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1. Preliminaries

Let A be a commutative algebra over a field K. If z is an element of A, we
define ! = z and zFt! = 2Fx for all k > 1.

A is called power-associative, if the subalgebra of A generated by any
element x € A is associative. An element x € A is called nilpotent, if there
is an integer r > 1 such that " = 0. If any element in A is nilpotent, then
A is called a nilalgebra. Now A is called a nilalgebra of nilindex n > 2, if
y" =0 for all y € A and there is « € A such that 2"~ # 0.

If B, D are subspaces of A, then BD is the subspace of A spanned by all
products bd with b in B, d in D. Also we define B! = B and B**! = B*B
for all £ > 1. If there exists an integer n > 2 such that B® = 0 and
B"~1 £ 0, then B is nilpotent of index n.

A'is a Jordan algebra, if it satisfies the Jordan identity z2(yx) = (2%y)x
for all x, y in A. It is known that any Jordan algebra is power-associative,
and also that any finite-dimensional Jordan nilalgebra (of characteristic
# 2) is nilpotent (see, [5]).

We will use the following result which we give in [2] :

Proposition 1.1 If A is a Jordan nilalgebra of nilindex n > 3 with
dimg(A) =m >n, then n — 2 < dimg(A4%) <m — 2.

Throughout, A will denote a commutative nilalgebra of nilindex n > 3
over a field K of characteristic # 2,3. We will denote by < z1,...,z; >k
the subspace generated over K by the elements z1,...,x; in A. Also we will
denote by «, f3,....,etc., the elements of field K. If z € A with 2"~ # 0,
then we will denote by X the subspace < z,z2,...,2" ! >g. It is clear
that x,z2,...,2" ! are linearly independent and so dimg (A?) > n —2 and
dimK(AS) >n— 3.

2. COMMUTATIVE NILALGEBRAS OF NILINDEX 3 AND
DIMENSION 6

In this section, A will denote a commutative nilalgebra of nilindex 3. It is
well known that a commutative nilalgebra of nilindex 3 is a Jordan algebra
(see [6], page 114).

Since z3 = 0 for all zA, then by linearization method we obtain that
the following identities are valid in A :

(2.1) 22y +2(xy) =0, (xy)z+ (y2)x+ (22)y =0
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It is clear that the identity z* = (ZL'2)2 = 0 is valid in A, which implies
that for all z,y,z in A we have :

(2.2) 22 (yx) = (:c2y) x=0,2(xy)* + 222 =0
Lemma 2.1 If (A2)2 # 0, then dimg (A) > 8.

Proof. If (A%)2 # 0, then there exist x, y € A such that 22y? # 0. We note
first that using (1) and (2), we obtain that: z?(yz?) = —2(z(yz?)z = 0,
22(xy?) = 0, 22(2%y?) = =2((2%y*)2x)z = 0, 2%y® + 2(y*x)r = 0 and
22y? + 2(z%y)y = 0. We will prove that the elements y, x, 22, 32, yz?,
xy?, xy, v?y? are linearly independent. Let oy + asx + asz? + auy? +
asyx? + agry® + arry + agr?y? = 0. Multiplying by 22 we obtain that
a1yr?+agr?y? = 0. Thus 0 = 2y(a1yr® +aur?y?) = 201y(yr?) = —a12?y?
implies a1 = 0. Clearly also ay = 0. Similarly we prove that as = a3 = 0.
Now we have that asyzr? + agzy? + arry + agz?y? = 0. Multiplying by
x we get agz(2y?) + azr(wy) = 0. Hence 0 = 2y(agx(2y?) + arz(zy)) =
—agy(2%y?) — ary(yz?) = %awzyz which implies a7 = 0. Finally it is clear
that ag = 0, and also that asyz? + agz?y? = 0 implies a5 = ag = 0. This
proves what we wanted.

Lemma 2.2 If A* # 0, then dimg (A) > 7.

