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1. Preliminaries

Let A be a commutative algebra over a field K. If x is an element of A, we
define x1 = x and xk+1 = xkx for all k ≥ 1.

A is called power-associative, if the subalgebra of A generated by any
element x ∈ A is associative. An element x ∈ A is called nilpotent, if there
is an integer r ≥ 1 such that xr = 0. If any element in A is nilpotent, then
A is called a nilalgebra. Now A is called a nilalgebra of nilindex n ≥ 2, if
yn = 0 for all y ∈ A and there is x ∈ A such that xn−1 6= 0.

If B, D are subspaces of A, then BD is the subspace of A spanned by all
products bd with b in B, d in D. Also we define B1 = B and Bk+1 = BkB
for all k ≥ 1. If there exists an integer n ≥ 2 such that Bn = 0 and
Bn−1 6= 0, then B is nilpotent of index n.

A is a Jordan algebra, if it satisfies the Jordan identity x2(yx) = (x2y)x
for all x, y in A. It is known that any Jordan algebra is power-associative,
and also that any finite-dimensional Jordan nilalgebra (of characteristic
6= 2) is nilpotent (see, [5]).

We will use the following result which we give in [2] :

Proposition 1.1 If A is a Jordan nilalgebra of nilindex n ≥ 3 with
dimK(A) = m ≥ n, then n− 2 ≤ dimK(A2) ≤ m− 2.

Throughout, A will denote a commutative nilalgebra of nilindex n ≥ 3
over a field K of characteristic 6= 2, 3. We will denote by < x1, ..., xj >K

the subspace generated over K by the elements x1, ..., xj in A. Also we will
denote by α, β,....,etc., the elements of field K. If x ∈ A with xn−1 6= 0,
then we will denote by X the subspace < x, x2, ..., xn−1 >K . It is clear
that x, x2, ..., xn−1 are linearly independent and so dimK(A2) ≥ n− 2 and
dimK(A3) ≥ n− 3.

2. COMMUTATIVE NILALGEBRAS OF NILINDEX 3 AND
DIMENSION 6

In this section, A will denote a commutative nilalgebra of nilindex 3. It is
well known that a commutative nilalgebra of nilindex 3 is a Jordan algebra
(see [6], page 114).

Since x3 = 0 for all xA, then by linearization method we obtain that
the following identities are valid in A :

x2y + 2 (xy) x = 0, (xy) z + (yz) x + (zx) y = 0(2.1)
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It is clear that the identity x4 =
(
x2

)2 = 0 is valid in A, which implies
that for all x, y, z in A we have :

x2 (yx) =
(
x2y

)
x = 0, 2 (xy)2 + x2y2 = 0(2.2)

Lemma 2.1 If
(
A2

)2 6= 0, then dimK (A) ≥ 8.

Proof. If (A2)2 6= 0, then there exist x, y ∈ A such that x2y2 6= 0. We note
first that using (1) and (2), we obtain that: x2(yx2) = −2(x(yx2)x = 0,
x2(xy2) = 0, x2(x2y2) = −2((x2y2)x)x = 0, x2y2 + 2(y2x)x = 0 and
x2y2 + 2(x2y)y = 0. We will prove that the elements y, x, x2, y2, yx2,
xy2, xy, x2y2 are linearly independent. Let α1y + α2x + α3x

2 + α4y
2 +

α5yx2 + α6xy2 + α7xy + α8x
2y2 = 0. Multiplying by x2 we obtain that

α1yx2+α4x
2y2 = 0. Thus 0 = 2y(α1yx2+α4x

2y2) = 2α1y(yx2) = −α1x
2y2

implies α1 = 0. Clearly also α4 = 0. Similarly we prove that α2 = α3 = 0.
Now we have that α5yx2 + α6xy2 + α7xy + α8x

2y2 = 0. Multiplying by
x we get α6x(xy2) + α7x(xy) = 0. Hence 0 = 2y(α6x(xy2) + α7x(xy)) =
−α6y(x2y2)−α7y(yx2) = 1

2α7x
2y2 which implies α7 = 0. Finally it is clear

that α6 = 0, and also that α5yx2 + α8x
2y2 = 0 implies α5 = α8 = 0. This

proves what we wanted.

Lemma 2.2 If A4 6= 0, then dimK (A) ≥ 7.

