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Abstract

We Consider the nonlinear Dirichlet problem:

(1) { —Au = D,F(z,u)+ \u dans Q

u = 0 sur OS2
where € RN is a bounded open domain, F : Q x R — R is a
carathéodory function and D, F(x,u) is the partial derivative of F.
We are interested in the resolution of problem (1) when F is concave.
Our tool is absolutely variational. Therefore, we state and prove a
critical point theorem which generalizes many other results in the lit-
erature and leads to the resolution of problem (1). Our theorem al-
lows us to express our assumptions on the nonlinearity in terms of
F and not of VF. Also, we note that our theorem doesn’t necessi-
tate the verification of the famous compactness condition introduced
by Palais-Smale or any of its variants.
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1. Introduction

We Consider the nonlinear Dirichlet problem:

(1) —Au = DyF(z,u)+ Au  dans Q
u = 0 sur O}

where Q € RY is a bounded open domain, F : Q@ x R — R is a carathéodory
function and D, F'(x,u) is the partial derivative of F. We assume:
D, F(x,u) = f(x,u). The spectrum of (—A) is denoted as

0< A <A <o <A < A1 < ..

The aim of this paper is to resolve the problem (P) with variational tool.
We suppose that F satisfies some growth conditions and some classical
assymptotic assumptions. Therefore, it turns out that the weak solutions
of (1) are precisely the critical points of the functional ® : E — R of the
form

D) = Sllull* ~ f(a,w).

We restrict ourselves to the case where F is concave. In contrast with
classical critical point theorems, we state and prove a critical point theorem
which allows us to express our assumptions on the nonlinearity in terms of
F and not of VF' in the sense of (2) below. Also, we note that our theorem
doesn’t necessitate the verification of the famous compactness condition
introduced by Palais-smale in [1] or any of its variants, see [2] and [3]. The
problem (1) is equivalent to the problem

) —Au = D,G(z,u) dans
u = 0 sur OS2

where G(z,u) = F(z,u) + %’fuz and D, G(z,u) = g(z,u). To resolve prob-
lem (2), the classical results considered the case when the following quo-

tients
2G(926, s) and g(z,s)
s s
are situated between two successive eigenvalues Ar and Ag1.
This kind of problems has been studied a long time ago. On 1930 Ham-
merstein in [4] proved a result of existence for (2) if f is continuous and
satisfies a linear growth condition and

2G(x, s) <

lim sup < u, < AL

2
|s|—o0 o



Critical point theorems and applications 263

On 1949, in [5], Dolph proved the first result of existence when

(L1) A< < liminfM < limsup&ﬁ < pkr1 < Agt1-

|s|—00 s |s]—o00

where )\, and A;.1 are two consecutive eigenvalues of —(A) in HJ ().
Then, Dolph considered the last condition with G instead of g:
G G
(1.2) A\ < pg <liminf M < lim sup m < pet1 < Agg1-
s

|s]—00 s |s|—o0

The first variational attempt to solve problem (2) under condition (2) was
carried over by Dolph, see [6]. He assumed in addition the following condi-
tion: Denoting by V' = @<, E(\;) where E();) is the eigenspace associated
to the eigenvalue )\; and by W its orthogonal so that: H = V @ W, and
we denote V, = w + V with w e W.

The functional associated to problem (2):
(13)  @(u) =5 Jo IVul® - [o Gz, u)dx
admits at most one maximum in w+ V for all w € W.

Our absract theorem generalizes a Mini-Max theorem due to Lazer et
al. [9] to the case where X and Y are not necessarily finite dimensional.
Moreover, we consider ® of class C! instead of C2. Tersian [10] studied the
case where X and Y are not necessarily finite dimensional and V® : H — H
is everywhere defined and hemicontinuous on H, which means that

%ir% Vo(u+tv) = VP (u) Vu,v € H.

Instead of conditions on Hessian of ®, they supposed

(1)(V¢>(h1 +y) —V(I)(hz—l-y), h1 —hg) < —-mq ||h1 — h2||2 hi,hs € X, yé€e
Y,

(2)(VP(z+ky)—VO(z+ks), ki —ko) > mollky—ka||? ki,ko €Y, z€X,
where H = X ® Y, m; and mgy are strictly positives.

Their result rests heavily upon two theorems on a-convex functionals and
an existence theorem for a class of monotone operators due to Browder. Our
theorem partially extend many other results in the literature (see e.g.[11]
and [12]). On 1991, the second author of this paper proved in [13] the
following theorem.