Proof. By Lemma 2.1, we can suppose that (4%)2 = 0. Since A* #
0, there exist elements y, x, z in A such that z(yz?) # 0. Now using
relation (1), we obtain that 2z((yx)xr) = —z(yx?) # 0. We will prove
that vy, z, z, yo2, yx, 22, z(yz?) are linearly independent. Let (1): ayy +
o + a3z + auyr? + asyr + agr® + arz(yz?) = 0. Multiplying by ya?
we get 0 = aqy(yz?) + azz(yz?) = —Jaqy®2? + azz(yz?) = azz(yz?) = 0
which implies a3 = 0. Multiplying (1) by 22 we obtain a3 = 0. We
note that using (1) we get z(z(yz?)) = —z(z(y2?)) — (y2?)(zz) = 0 and
y(z(ya?)) = —2(y(y2?)) — (ya?)(yz) = 0. Similarly 2(z(yz*)) = 0. Now
multiplying (1) by 2z we obtain 0 = 2as2? +2asx(yx) = 20022 —asyz?. So
0 = y(2002% — asyr?) = 200yz? — asy(ya?) = 200yz® + %a5y2x2 = 2a9yx?
implies ag = 0. It is clear that also a5 = 0. Finally it is possible to prove
that auyz? + agr? + arz(yx?) = 0 implies a4 = ag = ay = 0. Therefore we
conclude that dimg (A) > 7, as desired.

We see that Lemmas 2.1 and 2.2 imply the following result:
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Corollary 2.3 If dimg(A) < 6, then (4%)2 = A* = 0.

Now if A% # 0, then there exist elements y, = in A such that yz? # 0. In
this case it is easy to prove that y, z, yz2, 22, yx are linearly independent.
Therefore we obtain the following result:

Lemma 2.4 If A3 # 0, then dimg(4) > 5.

We observe that when dimg(A) = 6, then by Proposition 1.1 we have
that 1 < dimg (A%) < 4. Moreover, if A> # 0 and dimg(A) = 6, then
3 < dimg (A) < 4.

Proposition 2.5 If dimg(A) = 6, A3 # 0 and dimg(A%) = 4, then
there exists a basis {uy, ug, ug u4, us, ug fof Asuch that u? = ug, ugUz = Uy,
U U5 = U3, u% = Uy, Uglly = —%u;;, all other products being zero.

Proof. We know that (A42)? = A% = 0. Since A3 # 0, then there exist y,
x € A such that y, z, ya?, yr, 22 are linearly independent. Clearly y,
are not elements in A2, and thus there exists z € A such that {y, z, yx?,
yz, 2%, 2%} is a basis of A. As z = a1y + oz + azyz? + agyr + asz? +
a62?, then 22 = (2 — 2?)? €< y? 2% yx, 9%z, y2®> >k. From this we
see that if y? €< 22, yx,yx? >k, then 22 €< 22, yz,yz® >k, which is a
contradiction. Hence y? ¢< 22 yx,yx? >k, and so {y,z,yz?, yx, 22,5}
is a basis of A. Since zy? € A2, then zy® = ayz? + fyz + ya2 + 6y>.
Multiplying by 2z we get 28x(yx) + 20zy? = —Byz? + 262y*> = 0. Thus
—Byx? + 26(ayx® + Byx + yr? + 6y?) = 0, implies f = § = 0, and so
ry? = ayr?® + 2. But 0 = y(2y?) = y(ayz? + y2?) = yya? implies v = 0,
and therefore zy? = ayz?. Finally, if we define vy = y + az, us = x,
ug = ywz, Uy = YT + ax?, us = 22, ug = y2 + 2ayx + o?x?, we get u% = ug,
UTU = Uyg, ULU5 = U, u% = Us, Uy = —%ug, all other products zero.

Proposition 2.6 If dimg(A) =6, A3 # 0 and dimg (A?) = 3, then there
exists a basis {u1,ug, u3 u4, us,ug} of A such that ujug = us, urus = ua,
u% = ug, usuz = —Pug, uss = —%U4, u% = duy, ugus = (Bug, all other

products being zero.