Proof. By Lemma 2.1, we can suppose that (A2)2 = 0. Since A4 6=
0, there exist elements y, x, z in A such that z(yx2) 6= 0. Now using
relation (1), we obtain that 2z((yx)x) = −z(yx2) 6= 0. We will prove
that y, x, z, yx2, yx, x2, z(yx2) are linearly independent. Let (1): α1y +
α2x + α3z + α4yx2 + α5yx + α6x

2 + α7z(yx2) = 0. Multiplying by yx2

we get 0 = α1y(yx2) + α3z(yx2) = −1
2α1y

2x2 + α3z(yx2) = α3z(yx2) = 0
which implies α3 = 0. Multiplying (1) by x2 we obtain α1 = 0. We
note that using (1) we get x(z(yx2)) = −z(x(yx2)) − (yx2)(xz) = 0 and
y(z(yx2)) = −z(y(yx2)) − (yx2)(yz) = 0. Similarly z(z(yx2)) = 0. Now
multiplying (1) by 2x we obtain 0 = 2α2x

2+2α5x(yx) = 2α2x
2−α5yx2. So

0 = y(2α2x
2−α5yx2) = 2α2yx2−α5y(yx2) = 2α2yx2 + 1

2α5y
2x2 = 2α2yx2

implies α2 = 0. It is clear that also α5 = 0. Finally it is possible to prove
that α4yx2 +α6x

2 +α7z(yx2) = 0 implies α4 = α6 = α7 = 0. Therefore we
conclude that dimK(A) ≥ 7, as desired.

We see that Lemmas 2.1 and 2.2 imply the following result:
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Corollary 2.3 If dimK(A) ≤ 6, then (A2)2 = A4 = 0.

Now if A3 6= 0, then there exist elements y, x in A such that yx2 6= 0. In
this case it is easy to prove that y, x, yx2, x2, yx are linearly independent.
Therefore we obtain the following result:

Lemma 2.4 If A3 6= 0, then dimK(A) ≥ 5.

We observe that when dimK(A) = 6, then by Proposition 1.1 we have
that 1 ≤ dimK

(
A2

) ≤ 4. Moreover, if A3 6= 0 and dimK(A) = 6, then
3 ≤ dimK(A) ≤ 4.

Proposition 2.5 If dimK(A) = 6, A3 6= 0 and dimK(A2) = 4, then
there exists a basis {u1, u2, u3,u4, u5, u6}of Asuch that u2

1 = u6, u1u2 = u4,
u1u5 = u3, u2

2 = u5, u2u4 = −1
2u3, all other products being zero.

Proof. We know that (A2)2 = A4 = 0. Since A3 6= 0, then there exist y,
x ∈ A such that y, x, yx2, yx, x2 are linearly independent. Clearly y, x
are not elements in A2, and thus there exists z ∈ A such that {y, x, yx2,
yx, x2, z2} is a basis of A. As z = α1y + α2x + α3yx2 + α4yx + α5x

2 +
α6z

2, then z2 = (z − α6z
2)2 ∈< y2, x2, yx, y2x, yx2 >K . From this we

see that if y2 ∈< x2, yx, yx2 >K , then z2 ∈< x2, yx, yx2 >K , which is a
contradiction. Hence y2 /∈< x2, yx, yx2 >K , and so {y, x, yx2, yx, x2, y2}
is a basis of A. Since xy2 ∈ A2, then xy2 = αyx2 + βyx + γx2 + δy2.
Multiplying by 2x we get 2βx(yx) + 2δxy2 = −βyx2 + 2δxy2 = 0. Thus
−βyx2 + 2δ(αyx2 + βyx + γx2 + δy2) = 0, implies β = δ = 0, and so
xy2 = αyx2 + γx2. But 0 = y(xy2) = y(αyx2 + γx2) = γyx2 implies γ = 0,
and therefore xy2 = αyx2. Finally, if we define u1 = y + αx, u2 = x,
u3 = yx2, u4 = yx + αx2, u5 = x2, u6 = y2 + 2αyx + α2x2, we get u2

1 = u6,
u1u2 = u4, u1u5 = u3, u2

2 = u5, u2u4 = −1
2u3, all other products zero.

Proposition 2.6 If dimK(A) = 6, A3 6= 0 and dimK(A2) = 3, then there
exists a basis {u1, u2, u3,u4, u5, u6} of A such that u1u2 = u5, u1u6 = u4,
u2

2 = u6, u2u3 = −βu6, u2u5 = −1
2u4, u2

3 = δu4, u3u5 = βu4, all other
products being zero.

Proof. We know that (A2)2 = A4 = 0. Since A3 6= 0, there exist y,
x ∈ A such that y, x, yx2, yx, x2 are linearly independent, and thus there
exists an element z ∈ A such that {y, x, z, yx2, yx, x2} is a basis of A. As
y2 ∈ A2, then y2 = σ1yx2 + σ2yx + σ3x

2. If y0 = y − 1
2σ2x − 1

2σ1x
2 we
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obtain that y2
0 = (σ3 + 1

