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Abstract

For quasi-homogeneous and finitely determined corank one map
germs f : (C3, 0) → (C3, 0) we obtain formulae in function of the
degree and weight of f for invariantes on the stable types of f , as polar
multiplicities, number of Milnor, number of Lê. We minimize also the
number of invariantes for 7, to resolve the problem that decides the
Whitney equisingularity of families of such maps germs. To finalize
use these formulae to increase the list of invariants of some normal
forms of f .
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1. Introduction

Teissier introduced in some key papers in singularity theory ([16], [17]) the
notions of polar varieties and polar multiplicities. His work was taken up by
Gaffney in the study of equisingularity of map-germs ([3], [4]). Gaffney’s
theorem states that, for an important class of finitely determined map
germs Cn, 0 → Cp, 0, if all the polar multiplicities of the strata in the
source and target of a well chosen stratification are constant along a family
of such germs, then this family is Whitney equisingular. The results in [3]
show that the number of invariants involved depends on the dimensions
(n, p) and this number can be very big according to n and p are big.

Work is done for reducing this number in some particular cases; see [5]
for n = p = 2, [3] for n = 2, p = 3, and [9] for n = p = 3, [10] n = 3, p = 4.

The work of Teissier and Gaffney show that the polar varieties and
multiplicities are powerfull tools for solving some problems in singularity
theory. However these invariants have not been used extensively. This
could be due to the fact that they are difficult to compute in practice.
In this paper we show that for corank 1, quasi-homogeneous and finitely
determined germs f : (C3, 0) → (C3, 0) one can obtain formulae for the
polar multiplicities defined on the stable types (§3). In the §4 we use the
formulae to deduce more invariants for the list of the A−simple germs in
[14].

2. Notation and preliminaries

We shall denote by O(3, 3) the set of origin preserving germs of holomor-
phic mappings from C3, 0 to C3, 0. We let R denote origin preserving
diffeomorphisms of the source, L the corresponding group of the target;
A = R×L. There is a natural action of A on O(3, 3), given by k ◦ f ◦ h−1,
where f ∈ O(3, 3) and (h, k) ∈ A. The critical set of f is denoted by Σ(f),
and its image, the discriminant of f , by ∆(f). We denote the determinant
of the derivative of f by J [f ].

For a given germ f , we stratify the source and target as follows. In
the source, we have the set of critical points Σ(f), the cuspidal edge curve,
denoted by Σ1,1(f), the set of double points f(D2

1(f |Σ(f))) (for corank 1
germs), and the rest of the neighborhood of the origin. We should note
that, in general, the set of double points D2(f |Σ(f)) lies in C6. However,
for corank 1 germs we consider instead the D2

1(f |Σ(f)) which is defined as
follows. We can write f = (x, y, g(x, y, z)), and consider D2(f |Σ(f)) (see
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[6] for details) as the subset

{
(x, y, z, z1) ∈ C4 : g(x,y,z)−g(x,y,z1)

z−z1
= z1

∂g(x,y,z)

∂z
−z

∂g(x,y,z1)

∂z
z−z1

=
∂g(x,y,z)

∂z
− ∂g(x,y,z1)

∂z
z−z1

= 0
}

.

Then we denoted by D2
1(f |Σ(f)) the projection of D2(f |Σ(f)) to the (x, y, z)-

space. In the target we have the smooth part of the discriminant ∆(f) =
f(Σ(f)), the image of the cuspidal edge curve f(Σ1,1(f)), the image of
the double points curve f(D2

1(f |Σ(f))), the zero-dimensional stable types,
and the rest of the neighborhood of the origin. The zero-dimensional stable
types are the swallowtail points (A3), normal crossing of a plane with a cus-
pidal edge (A1A2) and the set of triple points (A3

1). To a k−dimensional
variety are associated k + 1 polar invariants. As Σ(f) and ∆(f) are of
dimension 2 and the dimension of D2

1(f |Σ(f)), Σ1,1(f), f(Σ1,1(f)) and
f(D2

1(f |Σ(f))) is 1, we have 14 polar invariants defined on these sets. We
also have 3 multiplicities of the zero-dimensional stable types. These are
the number swallowtails (]A3), the number of normal crossing of a plane
with a cuspidal edge (]A1A2) and the number of triple points (]A3

1). There-
fore to apply Gaffney’s result to germs in O(3, 3) we needed the constancy
of 18 invariants, including the degree of f . In [9], we established relations
amongst the above invariants, and using the fact that these are upper semi-
continuous, we reduced the number of necessary invarinants for Whitney
equisingularity to 6 for corank 1 germs.