Proof. We know that (A2?)2 = A* = 0. Since A3 # 0, there exist y,
x € A such that y, =, yz?, yx, 22 are linearly independent, and thus there
exists an element z € A such that {y,z, z, ya?, yz, xz} is a basis of A. As

y? € A% then y? = oyx® + ogyx + o322 If yp = y — %agx — %0112 we



Jordan Nilalgebras of Dimension 6 281

obtain that y3 = (03 + 03)2?, and so 0 = y§ = (03 + 703)ya? which
implies o3 + %a% = 0. Thus 93 = 0 and clearly {yo,, 2, yoz?, yoz, v}
is a basis of A. Since zax € A2, then zx = aijyozr? + aayoxr + azz?. If
20 = z+2aqyoT — ayo — asx, we get that {yo, x, 20, Yox2, Yo, 1:2} is a basis
of A with zpz = 0. Let yoz0 = Biyox? + Bovox + f3x?. If 21 = 29 — Br2?,
we obtain that {yo,z, 21, v02%, yor, 2%} is a basis of A with z;z = 0 and
Yoz1 = Bayox + B3z, Now 0 = ydz1 = —2yo(yoz1) = —2yo(Bayoz + B32?) =
Baydr — 2B3yor? = —2B3yoz? implies B3 = 0. Therefore we can suppose
that in the basis {y,z, z, y2?, yz, 2%} of A, we have y?> = 0, 2z = 0 and
yz = PByr. Let 22 = dyz? + eyx + 022, Now we have that: z(yz) =
—z(2y) — y(x2) = —a(zy) = —Pa(yr) = 30ya?, 0 = 4(z2)z = —2u2° =
—22(6yx? + eyx + 02%) = —2ex(yx) = eyx® implies ¢ = 0, and Oyz? =
y(dyx® + eyx + 022) = y22 = —2(y2)z = —2B(yx)z = —F%yx? implies
6 = —f%. Thus 22 = dyx? — F%2>. Finally, if we define: u; =y, us = x,
ug = z — P, uy = yx?, us = yr, ug = x>, we obtain that wjup = us,
ULUG = Ug, UF = Ug, Uguz = —[Ug, Uz = —%u4, u3 = duy, uzus = Pug,
and other products zero.

We note that when dimg(A) = 6, then Proposition 1.1 implies 1 <
dimg (A%) < 4. Suppose moreover that A% = 0 and dimg (A?) = 4. Then
there exists a subspace Ag of A such that A = Ag® A2, Since dimg (Ag) = 2
and A? = A% we conclude that dimg(A?) < 3, a contradiction. Therefore
dimg (A) = 6 and A3 = 0 imply 1 < dimg(A?) < 3.

Proposition 2.7 Suppose that dimg(A) = 6, with dimg(A42%) = 3 and
A3 =0.

(a) If for all z, y € A we have that 22, y?, xy are linearly dependent,
then there exist a basis {u1, ua, us, u4, us, ug} of A such that u? = uy,
ULUY = %(5*15*11@; + 20eus, uiug = %(5*1714 + dug, u3 = us, uguz =
eus + %5_1%, u% = ug with de # 0, all other products zero.

(b) If there exist elements y, x in A such that 22, y?, zy are linearly
independent, then there exist a basis {u1, ug, us, usg, us, ug} of A such
that uf = ayus+ Prus +v1ug, urue = Bus, urusz = agua+ Bous +Y0Us,
u% = Uy, UsU3 = Ug, u% = us, all other products zero.