4σ2
2)x

2, and so 0 = y3
0 = (σ3 + 1

4σ2
2)yx2 which

implies σ3 + 1
4σ2

2 = 0. Thus y2
0 = 0 and clearly {y0, x, z, y0x

2, y0x, x2}
is a basis of A. Since zx ∈ A2, then zx = α1y0x

2 + α2y0x + α3x
2. If

z0 = z +2α1y0x−α2y0−α3x, we get that {y0, x, z0, y0x
2, y0x, x2} is a basis

of A with z0x = 0. Let y0z0 = β1y0x
2 + β2y0x + β3x

2. If z1 = z0 − β1x
2,

we obtain that {y0, x, z1, y0x
2, y0x, x2} is a basis of A with z1x = 0 and

y0z1 = β2y0x+β3x
2. Now 0 = y2

0z1 = −2y0(y0z1) = −2y0(β2y0x+β3x
2) =

β2y
2
0x − 2β3y0x

2 = −2β3y0x
2 implies β3 = 0. Therefore we can suppose

that in the basis {y, x, z, yx2, yx, x2} of A, we have y2 = 0, zx = 0 and
yz = βyx. Let z2 = δyx2 + εyx + θx2. Now we have that: z(yx) =
−x(zy) − y(xz) = −x(zy) = −βx(yx) = 1

2βyx2, 0 = 4(xz)z = −2xz2 =
−2x(δyx2 + εyx + θx2) = −2εx(yx) = εyx2 implies ε = 0, and θyx2 =
y(δyx2 + εyx + θx2) = yz2 = −2(yz)z = −2β(yx)z = −β2yx2 implies
θ = −β2. Thus z2 = δyx2 − β2x2. Finally, if we define: u1 = y, u2 = x,
u3 = z − βx, u4 = yx2, u5 = yx, u6 = x2, we obtain that u1u2 = u5,
u1u6 = u4, u2

2 = u6, u2u3 = −βu6, u2u5 = −1
2u4, u2

3 = δu4, u3u5 = βu4,
and other products zero.

We note that when dimK(A) = 6, then Proposition 1.1 implies 1 ≤
dimK(A2) ≤ 4. Suppose moreover that A3 = 0 and dimK(A2) = 4. Then
there exists a subspace A0 of A such that A = A0⊕A2. Since dimK(A0) = 2
and A2 = A2

0 we conclude that dimK(A2) ≤ 3, a contradiction. Therefore
dimK(A) = 6 and A3 = 0 imply 1 ≤ dimK(A2) ≤ 3.

Proposition 2.7 Suppose that dimK(A) = 6, with dimK(A2) = 3 and
A3 = 0.

(a) If for all x, y ∈ A we have that x2, y2, xy are linearly dependent,
then there exist a basis {u1, u2, u3, u4, u5, u6} of A such that u2

1 = u4,
u1u2 = 1

8δ−1ε−1u4 + 2δεu5, u1u3 = 1
4δ−1u4 + δu6, u2

2 = u5, u2u3 =
εu5 + 1

4ε−1u6, u2
3 = u6 with δε 6= 0, all other products zero.

(b) If there exist elements y, x in A such that x2, y2, xy are linearly
independent, then there exist a basis {u1, u2, u3, u4, u5, u6} of A such
that u2

1 = α1u4+β1u5+γ1u6, u1u2 = βu5, u1u3 = α0u4+β0u5+γ0u6,
u2

2 = u4, u2u3 = u6, u2
3 = u5, all other products zero.

Proof. To prove (a), we consider x, y, z in A such that x2, y2, z2 are
linearly independent. We will prove that x, y, z, x2, y2, z2 are linearly
independent. If δ1x+δ2y+δ3z+δ4x

2+δ5y
2+δ6z

2 = 0, then δ1x = −(δ2y+
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δ3z + δ4x
2 + δ5y

2 + δ6z
2) which implies that δ2

1x
2 = δ2

2y
2 + 2δ2δ3yz + δ2

3z
2.

By hypothesis yz ∈< y2, z2 >K , and so δ1 = 0. Similarly we prove that
δ2 = δ3 = 0, and clearly δ4 = δ5 = δ6 = 0. Therefore {x, y, z, x2, y2, z2} is a
basis of A. By hypothesis xy = αx2 +βy2, xz = γx2 + δz2, yz = εy2 + θz2,
and also for all α1, α2, α3, β1, β2, β3 in K, the vectors (α1x+α2y +α3z)2,
(α1x+α2y+α3z)(β1x+β2y+β3z), (β1x+β2y+β3z)2 are linearly dependent.
We have that (α1x + α2y + α3z)2 = (α2

1 + 2α1α2α + 2α1α3γ)x2 + (α2
2 +

2α1α2β +2α2α3ε)y2 +(α2
3 +2α1α3δ +2α2α3θ)z2, (α1x+α2y +α3z)(β1x+

β2y+β3z) = (α1β1 +α1β2α+α2β1α+α1β3γ +α3β1γ)x2 +(α2β2 +α1β2β +
α2β1β +α2β3ε + α3β2ε)y2 + (α3β3 + α1β3δ + α3β1δ + α2β3θ + α3β2θ)z2,
and (β1x + β2y + β3z)2 = (β2