264 Hafida Boukhrisse and Mimoun Moussaoui

Theorem 1.1. Let H be a Hilbert space such that : H =V & W where V
is finite dimensional subspace of H and W its orthogonal. Let ® : H — R
a functional such that:

(i) ® is of class C'.

(ii) ® is coercive on W i.e, ®(w) — +oo when ||w| — +o0.

(iii) For fixed w € W, v +— ®(v + w) is concave on V.

(iv) For fixed w € W, ®(v + w) — —oo when ||v|| — +o0, v € V; and the
convergence is uniform on bounded subsets of W.

(v) for all v € V, ® is weakly lower semicontinuous on W + v.

Then ® admits a critical point in H.

In our theorem, we are based specially on theorem 1.1. We note that
our theorem generalizes theorem 1.1 and our previous result [14] and our
convexity conditions are weaker than all used in the previous results.

In [13], Moussaoui resolved problem (1) by theorem 2.1 with the following
assumptions

(F1) F(z,.) is convex and differentiable for almost every z € .

F(.,s) is measurable for all s € R.

(F2) Vr >0 supjs|<, [F(z,5)| € L'(Q).

(F3) There exist [, 3 € L?(w), 8 > 0 such that

F(z,s) > sl(x) — B(z).

(F4) lim sup| g 4 o0 2F£§7s) = a(x) < Agy1 — Ak
with a(z) > 0 and {z € Q a(r) < Ag+1 — A} is of positive measure.

(F5) [ F(z,v°)dz — 400 when |[0%] — +00,0% € E(\g).

The result obtained by Moussaoui is a particular case of Mawhin and
Willem result, see [15]. Or the proof used by Moussaoui is absolutely dif-
ferent from the proof used by Mawhin and Willem. In fact, Mawhin and
Willem used the dual least action principle of Clarke-Ekeland which is es-
sentially a convex analysis method to solve a perturbed problem. They
combined this process to an approximation dealing to attain their aim.

For us, we will be interested te resolve problem (1) with ”dual” condi-
tions of those supposed by Moussaoui and we note that our resolution of
problem (1) doesn’t require the condition of Ahmed,Lazer and Paul (see

[16]).
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2. Critical point theorems

1 The main result.

Theorem 2.1. Let E be a Hilbert space such that: E =V & W where V
and W are two closed subspaces of E. Let ® : E — R a functional such
that:

(i) ® is of class C.

(ii) For each w € W, ® is coercive on V + w. i.e, ®(v + w) — 400 when
Joll — +oo.

(iii) There exists an increasing function =y : (0, 4+00) — (0,400) such that:

(V0w + v1) = VO(w + v2), 01 — v2) = (lJog — val)) o1 — v,

for all vi,v9 in V and w in W.

(iv) ® is anticoercive on W. i.e, ®(w) — —oo when ||w| — +oo.

(v) For allv € V, ® is weakly upper semi-continuous on W + v.

Then ® admits at least a critical point uw € H. Moreover, this critical point
is characterized by the equality

®(u) = max min ®(v + w).
weW veV

Remark 2.2. Condition (ii) in theorem 2.1 doesn’t contain the ” uniform
convergence on bounded subsets of W” which is essential in theorem 1.1.
This elimination will permit us to improve the resolution of probléme (1).
In fact we will solve problem (1) (paragraph 4) without Ahmed,lazer and
Paul condition (A.L.P) which was used in many works (see e.g.[15]and [13]

).

The proof of theorem 2.1 will depend on three lemmas. Lemmas 3.4
and 2.4 were used by Moussaoui to prove the existence of critical points of
® when V is of finite dimension (theorem 1.1, introduction).

Lemma 2.3. For all w € W, there exists a unique v € V such that :

o = o .
(v+w) max (g +w)
Proof: From (iii), for w fixed in W, v — ®(v+w) is continuous and strictly
convex on V. Then, it is weakly lower semicontinuous on V. Moreover,
from (ii), it is coercive on V. So that, from a lemma in [17] and [18] for
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axample, it admits a minimum on V. We affirm that this minimum is
unique, otherwise we suppose that there exist two minimums v; and vy .
Let vy = Avp + (1 — ANve  for 0 < A <1, then

D(vy +w) < AP(v1 + w) + (1 = N)P(v2 + w) = (v + w) = P(ve + w).
In the proof of this theorem, we will adopt the notations:

Viw)={veV:dv+w)= gei‘r}@(g +w)}

S={u=v+w, weW, veV(w)}

and

Sw={u=v+w, veV(w}
Lemma 2.4. There exists uw € S such that

(2.1) d(u) = msz}xcb.