Proof. To prove (a), we consider x, y, z in A such that 22, y?, 22 are

linearly independent. We will prove that z, y, z, 22, y?, 2% are linearly

independent. If 612+ day + 032 + d42% + 55y° + 062 = 0, then §10 = —(Soy +
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832 + 6422 + 85y% + 8622) which implies that 6722 = 63y? + 26203yz + 5322
By hypothesis yz €< y?,2%2 >k, and so §; = 0. Similarly we prove that
82 = 63 = 0, and clearly &4 = d5 = dg = 0. Therefore {z,vy, 2, 22,92, 2%} is a
basis of A. By hypothesis zy = ax? + fy?, vz = ya? 4+ 622, yz = ey® + 022,
and also for all oy, ag, as, 81, B2, B3 in K, the vectors (ayz + aoy + a32)?,
(a1z+aoy+asz)(Bia+Bey+332), (Biz+Pay+P32)? are linearly dependent.
We have that (air + sy + a32)? = (af + 201000 + 201a37)7? + (a3 +
201 a3+ 2c0038)y? + (a3 + 20136 + 2a30) 22, (1 + gy + as2) (Bro +
Boy+B32) = (181 + a1 fea+azBia+ar Bsy +asfiy)z? + (aafBe+ a1 BB+
@18 +aofse + azfae)y? + (asfs + a1 f36 + a3f1d + aofs0 + asf26)22,
and (Biz + Boy + B32)% = (8] + 26152a + 261837)2* + (B3 + 261528 +
209338)y? + (B2 + 281830 + 232/336) 2%2. We conclude that for all oy, az, as,
B, B2, B3 in K, the vectors (a? +2ajaza +2a1a37, a3 + 201093+ 2a00a3¢,
a3 + 2136 + 2a00a30), (a161 + a1fea + asBra+ a1 83y + asfry, azfz +
1823 + a1 +afze + azfae, azfs + a1330 + a3 10 + ao B30 + aza0),
(BF 4 2818200 + 2031837, 05 + 2681028 + 202332, 33 + 261036 + 202330) in
K3 are linearly dependent, which implies that 3 = 2de, § = 230, € = 270,
0 = 2a0, v = 2ae, o = 2v0. We observe that if 0 € {«, 3,7, 9,¢,60}, then
a=p=y=086=¢c=0=0. In this case (v +y)?, (z+2)? and (z+y)(z+2)
are linearly independent, a contradiction. Therefore «, 3, v, d, €, 6 are not
zero and we get o = %5‘15_1, 8 =26e,v= ié‘l, 0= %5_1. Finally, if we
define uy =z, ug =y, uz = 2, ug = 22, us = y>, ug = 2°, we obtain (a).
Suppose now that there exist y, « in A such that 22, 42, zy are linearly
independent. In this case it is easy to prove that z, y, 2, y?, xy are linearly
independent. Let u be an element in A such that {u,z,y, 22, 3% zy} is a
basis of A. Since uz € A2, then ux = az?+ By? +yzy. If ug = u—ax —y,
then ugr = fy?. Finally, if we define u1 = ug, us = z, ug = y, uy = 2,
us = y2, ug = vy, we get (b). a

Proposition 2.8 If dimg(A4) =6, A% = 0 and dimg (A?) = 2, then there
exists a basis {u1, ug, us, ug, us, ug } of A such that u% = a1Us+Qolg, U1lUy =
Q3U5 + G, UTUs = QpUs + QGUG, UF = Q7Us + Qgle, UoUs = Qigls + (10U,
u% = us, U3U4 = Ug, ui = eus, and other products zero.

Proof. It is possible to prove that there exist elements y, = in A such
that x, y, 22, yx are linearly independent, and y?> = ex? (see, [4]). We
consider u, v € A such that {u,v,z,y,2% yr} is a basis of A. Since ux
and vz are elements in A2, then ur = ax? + By and ve = yo? + dxy. If
ug = u— ax — By and vy = v — yx — dy, then {uo,vo,w,y,xQ,y:U} is a basis
of A with ugz = voxr = 0. If we define u; = ug, us = vg, uz = x, ug = vy,
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us = 2%, ug = yx, we obtain that u? = ajus + aoug, uus = azus + ayus,
_ 2 _ _ 2 _

UUg4 = QU5 + U, Uy = QrUs + QglUE, U2U4 = QU5 + (loUe, UZ = Us,

usuy = ug, u3 = €us, and other products zero. O

Proposition 2.9 If dimg(A4) =6, A3 = 0 and dimg(A?) = 1, then there
exists a basis {u1, ug, ug ug, us, ug} such that u$ = ug, u3 = Bug, u3 = yug,
u? = dug, u% = eug, all other products being zero.