1 + 2β1β2α + 2β1β3γ)x2 + (β2
2 + 2β1β2β +

2β2β3ε)y2 +(β2
3 +2β1β3δ +2β2β3θ)z2. We conclude that for all α1, α2, α3,

β1, β2, β3 in K, the vectors (α2
1 +2α1α2α+2α1α3γ, α2

2 +2α1α2β +2α2α3ε,
α2

3 + 2α1α3δ + 2α2α3θ), (α1β1 + α1β2α + α2β1α + α1β3γ + α3β1γ, α2β2 +
α1β2β + α2β1β +α2β3ε + α3β2ε, α3β3 + α1β3δ + α3β1δ + α2β3θ + α3β2θ),
(β2

1 + 2β1β2α + 2β1β3γ, β2
2 + 2β1β2β + 2β2β3ε, β2

3 + 2β1β3δ + 2β2β3θ) in
K3 are linearly dependent, which implies that β = 2δε, δ = 2βθ, ε = 2γβ,
θ = 2αδ, γ = 2αε, α = 2γθ. We observe that if 0 ∈ {α, β, γ, δ, ε, θ}, then
α = β = γ = δ = ε = θ = 0. In this case (x+y)2, (x+z)2 and (x+y)(x+z)
are linearly independent, a contradiction. Therefore α, β, γ, δ, ε, θ are not
zero and we get α = 1

8δ−1ε−1, β = 2δε, γ = 1
4δ−1, θ = 1

4ε−1. Finally, if we
define u1 = x, u2 = y, u3 = z, u4 = x2, u5 = y2, u6 = z2, we obtain (a).

Suppose now that there exist y, x in A such that x2, y2, xy are linearly
independent. In this case it is easy to prove that x, y, x2, y2, xy are linearly
independent. Let u be an element in A such that {u, x, y, x2, y2, xy} is a
basis of A. Since ux ∈ A2, then ux = αx2 +βy2 +γxy. If u0 = u−αx−γy,
then u0x = βy2. Finally, if we define u1 = u0, u2 = x, u3 = y, u4 = x2,
u5 = y2, u6 = xy, we get (b). 2

Proposition 2.8 If dimK(A) = 6, A3 = 0 and dimK(A2) = 2, then there
exists a basis {u1, u2, u3, u4, u5, u6} of A such that u2

1 = α1u5+α2u6, u1u2 =
α3u5 +α4u6, u1u4 = α5u5 +α6u6, u2

2 = α7u5 +α8u6, u2u4 = α9u5 +α10u6,
u2

3 = u5, u3u4 = u6, u2
4 = εu5, and other products zero.

Proof. It is possible to prove that there exist elements y, x in A such
that x, y, x2, yx are linearly independent, and y2 = εx2 (see, [4]). We
consider u, v ∈ A such that {u, v, x, y, x2, yx} is a basis of A. Since ux
and vx are elements in A2, then ux = αx2 + βxy and vx = γx2 + δxy. If
u0 = u−αx− βy and v0 = v− γx− δy, then {u0, v0, x, y, x2, yx} is a basis
of A with u0x = v0x = 0. If we define u1 = u0, u2 = v0, u3 = x, u4 = y,
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u5 = x2, u6 = yx, we obtain that u2
1 = α1u5 + α2u6, u1u2 = α3u5 + α4u6,

u1u4 = α5u5 + α6u6, u2
2 = α7u5 + α8u6, u2u4 = α9u5 + α10u6, u2

3 = u5,
u3u4 = u6, u2

4 = εu5, and other products zero. 2

Proposition 2.9 If dimK(A) = 6, A3 = 0 and dimK(A2) = 1, then there
exists a basis {u1, u2, u3,u4, u5, u6} such that u2

1 = u6, u2
2 = βu6, u2

3 = γu6,
u2

4 = δu6, u2
5 = εu6, all other products being zero.

Proof. There is an element u1 in A such that u2
1 6= 0, and so A2 =< u2

1 >K .
We can write A as a direct sum A = Ku2

1 ⊕A0, where A0 = Ku1 ⊕W for
some subespace W . The map f : A0 × A0 → K defined by xy = f(x, y)u2

1

for all x, y in A0 is a symmetric bilinear form. It is known that there is
a basis {u1, u2,u3, u4, u5} of A0 such that f(ui, uj) = 0, if i 6= j. Finally,
if u6 = u2

1 we have that {u1, u2, u3,u4, u5, u6} is a basis of A such that
u2

1 = u6, u2
2 = βu6, u2

3 = γu6, u2
4 = δu6, u2

5 = εu6, all other products being
zero. 2

3. JORDAN NILALGEBRAS OF NILINDEX 4 AND DI-
MENSION 6

In this section, A is a Jordan nilalgebra of nilindex 4 and dimension 6.
Therefore the identities x2(yx) = (x2y)x and x4 = (x2)2 = 0 are valid
in A. By linearization we obtain that also are valid in A the following
identities:

x2y2 + 2(xy)2 = 0(3.1)

x2(yx) = (x2y)x = 0(3.2)

In [3], we prove that any Jordan nilalgebra of nilindex n ≥ 4 and di-
mension k with n + 1 ≤ k ≤ n + 2, is nilpotent of index n. From this we
conclude that A4 = 0.

