condition for each isotropy group
of the action tA. The cohomoly of Diophantine actions is given by

5.2 Theorem. (R.U. Luz, [9]). Let ϕ : Zp → Affin(T q) be a Dio-
phantine action. Then

Hj(Zp, C∞
ϕ (T q)) = Hj

DR(T q), 0 ≤ j ≤ p.

If ϕ acts by translations, we have

5.3 Theorem (J.L. Arraut and N.M. dos Santos, [2]). Let ϕ : Zp →
Trans(T q) be an action of Zp on the group Trans(T q) of translations
of T q. Then

Hj(Zp, C∞
ϕ (T q)) = Hj

DR(T q), 0 ≤ j ≤ p

if and only if ϕ is Diophantine.

5.4 Example. Let ϕ : Z2 → Affin(T 2) generated on the covering
space R2 by

ϕ(e1) =

(
1 0
1 1

)
+

(
α
0

)
and ϕ (e2) =

(
1 0
0 1

)
+

(
0
β

)

where αis a Diophantine number and β /∈ Q. Then
(i) If β is Diophantine then ϕ is Diophantine and

H1(Z2, C∞
ϕ (T 2)) = R2, H2(Z2, C∞

ϕ (T 2)) = R

by Theorem 5.2.



On the cohomology of foliated bundles 195

ii) If β is Liouville then

H1(Z2, C∞
ϕ (T 2)) = R2 and H2(Z2, C∞

ϕ (T 2))

is a non-Hausdorff infinite dimensional space. We finish the section
with the following oustanding problem.

5.5 Problem. Compute the cohomology group H1(Z,C∞
ϕ (S1)) where

the action of Z is generated by a diffeomorphism ϕ: S1 → S1 with
irrational rotation number.

If ϕ is C∞-conjugate to a rotation, then the problem reduces to
actions of Z → Transl(S1), where the answer is known.
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