Proof. There is an element u; in A such that u? # 0, and so A2 =< u? >.
We can write A as a direct sum A = Ku? @ Ag, where Ag = Kuy ® W for
some subespace W. The map f : Ag x A9 — K defined by zy = f(z,y)u?
for all z, y in Ag is a symmetric bilinear form. It is known that there is
a basis {u1,ug,us, us,us} of Ag such that f(u;,u;) =0, if ¢ # j. Finally,

if ug = u? we have that {u1,ug,us us, us,us} is a basis of A such that

u? = ug, u3 = Bug, u3 = yug, uj = dug, uz = €ug, all other products being

Zero. Od

3. JORDAN NILALGEBRAS OF NILINDEX 4 AND DI-
MENSION 6

In this section, A is a Jordan nilalgebra of nilindex 4 and dimension 6.
Therefore the identities 2%(yz) = (2%y)z and 2* = (22)2 = 0 are valid
in A. By linearization we obtain that also are valid in A the following
identities:

(3.1) z2y? + 2(zy)? =0

(3.2) 2*(yz) = (z%y)z =0

In [3], we prove that any Jordan nilalgebra of nilindex n > 4 and di-
mension k with n +1 < k < n + 2, is nilpotent of index n. From this we
conclude that A% = 0.

Proposition 3.1 If (A2)2 # 0, then there exists a basis {u1, uz, us, u4, us, ug}
of A such that u? = us, u3 = uy, u2 = —%U5, ULUy = Ug, U3U4 = Us, all
other products being zero.

Proof. Since (A2)? # 0, there exist x, y € A such that z2y? # 0. We know
that 2(zy)? = —22y? # 0, A* = 0 and moreover A(A?)? C AA? = A* = 0.
We will prove that z, y, 22, y%, z?y?, xy are linearly independent. It
is easy to prove that x2, y?, %y?, zy are linearly independent. Now if
ar + By + yx? + 0y? + ex®y? + fzy = 0, then ax + By = —(yz? + 5y +
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ex?y? + Ozy) which implies o?z? + 2a8zy + 5%y? = 0% (zy)? + 2v52%y? =
(—%92 + 2v9)2%y%. Thus we conclude that o = 8 = 0, and clearly v = § =
e = 0 = 0. Therefore {x,y, 2% y? 2%y% 2y} is a basis of A, and moreover
Proposition 1.1 implies that A% =< 22,92, 2%y?, 2y > k. Now we will prove
that A3 =< 2%y? >g. If z € A3, then z = y12% + 619y% + e12%y? + 612y. So
0 = 2%z = §12%y? implies §; = 0, 0 = y%z = y,2%y? implies v; = 0, and 0 =
(vy)z = 01(zy)? = —%91x2y2 implies #; = 0. Hence z = ¢;2%y?, and thus
A3 =< 229y? >k, Therefore yz? = Soay?, xy? = 022y?, z(zy) = v(zy)?,
y(zy) = yolay)?, * = az?y?, y* = apa?®y®. If 39 = & — 022 — vy — ay?,
Yo = Yy — doy? — Yoxy — apx? and we define uq = xg, ug = Yo, U3 = x%,
ug = Y2, us = T3Y2, ug = Toyo, then we get that {uy,us,us, us, us, ug} is a
basis of A such that u? = ug, u3 = ug, ud = —%U5, ULUY = Ug, UIU4L = U5,
all other products being zero. O

Lemma 3.2 1 < dimg (A3) <2

Proof. Since 2 < dimg (A42) < 4, then 1 < dimg(A3) < 3. Suppose that
dimg (A3) = 3. Then there exist elements y, z, u, v, z in A such that A3 =<
uy?, vz?, 23 >g. Clearly 22 ¢ A3, and so A% =< 2% uy? v2?, 23 >k.
Hence y? = ax? + puy? + yvz? + 523 and 22 = agx? + Bouy?® +yovz? + doz3.
Since A* = 0, we obtain uy? = auz? and vz? = agva? with a # 0y ag # 0.
Therefore A%2 =< z2, ux?, va?, 23 >g. Now it is easy to prove that u, v,
x, 2, ux?, va?, 23 are linearly independent, a contradiction. Therefore

1 < dimg(A3) < 2, as desired. O

By Proposition 3.1 we know that there is a unique nilalgebra such that
(A%)2 £ 0. In the following, we assume that (A42)% = 0.