Proposition 3.1 If (A2)2 6= 0, then there exists a basis {u1, u2, u3, u4, u5, u6}
of A such that u2

1 = u3, u2
2 = u4, u2

6 = −1
2u5, u1u2 = u6, u3u4 = u5, all

other products being zero.

Proof. Since (A2)2 6= 0, there exist x, y ∈ A such that x2y2 6= 0. We know
that 2(xy)2 = −x2y2 6= 0, A4 = 0 and moreover A(A2)2 ⊂ AA3 = A4 = 0.
We will prove that x, y, x2, y2, x2y2, xy are linearly independent. It
is easy to prove that x2, y2, x2y2, xy are linearly independent. Now if
αx + βy + γx2 + δy2 + εx2y2 + θxy = 0, then αx + βy = −(γx2 + δy2 +
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εx2y2 + θxy) which implies α2x2 + 2αβxy + β2y2 = θ2(xy)2 + 2γδx2y2 =
(−1

2θ2 + 2γδ)x2y2. Thus we conclude that α = β = 0, and clearly γ = δ =
ε = θ = 0. Therefore {x, y, x2, y2, x2y2, xy} is a basis of A, and moreover
Proposition 1.1 implies that A2 =< x2, y2, x2y2, xy >K . Now we will prove
that A3 =< x2y2 >K . If z ∈ A3, then z = γ1x

2 + δ1y
2 + ε1x

2y2 + θ1xy. So
0 = x2z = δ1x

2y2 implies δ1 = 0, 0 = y2z = γ1x
2y2 implies γ1 = 0, and 0 =

(xy)z = θ1(xy)2 = −1
2θ1x

2y2 implies θ1 = 0. Hence z = ε1x
2y2, and thus

A3 =< x2y2 >K . Therefore yx2 = δ0x
2y2, xy2 = δx2y2, x(xy) = γ(xy)2,

y(xy) = γ0(xy)2, x3 = αx2y2, y3 = α0x
2y2. If x0 = x − δx2 − γxy − αy2,

y0 = y − δ0y
2 − γ0xy − α0x

2 and we define u1 = x0, u2 = y0, u3 = x2
0,

u4 = y2
0, u5 = x2

0y
2
0, u6 = x0y0, then we get that {u1, u2, u3, u4, u5, u6} is a

basis of A such that u2
1 = u3, u2

2 = u4, u2
6 = −1

2u5, u1u2 = u6, u3u4 = u5,
all other products being zero. 2

Lemma 3.2 1 ≤ dimK

(
A3

) ≤ 2

Proof. Since 2 ≤ dimK(A2) ≤ 4, then 1 ≤ dimK(A3) ≤ 3. Suppose that
dimK(A3) = 3. Then there exist elements y, z, u, v, x in A such that A3 =<
uy2, vz2, x3 >K . Clearly x2 /∈ A3, and so A2 =< x2, uy2, vz2, x3 >K .
Hence y2 = αx2 +βuy2 +γvz2 + δx3 and z2 = α0x

2 +β0uy2 +γ0vz2 + δ0x
3.

Since A4 = 0, we obtain uy2 = αux2 and vz2 = α0vx2 with α 6= 0 y α0 6= 0.
Therefore A2 =< x2, ux2, vx2, x3 >K . Now it is easy to prove that u, v,
x, x2, ux2, vx2, x3 are linearly independent, a contradiction. Therefore
1 ≤ dimK(A3) ≤ 2, as desired. 2

By Proposition 3.1 we know that there is a unique nilalgebra such that
(A2)2 6= 0. In the following, we assume that (A2)2 = 0.

Proposition 3.3 Suppose that dimK

(
A2

)
= 4 and dimK

(
A3

)
= 2.

(a) If for all y, x ∈ A we have that yx2, x3 are linearly dependent, then
there exists a basis {u1, u2, u3, u4, u5, u6} of A such that u2

1 = u2,
u1u2 = u3, u1u4 = γu2 + δu3 + εu5 + θu6, u1u5 = u6, u2u4 = u3,
u2

4 = u5, u4u5 = u6, all other products being zero.