Proof: There exists a sequence (u,) of S such that ®(u,) — supg® = a.
For each n, u, = v, + w, with w, € W and v, € V(w,).

Claim
(2.2) lwn| < ec.

Otherwise
O (up) = P(vy, +wyp) < P(wy).

From (iv), ®(wy,) — —o0, hence ®(u,) — —oo. A contradiction. From (5),
there exists a subsequence denoted also w,, such that w, — w. Take v in
V, by (v), we have:

®(v+ w) > liminf ®(v + wy,) > liminf ®(v, + wy,) = a
n n

This is true for all v € V, in particular for v € V(w). Then u = v + w
satisfies (4).

Lemma 2.5. The application f: W — V such that
O(w+ f(w)) =minP(g + w)
gev

is continuous.
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Proof: We suppose that f isn’t continuous, thus there exist 6 > 0 and a
sequence (wy,) converging to w € W such that for enough big n, we have:

(2.3) 1f (wn) = f(w)]| = 6.

From (ii), it is clear that
(VO(w + f(w)),v) =0 YoveV.

Let P be the projection of H onto V defined by P(v + w) = v, and let P*
be the adjoint of P. Then we obtain for each n:

[P*(V®(wn + fw)II[f(wn) — f
> —(Ve(wn + f(w)), flwn) = f

> (V‘I)(wn + f(wn)) - (w + f
flwn) = f

2 Y([If (wn) = fw) DS (wn) = £(

Hence, from (4) and (iii), we conclude that for enough big n, there exists
a > 0 such that

§

SE

1P (V@ (wn + f(w))]| = ~7([f (wn) = f(w)]]) = a.

In the other hand,
Vo(wp + f(w)) = VO(w + f(w)).

Thus
(Ve(wn + f(w)),v) — 0,

for each v in V. We conclude that
[ P*(V@(wn, + f(w)))]| — 0.

A contradiction.

Proof of theorem 2.1.
Let w € W and u € S,,. We will prove that if u satisfies (4), then u is a
critical point of ®.
From lemma 3.4, we have (V®(u),v) =0 for all v in V, so it suffices to
prove that

(V@®(u),h) =0 VheW.
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Recall that u € S, is written: u = v+w where w € W and v € V(w). Take
h € W and w; = w + th for |t| < 1. For each t such that 0 < [t| < 1, there
exists a unique v;, € V(wy,). Since w;, — w when n — 400, we deduce
by lemma 2.4 that v,, converges to a certain vg and vg € V(w). Then, by
lemma 3.4, we conclude that vg = v. For ¢t > 0, since vy + w € S,, we have

<I>(wt + ’Ut) — CD(Ut + 1U) > <I>(wt + Ut) — (13(1)0 + w)

> 0.
t t -

Then,
(V(I)(Ut-i-'w—FAtth),h) >0 0< <.

At the limit, we obtain
(V®(u),h) =0 VheW

Then, u is a critical point of ®.

3. Variants of theorem 2.1
The first theorem that we will present is the ”dual” version of theorem 1.1.

Theorem 3.1. Let H be a Hilbert space such that: H =V & W where
V and W are two closed subspaces of H. Let ® : H — R a functional such
that:

(i) @ is of class C.

(ii) For all w € W, ® is anticoercive on V + w. i.e, ®(v + w) — —oo when
[0]] = +o00.

(iii) There exists an increasing function 7 : (0,400) — (0, +00) such that:

(VO(w +v1) = VO(w + vg),v1 — v2) < —y(|lvr — va)[[vr — vall,

for all vi,v9 in V and w in W.

(iv) @ is coercive on W. i.e, ®(w) — 400 when ||w| — +oo.

(v) For allv € V, ® is weakly lower semi-continuous on W + v.

Then ® admits at least a critical point w € H. Moreover, this critical point
is characterized by the equality

®(u) = min max (v + w)
weW veV
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The proof of theorem 3.1 is made by a dual manner of the proof of
theorem 2.1.

Now, before announcing the second variant of theorem 3.1, We will give
some definitions.

e Let A a convex set. The function f : A — R is quasiconcave if for all
x1,x9 in A, and for all A in ]0, 1[, we have

fQz1 4+ (1 = N)x2) > min(f(x1), f(x2)).

e The function f is quasiconvex if (-f) is quasiconcave, and it is strictly
quasiconcave if the inequality above is strict.
e It is clear that any strictly concave function is strictly quasiconcave.