Proposition 3.3 Suppose that dimy (A?) = 4 and dimg (A43) = 2.

(a) If for all y, z € A we have that yz?, 2 are linearly dependent, then
there exists a basis {u1,ua,us, us, us, ug} of A such that u? = wuso,
upuy = ug, uuy = yus + dug + eus + Oug, wuy = ug, uiug = us,
uj = us, ugus = ug, all other products being zero.

(b) If there exist elements y, z in A such that yx?, 2% are linearly in-

dependent, then there exists a basis {u1, ug, us, u4, us, ug} of A such
that u? = ug, uius = qus + Bus + Yug, UIU3 = Uq, UIUs = SUy + EUs,
u% = ug, U3z = uUs, Ugug = Ouy + ous, all other products being zero.
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Proof. To prove (a), we consider an element z € A with 2® # 0. By
hypothesis, we have that for all y € A : yz? €< 2% >x. As A* = 0, we
have that J =< 22, 2% > is an ideal of A, and moreover A3 is not a subset
of J. Now if 4> € J for all y € A, then the quotient algebra A = A/.J
is a nilalgebra of nilindex 3 with dimg(A) = 4 and a° # 0 which is a
contradiction, since by Lemma 2.4 we know that dimg (A4) > 5. Therefore
there exists y € A such that y® ¢< 22,23 >. By hypothesis yz? = az?,
xy? = PBy3. Now it is possible to prove that z, y, 22, z3, 32, y* are linearly
independent, and so xy = Yz + doz> + £0y? + Ooy>. By hypothesis for
all 1, 61, a1, B in K, we have that the vectors (y12 + 19)3, (alx +
Bry)(y1z + 81y)? are linearly dependent. Now we have that (y12 + 61y)° =
(7 + 2770170 + i dia+ 271517004)33 + (1038 + 2770180 + 0 + 2715150)
and (a12+ 1Y) (112 +01y)? = (o + 271010170 +7 Bra+ 27101 Brayo ) x5+
(0201 8 + 2v10a101 B0 + 0231 + 27101 51€0)y>. We conclude that for all 71,
81, a1, B1 in K the vectors (73 + 2920190 + y361a + 2v109700, 11023 +
27261 8e0 + 63 + 2716%e0) and (yiaq + 2via10170 + VB + 27161 Brao,
5%0416+2’yla151ﬂ50+5%51 +2v10161€0) in K? are linearly dependent, which
implies that af = 1. Finally, if u1 = x, us = 22, ug = 23, wy = By,
= %2 u6 3393, we obtain (a). To prove (b), we consider y, x € A
such that ya2, 22 are linearly independent. Then A3 =< ya?, 23 >k and 22,
yx?, 23 are linearly independent. As dimy (A2%) = 4, there exists z € A such
that A2 =< 22, y2?, 23, 22 > k. It is easy to prove that {y, z, 22, yz?, 23, 2%}
is a basis of A. Now if z = a1y + asx + aszz?® + auyx? + asz® + agz?,
then 22 — (a?y? + 2a1a22y + ad2?) € A% which implies oy # 0. If yo =
a1y + agx, then y3 ¢< 22 yr? 23 >x=< 2% yoz?, 2% >k, and so A? =<
22 yor?, 23,93 >. If yor = ax? + \yoz? + B2 + Y3 and z9 = x — Az?, then
Yozo = ax? + B + yy2 €< 23,23, y2 >k. Therefore we can assume that
there exist elements y, x in A such that {y,z, 2%, yx?, 23,y*} is a basis of
A with yx = ax? + 3 + vy?, v = dya? + e2® and xy? = Oyx® + o, If
we define uq =y, us = x, uz = 22, ug = y?, us = x>, ug = y>, we obtain
().
Proposition 3.4 If dimg(A?) = 4 and dimg (A3) = 1, then there exists a
basis {u1, ua, u3,u4, us, ug} of A such that u? = us, uius = ug, uus = Bu,
UIUG = YUd, u% = u3z, UgU3 = U4, UoUs = OU4, UoUg = Uy, all other
products being zero.