(b) If there exist elements y, x in A such that yx2, x3 are linearly in-
dependent, then there exists a basis {u1, u2, u3, u4, u5, u6} of A such
that u2

1 = u6, u1u2 = αu3 + βu5 + γu6, u1u3 = u4, u1u6 = δu4 + εu5,
u2

2 = u3, u2u3 = u5, u2u6 = θu4 + σu5, all other products being zero.
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Proof. To prove (a), we consider an element x ∈ A with x3 6= 0. By
hypothesis, we have that for all y ∈ A : yx2 ∈< x3 >K . As A4 = 0, we
have that J =< x2, x3 >K is an ideal of A, and moreover A3 is not a subset
of J . Now if y3 ∈ J for all y ∈ A, then the quotient algebra A = A/J

is a nilalgebra of nilindex 3 with dimK(A) = 4 and A
3 6= 0 which is a

contradiction, since by Lemma 2.4 we know that dimK(A) ≥ 5. Therefore
there exists y ∈ A such that y3 /∈< x2, x3 >K . By hypothesis yx2 = αx3,
xy2 = βy3. Now it is possible to prove that x, y, x2, x3, y2, y3 are linearly
independent, and so xy = γ0x

2 + δ0x
3 + ε0y

2 + θ0y
3. By hypothesis for

all γ1, δ1, α1, β1 in K, we have that the vectors (γ1x + δ1y)3, (α1x +
β1y)(γ1x + δ1y)2 are linearly dependent. Now we have that (γ1x + δ1y)3 =
(γ3

1 +2γ2
1δ1γ0 +γ2

1δ1α+2γ1δ
2
1γ0α)x3 +(γ1δ

2
1β +2γ2

1δ1βε0 + δ3
1 +2γ1δ

2
1ε0)y3

and (α1x+β1y)(γ1x+δ1y)2 = (γ2
1α1+2γ1α1δ1γ0+γ2

1β1α+2γ1δ1β1αγ0)x3+
(δ2

1α1β + 2γ1α1δ1βε0 + δ2
1β1 + 2γ1δ1β1ε0)y3. We conclude that for all γ1,

δ1, α1, β1 in K the vectors (γ3
1 + 2γ2

1δ1γ0 + γ2
1δ1α + 2γ1δ

2
1γ0α, γ1δ

2
1β +

2γ2
1δ1βε0 + δ3

1 + 2γ1δ
2
1ε0) and (γ2

1α1 + 2γ1α1δ1γ0 + γ2
1β1α + 2γ1δ1β1αγ0,

δ2
1α1β+2γ1α1δ1βε0+δ2

1β1+2γ1δ1β1ε0) in K2 are linearly dependent, which
implies that αβ = 1. Finally, if u1 = x, u2 = x2, u3 = x3, u4 = βy,
u5 = β2y2, u6 = β3y3, we obtain (a). To prove (b), we consider y, x ∈ A
such that yx2, x3 are linearly independent. Then A3 =< yx2, x3 >K and x2,
yx2, x3 are linearly independent. As dimK(A2) = 4, there exists z ∈ A such
that A2 =< x2, yx2, x3, z2 >K . It is easy to prove that {y, x, x2, yx2, x3, z2}
is a basis of A. Now if z = α1y + α2x + α3x

2 + α4yx2 + α5x
3 + α6z

2,
then z2 − (α2

1y
2 + 2α1α2xy + α2

2x
2) ∈ A3 which implies α1 6= 0. If y0 =

α1y + α2x, then y2
0 /∈< x2, yx2, x3 >K=< x2, y0x

2, x3 >K , and so A2 =<
x2, y0x

2, x3, y2
0 >. If y0x = αx2 +λy0x

2 +βx3 +γy2
0 and x0 = x−λx2, then

y0x0 = αx2 + βx3 + γy2
0 ∈< x2

0, x
3
0, y

2
0 >K . Therefore we can assume that

there exist elements y, x in A such that {y, x, x2, yx2, x3, y2} is a basis of
A with yx = αx2 + βx3 + γy2, y3 = δyx2 + εx3 and xy2 = θyx2 + σx3. If
we define u1 = y, u2 = x, u3 = x2, u4 = yx2, u5 = x3, u6 = y2, we obtain
(b).

Proposition 3.4 If dimK(A2) = 4 and dimK(A3) = 1, then there exists a
basis {u1, u2, u3,u4, u5, u6} of A such that u2

1 = u5, u1u2 = u6, u1u5 = βu4,
u1u6 = γu4, u2

2 = u3, u2u3 = u4, u2u5 = δu4, u2u6 = εu4, all other
products being zero.

Proof. We consider x ∈ A such that x3 6= 0. Since dimK(A2) = 4, there
are y, z ∈ A such that A2 =< x2, x3, y2, z2 >K . We have that y, x, x2,
x3, y2, z2 are linearly independent. In fact: if α1y + α2x + α3x

2 + α4x
3 +
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α5y
2 + α6z

2 = 0, then α1y = −(α2x + α3x
2 + α4x

3 + α5y
2 + α6z

2) which
implies α2

1y
2 = α2

2x
2 + v with v ∈ A3 =< x3 >K . Hence α1 = α2 = 0, and

so {y, x, x2, x3, y2, z2} is a basis of A. If z = β1y + β2x + β3x
2 + β4x

3 +
β5y

2 + β6z
2, then z2 − (β2

1y2 + 2β1β2yx + β2
2x2) ∈ A3 which implies that

yx /∈< x2, x3, y2 >K , and therefore A2 =< x2, x3, y2, yx >K . We see that
as yx2 = αx3, then x2(y − αx2) = 0. Therefore we can assume that in
the basis {y, x, x2, x3, y2, yx} of A we have that yx2 = 0, and moreover
y3 = βx3, y(yx) = γx3, xy2 = δx3, x(yx) = εx3. Finally, if we define
u1 = y, u2 = x, u3 = x2, u4 = x3, u5 = y2, u6 = yx, we obtain our
Proposition.