Using some of the relations in [9], we obtain here formulae for the polar
multiplicities of the strata in the target for weighted homogeneous corank
1 map-germs. We observe that in the source the strata are analytic spaces
that are I.C.I.S. so the the formulae for their polar multiplicities are ob-
tained in [4].

We shall need the following definitions

Definition 2.1. (1) An analytic map-germ f : (Cn, 0) → (Cp, 0), f =
(f1, ..., fp) is said to be quasi-homogeneous, or weighted homogeneous, if
there are positive integers w1, w2, ..., wn, the weights, and positive integers
d1, d2, ..., dp, the degrees, such that, fi(λw1x1, λ

w2x2, ..., λ
wnxn) = λdifi(x)

for all x ∈ Cn, λ ∈ C, i = 1, ..., p.

(2) An analytic map-germ f that defines a space with an isolated singu-
larity complete intersection (I.C.I.S.) is said to be semi quasi-homogeneous,
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if

f = (f1, f2, . . . , fp) = (f0
1 + f1

1 + . . . , f0
2 + f1

2 + . . . , . . . , f0
p + f1

p + . . .)

were f0
i are quasi-homogeneous polynomials of the smallest degree in each

fi, and the map f0 = (f0
1 , f0

2 , . . . , f0
p ) defines a quasi-homogeneous analytic

space that is also I.C.I.S. with the same weights of f . The germ f0 is called
initial part of f .

Theorem 2.2. [7] Let f : (Cn, 0) → (Ck, 0) be a semi quasi-homogeneous
germ that defines a complete intersection. Then The space f−1(0) is an
I.C.I.S. of dimension (n− k), and µ(f) = µ(f0).

Theorem 2.3. [13] Let f : (Cn, 0) → (Cn, 0) be a corank 1 weighted-
homogeneous A−finite map-germ with weights and degrees as above. For
any stabilization of f , and any partition P of n,

]AP =
wn−1

n

N(P)w

n+l−1∏

j=1

(
d

wn
− j)

where l is the length of P, wn = wt(fn), d = degree(fn), w =
∏n−1

i=1 and
N(P) define the order of the sub group of Sl which fixes P. Here Sl acts
on Rl by permuting the coordinates.

3. Formulae for polar multiplicities of the stable types of the
target

In this section we calculate the polar multiplicities of the strata in the
target associated to a finitely determined, quasi-homogeneous, corank 1
germ f ∈ O(3, 3). We start with the regular part of the discriminant,
denoted by ∆(f).

In what follows we shall use the symbol a∧ b to represent the minimum
integer number of a and b (where at least one of these is an integer), that
is,

a ∧ b =





min(a, b) if a, b ∈ Z
a if b 6∈ Z
b if a 6∈ Z
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Theorem 3.1. Let f = (x, y, g(x, y, z)) ∈ O(3, 3) be a finitely determined,
quasi-homogeneous, corank 1 map germ with weights w1, w2, w3 and d the
degree of g. Then,

m0(∆(f)) = (d−w3)
w3

,

m1(∆(f)) = (d−w3)(d−2w3)
w1.w3

∧ (d−w3)(d−2w3)
w2.w3

,

m2(∆(f)) = (d−w3)(d−2w3)
w1.w3

∧ (d−w3)(d−2w3)
w2.w3

+ (d−w3)(d−2w3)(d−w1−w2−w3)
w1.w2.w3

.