Proof. We consider z € A such that :c3 75 0. Since dimg (A?) = 4, there
are y, z 6 A such that A2 =< 22, 23,9y%, 22 >k. We have that Y, T, x2
23, y?, 22 are linearly independent. In fact: if a1y 4+ ooz + aszz? + oy +
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asy? + agz? = 0, then a1y = — (o + azr? + ay2® + asy? + agz?) which
implies a%yz = a%mQ + v with v € A3 =< 23 >g. Hence oy = ap = 0, and
so {y,r, 2% 23,9y% 2%} is a basis of A. If z = By + Box + B32? + By +
Bsy? + P22, then 22 — (B2y? + 231 fayx + B322) € A3 which implies that
yr ¢< 22,23, y? >k, and therefore A? =< 22,23,y yx >x. We see that
as yr? = ax®, then 2%(y — az?) = 0. Therefore we can assume that in
the basis {y,z, 22, 23,y% yx} of A we have that yz? = 0, and moreover
v} = B3, ylyr) = ya2, vy? = 023, x(yx) = 23, Finally, if we define
up =Yy, up = x, uz = 2, uy = =, us = y>, ug = yxr, we obtain our
Proposition.

Proposition 3.5 If dimg (4%) = 3 and dimg (A3) = 2, then there exists
a basis {u1,us,us, us,us, ug} of A sucha that u? = ~viuy + Yous + y3ue,
uiug = O1uq + O1ug + O2us + d3ug, uruz = Bus, urug = Aus + Aaug,
u% = £1U4 + EoUs + E3Ug, Uy = U5, u% = Uy, uzly = ug, all other products
being zero.

Proof. By Proposition 3.1, it is clear that (A?)? = 0. We consider z € A
such that 22 # 0. We note that if I =< 22,22 >k is an ideal of A, then
ya? €< 23 >k for all y € A, and A3 is not a subset of I. If I is an ideal of
Aand 2% € I for all z € A, then the quotient algebra A = A/ is of nilindex
3 with 4° = 0, which implies dimK(Zg) > 5, a contradiction. Hence if [
is an ideal of A, then there is y € A such that y* ¢ I, and so A? =<
22,23, y> >k . Since y? € A% =< 22,23,9y3 >k, then y® €< yz? >gC<
23 >k, a contradiction. Therefore we conclude that I =< 22,23 >k is
not an ideal of A and so there exists an element y € A such that yz?2,
x® are linearly independent. In this case it is possible to prove that y, ,
22, yx?, z3 are linearly independent, and thus A% =< z2,ya?, 2% >k and
A3 =< ya?, 2® >k Ifyx = fra+Foyx?+Bzx®, then yrg = Bia’+ P33 €<
23,23 >k where 19 = x— 222, Thus we can suppose that yz = B12%+ 322,
which implies yoz = 0 where 3y = y — 12 — F322. Therefore we can assume
that vy, x, 22, ya?, 23 are linearly independent with yz = 0. Now it is
easy to find an element z € A such that {z,y,z, 2%, y2?, 23} is a basis of
A with zz = Bya?. Moreover we have that 22 = vz 4+ yoya? + y323,
yz = 6122 4 Goyx® + 8323, y? = e12? + eoyx® + 323, 22?2 = \ya® + oz,
If we define u; = z, ug = y, u3 = x, uy = x2, us = yr?, ug = >, we obtain
our Proposition.

Proposition 3.6 If dim (4%) = 3 and dimg (A3) = 1, then there exists
a basis {u1,us, us, uq, us,ug} of A such that u? = ajus + agus + azug,
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2
urug = Brug + Bous + P3ue, uiuz = Yue, Uity = OoUs, U1lUe = A5, U = Ug,

_ _ _ 2 _ _
UU3z = Y1U4 + YouUs + Y3UG, U2Us = U5, U2UG = EUS, U3z = U4, U3U4 = Us,
ugug = Ous, all other products being zero.