Proposition 3.5 If dimK

(
A2

)
= 3 and dimK

(
A3

)
= 2, then there exists

a basis {u1, u2, u3, u4, u5, u6} of A sucha that u2
1 = γ1u4 + γ2u5 + γ3u6,

u1u2 = δ1u4 + δ1u4 + δ2u5 + δ3u6, u1u3 = βu5, u1u4 = λ1u5 + λ2u6,
u2

2 = ε1u4 + ε2u5 + ε3u6, u2u4 = u5, u2
3 = u4, u3u4 = u6, all other products

being zero.

Proof. By Proposition 3.1, it is clear that (A2)2 = 0. We consider x ∈ A
such that x3 6= 0. We note that if I =< x2, x3 >K is an ideal of A, then
yx2 ∈< x3 >K for all y ∈ A, and A3 is not a subset of I. If I is an ideal of
A and z3 ∈ I for all z ∈ A, then the quotient algebra A = A/I is of nilindex
3 with A

3 = 0, which implies dimK(A3) ≥ 5, a contradiction. Hence if I
is an ideal of A, then there is y ∈ A such that y3 /∈ I, and so A2 =<
x2, x3, y3 >K . Since y2 ∈ A2 =< x2, x3, y3 >K , then y3 ∈< yx2 >K⊂<
x3 >K , a contradiction. Therefore we conclude that I =< x2, x3 >K is
not an ideal of A and so there exists an element y ∈ A such that yx2,
x3 are linearly independent. In this case it is possible to prove that y, x,
x2, yx2, x3 are linearly independent, and thus A2 =< x2, yx2, x3 >K and
A3 =< yx2, x3 >K . If yx = β1x

2+β2yx2+β3x
3, then yx0 = β1x

2+β3x
3 ∈<

x2
0, x

3
0 >K where x0 = x−β2x

2. Thus we can suppose that yx = β1x
2+β3x

3,
which implies y0x = 0 where y0 = y−β1x−β3x

2. Therefore we can assume
that y, x, x2, yx2, x3 are linearly independent with yx = 0. Now it is
easy to find an element z ∈ A such that {z, y, x, x2, yx2, x3} is a basis of
A with xz = βyx2. Moreover we have that z2 = γ1x

2 + γ2yx2 + γ3x
3,

yz = δ1x
2 + δ2yx2 + δ3x

3, y2 = ε1x
2 + ε2yx2 + ε3x

3, zx2 = λ1yx2 + λ2x
3.

If we define u1 = z, u2 = y, u3 = x, u4 = x2, u5 = yx2, u6 = x3, we obtain
our Proposition.

Proposition 3.6 If dimK

(
A2

)
= 3 and dimK

(
A3

)
= 1, then there exists

a basis {u1, u2, u3, u4, u5, u6} of A such that u2
1 = α1u4 + α2u5 + α3u6,
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u1u2 = β1u4 +β2u5 +β3u6, u1u3 = γu6, u1u4 = δ0u5, u1u6 = λu5, u2
2 = u6,

u2u3 = γ1u4 + γ2u5 + γ3u6, u2u4 = δu5, u2u6 = εu5, u2
3 = u4, u3u4 = u5,

u3u6 = θu5, all other products being zero.

Proof. Clearly (A2)2 = 0. We consider x ∈ A with x3 6= 0. Then
A3 =< x3 >K and there is y ∈ A such that A2 =< x2, x3, y2 >K . It is easy
to show that y, x, x2, x3, y2 are linearly independent. It is easy to find an
element z ∈ A such that {z, y, x, x2, x3, y2} is a basis of A with zx = γy2.
If we define u1 = z, u2 = y, u3 = x, u4 = x2, u5 = x3, u6 = y2, we obtain
our Proposition.

Proposition 3.7 If dimK

(
A2

)
= 2 and dimK

(
A3

)
= 1, then there exists a

basis {u1, u2, u3, u4, u5, u6} of A such that u2
1 = α1u5+α2u6, u1u2 = β1u5+

β2u6, u1u3 = γ1u5+γ2u6, u1u5 = αu6, u2
2 = δ1u5+δ2u6, u2u3 = ε1u5+ε2u6,

u2u5 = βu6, u2
3 = λ1u5 + λ2u6, u3u5 = γu6, u2

4 = u5, u4u5 = u6, all other
products being zero.