Proof. Using the relation m0(∆(f)) = δ(f) − 1 in [9] (Theorem 3.3)
we easily establish the formula for m0(∆(f)), this formulae was obtained
in [7]. For m1(∆(f)), we showed in [9] (Theorem 3.4), that

m1(∆(f)) = dimC
O3

(p1◦f,J [f ],J [p2◦f,J [f ]])

= µ(p1 ◦ f, J [f ], J [p2 ◦ f, J [f ]]) + 1

where p1 : C3 → C and p2 : C3 → C2 are generic linear projections.
The ideal (p1 ◦ f, J [f ], J [p2 ◦ f, J [f ]]) is not always quasi-homogeneous,
but by Theorem 2.2 ([7]) the Milnor number of a semi quasi-homogeneous
analytic space that is I.C.I.S. is the same as the Milnor number of the
initial part of this space. Therefore we only need to verify that the ideal
(p1 ◦ f, J [f ], J [p2 ◦ f, J [f ]]) is semi-quasi-homogeneous and computer the
initial part. Let p2(x, y, z) = (a1x+a2y +a3z, b1x+ b2y + b3z) be a generic
linear projection. Then,

J [p2 ◦ f, J [f ]] = (a1b2 − a2b1)gzz + (a3b1 − a1b3)gzygz+
(a1b3 − a3b1)gygzz + (a3b2 − a2b3)gxgzz+

(a2b3 − a3b2)gzgzx.

As p2 is generic, (a1b2 − a2b1) 6= 0. Then the initial part of the ideal is
given by

(x, J [f ], (a1b2 − a2b1)gzz) if w1 ≤ w2, or
(y, J [f ], (a1b2 − a2b1)gzz) if w2 ≤ w1.

These ideals define analytic spaces quasi-homogeneous that are I.C.I.S.
and the degrees of their components are w1, (d − w3), (d − 2w3) and w2,
(d− w3), (d− 2w3) respectively, then
m1 (4 (f)) = µ (x, J [f ] , (a1b2 − a2b1) gzz) + 1 = dimC

O3
(x,J [f ],(a1b2−a2b1)gzz)

or
m1 (4 (f)) = µ (y, J [f ] , (a1b2 − a2b1) gzz) + 1 = dimC

O3
(y,J [f ],(a1b2−a2b1)gzz)
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The formula for m1(∆(f)) now follows by applying Theorem 3.4 [7] or
from Bezout’s theorem applied to the ideals (x, J [f ], (a1b2 − a2b1)gzz) or
(x, J [f ], (a1b2 − a2b1)gzz, ([12]). For m2 (4 (f)) we use the previous two
formulae and the following relation in [9] (Theorem 3.4)

m2(∆(f))−m1(∆(f)) + m0(∆(f)) = µ(Σ(f)) + 1.

From [12] we computer the Milnor number of Σ(f) denoted by µ(Σ(f))
for quasi-homogeneous germs and establish the formula for the polar mul-
tiplicity m2(∆(f)). 2

We now deal with the polar multiplicities of the image of the cuspidal
edge curve Σ1,1(f).

Theorem 3.2. Let f = (x, y, g(x, y, z)) ∈ O(3, 3) be a finitely determined,
quasi-homogeneous, corank 1 germ with weights w1, w2, w3 and d the degree
of g. Then,

m0(f(Σ1,1(f))) = (d−w3)(d−2w3)
w1.w3

∧ (d−w3)(d−2w3)
w2.w3

,

m1(f(Σ1,1(f))) =
∑2

j=1

∏3
i=1(

dj

wi
− 1)

∏2
k=1,k 6=j(

dk
dj−dk

)+

(d−w3)(d−2w3)
w1.w3

∧ (d−w3)(d−2w3)
w2.w3

− (
w1.w2.w3+

∏3

j=1
(d−jw3)

w1.w2.w3
)

Proof. We showed in [9] (Theoren 3.3) the following relation

m0(f(Σ1,1(f))) = dimC
O3

(I1,1(f), p ◦ f)

where I1,1(f) is the ideal that defines the cuspidal curve Σ1,1(f) and p is a
generic linear projection. As I1,1(f) = (∂g

∂z , ∂2g
∂z2 ), we have

m0(f(Σ1,1(f))) = dimC
O3

(∂g
∂z , ∂2g

∂z2 , ax + by + cg(x, y, z))
.