Proof. Clearly (A?)2 = 0. We consider z € A with 23 # 0. Then
A3 =< 23 > and there is y € A such that A% =< 22, 23,9y% >,. It is easy
to show that y, x, 22, 23, y? are linearly independent. It is easy to find an
element z € A such that {z,y,x, 22, 23,y%} is a basis of A with zz = y2.
If we define uy = 2z, us =y, ug = x, ug = =2, us = x>, ug = y>, we obtain
our Proposition.

Proposition 3.7 If dimg (A2) = 2 and dimg (A3) = 1, then there exists a
basis {u1,us, us, 4, us, ug y of A such that u? = ajus+asug, uius = Brus+
Baug, uiuz = y1us+y2Ue, U1U5 = QUsg, U% = 01u5+02ug, Ugu3z = £1U5+E2Ug,
ugls = Bug, u% = A\us + Aaug, usus = Yug, ui = us, uqls = ug, all other
products being zero.

Proof. We consider z € A with 2% # 0. Then A% =< 23 > and A% =<

22,23 > . Tt is easy find elements y, z, v in A such that {y, z,v, z, 22, 23} is

a basis of A with yz = 2z = vz = 0. Now we have that y? = a2 4+ az2?,
yz = Ba? + foxd, yv = ya? + ywad, ya? = axd, 22 = 5122 + G,
2w = e1x? 4 e923, z2? = Bad, 0¥ = Max® 4+ \oxd, va? = 423, Finally,
ifuy =y, ug = 2, uz = v, Uy = T, us = T2, Ug 23, we obtain our
Proposition.

4. JORDAN NILALGEBRAS OF NILINDEX k AND DI-
MENSION 6 WITH k > 5

In [2], we describe Jordan nilalgebras of nilindex nand dimension n+ 1. In
this work, we find the following results:

Proposition 4.1 If A is a Jordan nilalgebra of nilindex 5 and dimension
6,dimg (A?) = 4 and dimg(A4%) = 2, then  there exists a basis
{u1,u2, ug,ug, us, ug} of A such that u? = aus +yous +y3us +yaue, uius =
Bous + Yous, wiuz = ug, uius = —20ug, 2u3 = Bla — 48)us, uouz =
Bus + yug, u% = U4, UU4 = Us, UU5 = Ug, uZ = ug, all other products
being zero. Moreover, if 5 =0 then 79 = Gy =0, if 8 # 0 and o =40
then ~9 = —40% By = —26%, if f # 0 and o # 403 then a = —48,
Y2 = —44% and [y = —63%
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Proposition 4.2 If A is a Jordan nilalgebra of nilindex 5 and dimension
6, dimg(A?) = 4 and dimg(A4%) = 3, then there exists a basis
{uq,u2, ug,ug, us, ug} of A such that ujuy = uz, u3 = Mg + duy +yus +cug,
Uity = Oug, u% = U4, UU4L = U5, U3U5 = Ug, u?l = ug, all other products
ZETO.

Proposition 4.3 If A is a Jordan nilalgebra of nilindex 5 and dimension
6 and dimg (A%) = 3, and then there exists a basis {u1, u2, u3,us, us, ug }of
A such that ujug = aus, u? = Bus + yug, uzuz = agus, us = Bous + Yous,
uiy = dus + cug, u% = U4, UU4L = U5, U3Us = Ug, u?l = wug, all other
products being zero.

In [1], the authors proved the following result:

Proposition 4.4 If A is a Jordan nilalgebra of nilindex 6 and dimension 6,
then there exists a basis {u1,ua, u3, us, us, ug} of A such that u? = Bus +
YU, ULU2 = U5, U% = U3z, UU3 = U4, U2U4 = U5, U2U5 = Ug, u% = Uus,
usuy = ug, all other products zero.

Moreover in this case it is possible to find five classes of algebras which
are not isomorphic (see [1], Theorem 3).

Remark Finally, it is clear that there is a unique Jordan nilalgebra of
nilindex 7 and dimension 6.
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