Proposition 3.2. Let E be a reflexive Banach space. If ® : E — R is qua-
siconvex and lower semicontinuous, then ® is weakly lower semicontinuous.

Theorem 3.3. Let E be a reflexive Banach space such that: E=V & W
where V' and W are two closed subspaces of E. Let ® : E — R a functional
such that:

(i) ® is of class C'.

(ii) @ is weakly continuous from E to E.

(iii)For each w € W, ®(v+w) — 400 when ||v|| — 400 and the convergence
is uniform on bounded subsets of W.

(iv) For each w € W, ® is strictly quasiconvex on V + w.

(v) @ is anticoercive on W. i.e, ®(w) — —oo when ||w|| — 400

(vi) For each v € V, ® is weakly upper semi-continuous on W + v.

Then ® admits at least a critical point w € H. Moreover, this critical point
is characterized by the equality:

®(u) = max min ®(v + w).
weW veV

Proof of theorem 3.3
The structure of the proof of theorem 3.3 is the same as theorem 2.1. So,
we will report only the changes wich concern lemmas 3.4 and 2.5.

Lemma 3.4. For all w € W, there exists a unique v € V such that :

P = min ¢ .
(v+w) min (9 +w)
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Proof. For each win W, v — ®(v+w) is continuous and quasiconvex on V.
Thus, by propsition 3.2, it’s weakly lower semi-continuous on V. Moreover,
from (iii), it’s coercive, then it admits a minimum on the reflexive Banach
space V. Since v — ®(v+w) is strictly quasiconvex, this minimum is unique.
Otherwise, there exist two minimums v; and vy. Let vy = Avy + (1 — Mg
for 0 < A < 1, then

O (v + w) > max(P(vy + w), P(vy + w)) = P(v1 + w) = P(vy + w).

Absurde.

Lemma 3.5. The application f: W — V such that

O(w + f(w)) = gréi‘r/l O(g + w)

IS continuous.

Proof. First, we prove that the application (f) defined in lemma 3.5 is
bounded on bounded sets of W. Let M > 0, from (v) and (vi) of theorem
4.1 we conclude that ¢ admits a maximum on W, so there exists a constant
N > 0 such that ®(w) < N for w € W and||w|| < M. By (iii), there exists
a constante ¢ > 0 such that for v € V,w € W, ||w|| < M and |jv|| > 6, we
have ®(v + w) > 2N.

Since ®(w + f(w)) = mingey ®(w + g) < ¢p(w) < N, we conclude that

| f(w)|| < 6. Next, we prove that (f) is continuous. Suppose that w,
converges to w, thus f(w,) is bounded, so there exists a subsequence of
f(wy,) denoted also f(wy,) which converges weakly to vg. Since @' is weakly
continuous, we obtain

(¢ (wn, + f(wn)),v) — (¢ (w+wvo),v) YveEV.

Since (¢’ (wy, + f(wy),v) = 0 and f(w) is the unique element of V such that
(¢'(w+ f(w)),v) =0 for all v € V, we conclude that vg = f(w).

Remark 3.6. Theorem 3.3 is a complete generalization of theorem (3.7)
in [14] because it deals with a more general class of functionals than the
second theorem.
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4. Application

We Consider the nonlinear Dirichlet problem:

(1) —Au = Mu+ Dy F(x,u) dans €
u = 0 sur 02

where Q € RY is a bounded open domain, F : Qx R — R is a carathéodory
function and D, F'(x,u) is the partial derivative of F par rapport a u. We
assume:

(F1) F(z,s) is concave and of class C' for almost every x € €.
F(.,8) is measurable for all s € RY

(F2) There exist a > 0 and 8(x) € L (Q) such that
|DuF(2,u)] < alulP™" + B(z).

with 1 <p<2*siN>3 e 1<p<oo siN=12.
(F3)liminf ) 1 o0 228 = a(z) > 0
with {x € Q: a(x) > 0} is of positive measure.

Theorem 4.1. If F satisfies (F1),(F2),(F3) and (F4) then the problem
(1) admits at least a solution.

Proof of theorem
Denote by ® the functional associated to problem (1)

1 Ak
d(w) =q(w)— [ Flewde  where  q(u) = 5 Jull® = Ful}

We note that H}(Q) = V@ W where V = ®;<xE()\;) and W = V1 =
@izkr1E(Ni)-

The critical point of ® is the weak solution of problem (1). So, for the proof
of therem 4.1, we will verifie successively hypotheses (i) to (v) of theorem
3.1.