If w1 < w2, the initial part of the ideal semi quasi-homogeneous
(∂g

∂z , ∂2g
∂z2 , ax + by + cg(x, y, z)), is given by (∂g

∂z , ∂2g
∂z2 , ax), for a 6= 0 and from

Bezout’s theorem applied to this ideal we obtain,

m0(f(Σ1,1(f))) =
(d− w3)(d− 2w3)

w2.w3
.
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If w2 < w1, the initial part of the ideal semi quasi-homogeneous
(∂g

∂z , ∂2g
∂z2 , ax + by + cg), is (∂g

∂z , ∂2g
∂z2 , by), for b 6= 0. Therefore, from Bezout’s

theorem

m0(f(Σ1,1(f))) =
(d− w3)(d− 2w3)

w1.w3
.

The formula in the theorem now follows from the above two cases.
For the first polar multiplicity m1(f(Σ1,1(f))), we showed the following

relation in [9] (Theorem 3.7)

m1(f(Σ1,1(f)))−m0(f(Σ1,1(f))) = µ(Σ1,1(f)))− ]A3 − 1.

We apply the Corollary 3.10 in [7] and the Theorem 2.3 in [13] to compute
µ(Σ1,1(f))) and ]A3. We get

µ(Σ1,1(f)) =
2∑

j=1

3∏

i=1

(
dj

wi
− 1)

2∏

k=1,k 6=j

(
dk

dj − dk
),

where d1 = d− w3 e d2 = d− 2w3, and

]A3 =
w2

3

w1.w2

3∏

j=1

(
d

w3
− j).

The formula for m1(f(Σ1,1(f))) now follows by substituting in the above
relation m0(f(Σ1,1(f))), µ(Σ1,1(f))) and ]A3 by their values. 2

The case of the image of the double point curve f(D2
1(f |Σ(f))) is more

complicated. As we use two different projections (one to define D2
1(f |Σ(f))

as in §2 and the other to define the polar varieties), we are unable to obtain
independent formulae for m0 and m1 as is the case of the previous strata.
We shall give a relation between these two. Before doing so we have the
following result.

Proposition 3.3. Let f ∈ O(3, 3) be a corank 1 germ. Then

2m1(X)− 2m0(X) = −3]A3 + 6]A3
1 + µ(D2(f |Σ(f)))− 1,

where X = f(D2
1(f |Σ(f))).

Proof. The proof follows by putting together the relation

2m0(X)− 2m1(X) + µ(D2
1(f |Σ(f))) = 2]A1A2 + 3]A3 + 1
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from [9] (Theorem 3.8) and the following relation

µ(D2
1(f |Σ(f))) = µ(D2(f |Σ(f))) + 2]A1A2 + 6]A3

1

in [8]. 2

With the relation in the above proposition, the formulae of Theorem
2.3, and the following result from [8]

µ(D2(f |Σ(f))) = 1 +
(d− w3)(d− 2w3)(d− 3w3)

w3w1w2
(3d− (8w3 + w1 + w2))

we deduce the following relation

2m1(X)− 2m0(X) =
∏3

i=1(d− iw3)
w1.w2.w3

3

(w3(w1 + w2 − 9w3)− d(d− 6w3)),

where X = f(D2(f |Σ(f))).

Remark 3.4. (i) We shall consider now the the stratum f−1(∆(f))− Σ(f),
which is a singular hypersurface, dimC(Σ(X0(f))) = 1. We denote
this set by

X(f) = f−1(∆(f))− Σ(f)− {0}
and we denoted by X0(f) the ideal that define X(f). To verify the
equisingularity of the hypersurface X(ft) ⊂ C×C3, we consider the
following Theorem of Teissier [17]: The pair (X(ft)−Σ(X0(f)), T ) is
Whitney equisingular iff the relative polar multiplicities m0(X(ft)),
m1(X(ft)), m2(X(ft)) are constant on T = {0} × C. Therefore we
have 3 invariants, since our purppse is to minimize the number of
invariants we use the Lê numbers, see [1]. These numbers are the
generalization of the Milnor numbers and also characterise the Whit-
ney equisingularity, see [2] , pag. 701 or [15], pag. 95. We have that
the pair (X(ft) − Σ(X0(f)), T ) is Whitmey equisingular iff the Lê
numbers of X(ft) and of all the Lê number of the generic planar sec-
tions of X(ft) are constant on T , i.e., λi(X0(ft)) and λi(X0(ft)/Hk)
are constant on T , for all i = 0, ..., k − 1, k = 1, 2, where Hk is a
generic plane of {t}×C3. Using the relations of Gafffney and Gassler
in [2]:

λ0(X0(ft)/H2) = λ1(X0(ft)) + m1(X0(ft)),

λ1(X0(ft)/H2) = λ1(X0(ft))

and as λ1(X0(ft)) is lexicographically upper semi continuous and
m1(X0(ft)) is also upper semi continuous, we obtain that, (X(ft) −
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Σ(X0(f)), T ) is Whitney equisingular iff λ0(X0(ft)/H2) and λ0(X0(ft))
are constants on T . We remark that λ2(X0(ft)) = 0 and λ1(X0(ft)) =
0 since dimC(Σ(X0(f))) = 1, see [1], pag. 18.

(ii) Let (X, 0) ⊂ (Cn, 0) be a germ of an analytic space of dimension d
that is an I.C.I.S. Then there are formulae for the polar multiplicities
of X in terms of C−codimension of an algebra associated to X (see
[4], Lemma 3.1). Therefore when the stable types are I.C.I.S. unless
of the stratum X(f), which is the case for the stable types in the
source for corank 1 germs. The formulae for the polar multiplicities
are as given in [4].

We conclude this section given the following equisingularity result for
quasi-homogeneous corank 1 germs. The proof is a consequence of a more
general result for corank 1 germs in [9] (Theorem 3.12) and the relations
obtained in this sections. We observe that, from Remark 3.4 (ii) or [4], for
quasi-homogeneous of corank 1 germs m1(Σ(f)) = m0(Σ1,1(f)). Therefore
we have the Theorem 3.12 in [9] for case quasi-homogeneous of corank 1
germs.

Theorem 3.5. Let f = (x, y, g(x, y, z)) ∈ O(3, 3) be a finitely determined
quasi-homogeneous of corank 1 germs. Let F = (t, ft) be a good 1-
parameter unfolding of f . Then F is Whitney equisingular along the param-
eter t if and only if m1(∆(ft)), µ(Σ(ft)), m1(Σ1,1(ft)), m0(ft(D2

1(ft|Σ(ft)))),
m1(D2

1(ft|Σ(ft))), λ0(X0(ft)/H2) and λ0(X0(ft)) are constant for all t close
to zero.

4. Polar invariants for simple germs

A classification of the A-simple germs C3, 0 → C3, 0 is given in [14]. Also,
in that paper, are computed a list of invariants associated to these germs.
We increase this list here by computing the polar multiplicities of the dis-
criminant and of the image of the cuspidal edge curve. Before that we treat
in details the case of the swallowtail .

Example 4.1. The normal form of the swallowtail singularity is f(x, y, z) =
(x, y, z4 + yz2 + xz). The critical set Σ(f) is a smooth surface given
by 4z3 + 2yz + x = 0, and the discriminant can be parametrised by
φ(y, z) = (−4z3 − 2zy, y,−3z4 + z2y). As f |Σ(f) bimeoromorfic, there-
fore, for computing the polar variety P1(∆(f)) it is sufficient to obtain the
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set of critical points of p◦φ, Σ(p◦φ), where p : C3 → C2 is a generic linear
projection. Write p(x, y, z) = (a1x + a2y + a3z, b1x + b2y + b3z), then

Σ(p ◦ φ) = 2(a2b1 − b2a1)(−6z6 − y) + (a2b3 − b2a3)(−12z3 + 2zy)+
(b3a1 − b1a3)(24z4 − 4z2y) + (a3b1 − b3a1)(−12z5 − 2z3).