Proof. We consider x ∈ A with x3 6= 0. Then A3 =< x3 >K and A2 =<
x2, x3 >K . It is easy find elements y, z, v in A such that {y, z, v, x, x2, x3} is
a basis of A with yx = zx = vx = 0. Now we have that y2 = α1x

2 + α2x
3,

yz = β1x
2 + β2x

3, yv = γ1x
2 + γ2x

3, yx2 = αx3, z2 = δ1x
2 + δ2x

3,
zv = ε1x

2 + ε2x
3, zx2 = βx3, v2 = λ1x

2 + λ2x
3, vx2 = γx3. Finally,

if u1 = y, u2 = z, u3 = v, u4 = x, u5 = x2, u6 = x3, we obtain our
Proposition.

4. JORDAN NILALGEBRAS OF NILINDEX k AND DI-
MENSION 6 WITH k ≥ 5

In [2], we describe Jordan nilalgebras of nilindex nand dimension n + 1. In
this work, we find the following results:

Proposition 4.1 If A is a Jordan nilalgebra of nilindex 5 and dimension
6, dimK(A2) = 4 and dimK(A3) = 2, then there exists a basis
{u1, u2, u3,u4, u5, u6} of A such that u2

1 = αu2 +γ2u4 +γ3u5 +γ4u6, u1u2 =
β0u5 + γ0u6, u1u3 = u2, u1u5 = −2βu6, 2u2

2 = β(α − 4β)u6, u2u3 =
βu5 + γu6, u2

3 = u4, u3u4 = u5, u3u5 = u6, u2
4 = u6, all other products

being zero. Moreover, if β = 0 then γ2 = β0 = 0, if β 6= 0 and α = 4β
then γ2 = −4β2, β0 = −2β2, if β 6= 0 and α 6= 4β then α = −4β,
γ2 = −4β2 and β0 = −6β2.



288 Luisa Elgueta and Avelino Suazo

Proposition 4.2 If A is a Jordan nilalgebra of nilindex 5 and dimension
6, dimK(A2) = 4 and dimK(A3) = 3, then there exists a basis
{u1, u2, u3,u4, u5, u6} of A such that u1u4 = u2, u2

1 = λu2 +δu4 +γu5 +εu6,
u1u2 = δu6, u2

3 = u4, u3u4 = u5, u3u5 = u6, u2
4 = u6, all other products

zero.

Proposition 4.3 If A is a Jordan nilalgebra of nilindex 5 and dimension
6 and dimK

(
A2

)
= 3, and then there exists a basis {u1, u2, u3,u4, u5, u6}of

A such that u1u3 = αu5, u2
1 = βu5 + γu6, u2u3 = α0u5, u2

2 = β0u5 + γ0u6,
u1u2 = δu5 + εu6, u2

3 = u4, u3u4 = u5, u3u5 = u6, u2
4 = u6, all other

products being zero.

In [1], the authors proved the following result:

Proposition 4.4 If A is a Jordan nilalgebra of nilindex 6 and dimension 6,
then there exists a basis {u1, u2, u3, u4, u5, u6} of A such that u2

1 = βu5 +
γu6, u1u2 = αu5, u2

2 = u3, u2u3 = u4, u2u4 = u5, u2u5 = u6, u2
3 = u5,

u3u4 = u6, all other products zero.
Moreover in this case it is possible to find five classes of algebras which

are not isomorphic (see [1], Theorem 3).

Remark Finally, it is clear that there is a unique Jordan nilalgebra of
nilindex 7 and dimension 6.

5. REFERENCES

[1] I. Correa and A. Suazo, On a class of commutative power-associative
nilalgebras, Journal of Algebra 215, pp. 412-417, (1999).

[2] L. Elgueta and A. Suazo, Jordan nilagebras of nilindex n and dimen-
sion n + 1, Communications in Algebra, Vol. 30, 11, pp. 5545-5559,
(2002).

[3] L. Elgueta and A. Suazo, The index of nilpotence of Jordan nilalge-
bras of nilindex n and dimension ≤ n + 2, International Journal of
Mathematics, Game Theory and Algebra, to appear (2002).

[4] M. Gerstenhaber and H. C. Myung, On commutative power-associative
nilalgebras of low dimension, Proc. Amer. Math. Soc. 48, pp. 29-32,
(1975).



Jordan Nilalgebras of Dimension 6 289

[5] R. D. Schafer, An Introduction to Nonassociative Algebras, Academic
Press, New York/London, (1966).

[6] K. A. Zhevlakov, A. M. Slin‘ko, I. P. Shestakov, and A. I. Shirshov,
Rings That Are Nearly Associative, Academic Press, New York/London,
(1992).

Received : June, 2002

Luisa Elgueta
Departamento de Matemáticas
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