(i) From (F2), ® is of class (C!) on H}(Q2)

(ii) We show that ® is coercive on W + v for all v € V. We have

1 Ak 1 Ak
B0 +w) = Ll ~ 2wl + ol - ol ~ [P+ w)
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Then there exists ¢; in R such that
1 A
O(v-+w) = sl - Flwl - [ Fo+w) +a.

Since F is concave, we conclude

w v+w v
F)=r5— 5

1 1
)2 SF(o+w) + 5F(—v).

Hence w
—F(v+w) > F(—v) — 2F(§)

Since the roles of V. and W are symetriques, we obtain

—F(v+w) > F(—w) — 2F(g).

From (F3), Ve > 0,33 € LY(Q) such that
Fla,s) > -5 = B(a).
Thus, we obtain

)\k e
(v +w) > Sl = Slwl} - S lwl} + e

Since ||w||? > Agy1l|w]|3, Yw € W, we have

1 Ak +e€
B(o+w) 2 (1= T w]® + ez
1

We choise € such that e < A\g11 — A\p. Hence
O(v+w) — +00 si lw] — +oo.
(iii) We have
(V&(u),v) = (Lu,v) = (DuF(u),v),

with L(u) = —Au—Au and u,v € H}. So that, for v € V and wy,ws € W,
we have

(VO(v+wy) — VO(v + wy), w; —ws) =
(L(wy — wa), w1 — wa)+
(Dytuws F'(o;v +w2) — Dy, FI(, 0 4+ wy), wy — w2)
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Since F(z,.) is concave for all x € Q, then —VF(z,.) is monotone for all
x €. So

(VF(z,v+ws) — VF(z,v+w1),ws —wy) <0
for all wy,wy € W,v €V et x € Q. Then
(VO(v+wy) — VO(v 4 wa), w1 —wz) > (L(wy — wa), w; — wa).
1

In the other hand, we have (L(wy —w2), w1 —ws) = &|jwy —wsl|* — %’“le -
w213 and [lwy — wa||* > Ay flwr — wall3, so

1
lwr = wsll3 < S flwr — wa|*.
k+1

Then ! 3
(L(wy — wa), w1 —wz) > =(1 — 5 )|lwy — w22
2 Ak+1

We conclude that there exists a = 5(1 — )\;\i -) > 0 such that

(VO(v+wi) — V(v + wa),ws —wa) > allwy — w2||2.

(iv) We show that ® is anticoercive on V.
Claim: From (F4), there exists 6 < 0 such that

p(v) = [[vo]* = Aellvl3 — /Qoz(x)v2 < 8fol*, VweV

So we have
p(v) < [Jol* = Mllvllz <0 VeV
If p(v) = 0, we obtain:
0=p(v) < [lv]* = Aeflvfl3 <0

hence ||v]|? = A\x|lv||3, so that v is an eigenvector associated to Ag. Or

0=p(w)= /Q —a(z)v? =0

implies that v(x) = 0 when «(x) > 0, so v = 0 We suppose that the claim
is false, then there exist a sequence v, such that ||v,|? = 1 and v, — v (v,
converges weakly in V), v, — v strongly in L?(Q2) and 0 > p(v,) — 0,n —
o0. We have
p(v) > limsup p(v,) = 0.
n
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Hence v = 0, so v, — 0 strongly in L?(Q2) and

p(vn)zl—)\k/UEL—/a(:r)vgﬁl
Q Q

which contradicts the fact that p(w,) — 0, and so the claim is proved.
On the other hand, Ve > 0,3M > 0 such that

F(z,s) > %(a(az) —e)s* — M,

for all s in R and for almost every x in 2. Then

o) < (v = Melvl — Jg e(@)v?) + 5 [v* + C
< Ofpl? + 5lvlz+ C

Since V is of finite dimension, there exists [ > 0 such that ||v|> < ||v[|3. So
€ 2
®(v) < 01+ vz +C

Consequently, it suffices to take € < —261 to conclude that ® is coercive on

V.

(v) @ is weakely upper semi-continuous on V. Indeed, q is a negative
quadratic form on V, then q is concave on V, and since it’s continuous, q
is weakly upper semi-continuous on V. Moreover, [ F(z,u) dx is weakely
continuous on H. So the result.
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