As p is generic, we can suppose a2b1 − b2a1 6= 0. The set of critical points
of p ◦ φ is then locally a regular curve in Σ(f). The image of this curve in
∆(f) is given by φ̃(z) = (−2z3, 6z2,−3z4). This is a complete intersection
defined by the ideal I = (y2 − z, x2 − yz). It defines the absolute polar
varieties P1(∆(f)) = V (y2 − z, x2 − yz) in ∆(f), see Figure 1. The polar
variety P0(∆(f)) is ∆(f) by definition, and P2(∆(f)) is empty. We can
compute now the polar multiplicities of these varieties:

m0(P0(∆(f)) = m0(∆(f)) = 3
m0(P1(∆(f)) = m1(∆(f)) = dimC

O3
(y2−z,x2−yz,y)

= 2
m0(P2(∆(f)) = m2(∆(f)) = 0

Figure 1 : Absolutes Polar Varietes of the swallowtail

Using the formulae obtained in the previous section and the relations in
[9], we compute the polar multiplicities of the discriminants of the simple
germs in [14].

Proposition 4.2. The polar multiplicities of ∆(f), where f is one of the
A-simple germ in [14], are as follows:



Weighted homogeneous map germs of corank one from C3 to C3 255

Normal Form δ(f) m0(∆(f)) m1(∆(f)) m2(∆(f))
(x, y, z2) 2 1 0 0
(x, y, z3 + (x2 + yk+1)z), k ≥ 0 3 2 2 k + 1
(x, y, z3 + (x2y + yk−1)z), k ≥ 4 3 2 k − 1 2k − 2
(x, y, z3 + (x3 + y4)z) 3 2 3 8
(x, y, z3 + (x3 + xy3)z) 3 2 3 9
(x, y, z3 + (x3 + y5)z) 3 2 3 10
(x, y, z4 + xz + ykz2), k ≥ 1 4 3 2 0
(x, y, z4 + (y2 + xk)z + xz2), k ≥ 2 4 3 3 2
(x, y, z5 + xz + yz2) 5 4 3 0
(x, y, z5 + xz + y2z2 + yz3) 5 4 3 0
(x, y, z5 + xz + yz3) 5 4 3 0

Proof. For the quasi-homogeneous germs we use the formulae in the
previous section. For the germ f(x, y, z) = (x, y, z4 +(y2 +xk)z +xz2) that
is not quasi-homogeneous,we proceed as follows. The set of critical points
is given by

f(x, y, z) = (x, y, z4 + (y2 + xk)z + xz2), so the polar multiplicity
m1(∆(f)) of the discriminant is equal to

dimC
O3

(p1 ◦ f, J [f ], J [p2 ◦ f, J [f ]])

where p2 : C3 → C2 and p1 : C2 −→ C are generic projections. Choose
p1 = y and p2 = (x, y) (which are generic) so that

m1(∆(f)) = dimC
O3

(y, 4z3 + (y2 + xk) + 2xz, 12z2 + 2x)
= 3 if k ≥ 2.

As m0(∆(f)) = δ(f)−1 (see [9]), we get m0(∆(f)) = dimC
O3

(x,y,z4+(y2+xk)z+xz2)
−

1 = 3. Since µ(Σ(f)) = 1 and m2(∆(f)) − m1(∆(f)) + m0(∆(f)) =
µ(Σ(f))+1 (Theorem 3.4 in [9]) we deduce that m2(∆(f)) = 2. In the same
way we obtain the polar multiplicities associated to f(x, y, z) = (x, y, z5 +
xz +y2z2 +yz3). The set of critical points is given by 5z4 +x+2y2z +3yz2

and the polar multiplicity m1(∆(f)) of the discriminant is equal to

dimC
O3

(p1 ◦ f, J [f ], J [p2 ◦ f, J [f ]])



256 Víctor H. Jorge

where p2 : C3 → C2 e p1 : C2 → C are generic projections. Choose
p1 = y and p2 = (x, y) (which are generic) so that

m1(∆(f)) = dimC
O3

(y, 5z4 + x + 2y2z + 3xyz2, 20z3 + 2y2 + 6yz)
= 3.

As m0(∆(f)) = δ(f)− 1, we get

m0(∆(f)) = dimC
O3

(x, y, z5 + xz + y2z2 + yz3)
− 1 = 4.

Since µ(Σ(f)) = 0 and m2(∆(f))−m1(∆(f))+m0(∆(f)) = µ(Σ(f))+1
we deduce that m2(∆(f)) = 0. 2

We compute in the same way the polar multiplicities of the cuspidal
edge curve f(Σ1,1(f)) of the germs in the above table.

Proposition 4.3. The polar multiplicities of f(Σ1,1(f)), where f is one of
the A-simple germ in [14], are as follows:

Normal Form µ(Σ1,1(f)) m0(f(Σ1,1(f))) m1(f(Σ1,1(f)))
(x, y, z2) − − −
(x, y, z3 + (x2 + yk+1)z) k 2 k + 1
(x, y, z3 + (x2y + yk−1)z) k k − 1 2k − 2
(x, y, z3 + (x3 + y4)z) 6 3 8
(x, y, z3 + (x3 + xy3)z) 7 3 9
(x, y, z3 + (x3 + y5)z) 8 3 10
(x, y, z4 + xz + ykz2) k − 1 2 0
(x, y, z4 + (y2 + xk)z + xz2) 2 3 2
(x, y, z5 + xz + yz2) 0 3 0
(x, y, z5 + xz + y2z2 + yz3) 1 3 0
(x, y, z5 + xz + yz3) 1 3 0

Proof. The invariants for the quasi-homogeneous germs are obtained
using the formulae of the previous section. For the germ f(x, y, z) =
(x, y, z4 + (y2 + xk)z + xz2) that is not quasi-homogeneous we calculate
the multiplicities m0(f(Σ1,1(f))) and m1(f(Σ1,1(f))) as follows. The set
Σ1,1(f) is defined by the ideal (4z3 + (y2 + xk) + 2xz, 12z2 + 2x), so
µ(Σ1,1(f)) = 2 (using the formula in [11]). We have

m0(f(Σ1,1(f))) = dimC
O3

(4z3 + (y2 + xk) + 2xz, 12z2 + 2x, y)
= 3.
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Therefore using the relation

µ(Σ1,1(f))) + m0(f(Σ1,1(f)))− 1 = m1(f(Σ1,1(f))) + ]A3,

(Theorem 3.7 in [9]) and the fact that ]A3 = 2, it follows that m1(f(Σ1,1(f))) =
2. For the germ f(x, y, z) = (x, y, z5+xz+y2z2+yz3) we proceed as above.
The set Σ1,1(f) is defined by the ideal (5z4+x+2y2z+3yz2, 20z3+2y2+3yz),
so µ(Σ1,1(f)) = 1. We have

m0(f(Σ1,1(f))) = dimC
O3

(5z4 + x + 2y2z + 3yz2, 20z3 + 2y2 + 3yz, y)
= 3.

Therefore using the relation

µ(Σ1,1(f))) + m0(f(Σ1,1(f)))− 1 = m1(f(Σ1,1(f))) + ]A3,

it follows that m1(f(Σ1,1(f))) = 0. 2
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[1] David Massey, Lê cycles and hypersrface singularities, Springer Lecture
Notes of Mathematics, 1615 1995.

[2] T. Gaffney and Robert Gassler, Segre numbers and hipersurface sin-
gularities. Journal of Algebraic Geometry vol.32 No.8 (1999) 695-736.

[3] T. Gaffney, Polar multiplicities and equisingularity of map germs.
Topology Vol. 32 No.1, pp. 185–223, (1993).

[4] T. Gaffney, Multiplicities and equisingularity of I.C.I.S. germs. Invent.
Math. 123, pp. 209–220, (1996).

[5] T. Gaffney and D.M.Q. Mond, Cusps and double folds germs of ana-
lytic maps C2 → C2, J. London Math. Soc. (2) 43, pp.185-192, (1991)

[6] V. Goryunov, Semi-simplicial resolutions and homology of images and
discriminants of mappings, Proc. London Math. Soc. 3, 70, pp. 363–
385, (1995).
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[15] Dung Trang Lê and B. Teissier, Cycles evanescents, sections planes et
conditions de Whitney. II Proc. symposia pure math., (2) 40, Amer.
Math. Soc., pp. 65-104, (1993)
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