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1. Introduction

In several situations the motion of incompressible electrical conducting fluid
can be modelled by the magnetohydrodynamics equation , which corre-
spond to the Navier-Stokes equations coupled with the Maxwell equations.
In presence of a free motion of heavy ions, not directly due to the electri-
cal field (see Schliiter [21], and Pikelner [15]), the magnetohydrodynamics
equation can be reduced to

1
U0 Autu-vu- Lhovh = f— Ly AnY)
h 1
(1.1) a———Ah—i—u-Vh—h-Vu = —grad w
ot po
divu =
divh = 0.

Here, u and h are respectively the unknown velocity and magnetic fields;
p* is the unknown hydrostatic pressure; w is an unknown function related
to the motion of heavy ions (in such way that the density of electric current,
Jjo, generated by this motion satisfies the relation rot jo = —oVw); pp, is
the density of mass of the fluid (assumed to be a positive constant); p > 0
is the constant magnetic permeability of the medium; o > 0 is the constant
electric conductivity; n > 0 is the constant viscosity of the fluid; f is an
given external force field.

We append to equation (1.1) the following boundary conditions
(1.2) ulpo = 0, hlspo = 0.

In this paper, we will consider the problem of the existence and unique-
ness of the periodic strong solutions in a bounded domain Q@ ¢ RN, N = 3
or 4; the given external force f be periodic in ¢ with some period 7. Then
we will prove the existence and uniqueness of periodic strong solution (u, h)
of the magnetohydrodynamic type equations (1.1) with the same period 7

(1.3) u(z,t+7)=u(zt); h(z,t+7)=h(z1t)

The initial value problem associated to the system (1.1) has been studied
by several authors. Lassner [13], by using the semigroup results of Kato and
Fujita [9], proved the existence and uniqueness of strong solutions. Boldrini
and Rojas-Medar , [5], [18] improved this results to global solutions by using
the spectral Galerkin method. Damadsio and Rojas-Medar [8] studied the
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regularity of weak solutions, Notte-Cuello and Rojas-Medar [16] using an
iterative approach to show the existence and uniqueness of strong solutions.
The initial value problem in a time dependent domains was studied by
Rojas-Medar and Beltran-Barrios [17] and Berselli and Ferreira [4].

The periodic problem to the classical Navier-Stokes equations, was stud-
ied by Serrin [19] using the perturbation method and recently by Kato [12]
using the spectral Galerkin method. In this work we follow [12].

Finally, we would like to say that, as it usual in this context, to sim-
plicity the notation in the expressions we will denote by C, (1, ... generic
positive constants depending only on the fixed data of the problem.

2. Preliminaries and Results

We begin by recalling certain definitions and facts to be used later in this
paper.

The L?(2)-product and norm are denoted by (,) and | |, respectively;
the LP(Q)-norm by | |rr,1 < p < oo; the H™(2)- norm are denoted by
| ||zm and the W*P(Q)-norm by | |-

Here H™(Q) = W™2(Q) and W"P(Q) are the usual Sobolev space
H(9) is the closure of C§°(Q2) in the H' — norm.

If B is a Banach space, we denote L4(0,T; B) the Banach space of the
B-valued functions defined in the interval (0, T) that are L9-integrable in
the sense of Bochner.

Let C5%(2) = {v € (C§°(Q)); diveo = 0}, V = closure of C§%(€) in
(Hg(92))N and H = closure of C§2,(€2) in (L2(2))".

Let P be the orthogonal projection from (L?(€2))N onto H obtained
by the usual Helmholtz decomposition. Then, the operator A : H — H
given by A = —PA with domain D(A) = (H2(Q))V N V is called the
Stokes operator.

In order to obtain regularity properties of the Stokes operator we will
assume that  is of class C™! [2]. This assumption implies, in particular,
that when Au € L?(Q), then u € H?(Q) and ||u|| 72 and |Au| are equivalent
norms.

Now, let us introduce some functions spaces consisting of 7-periodic
functions. For k > 0, k € IN, we denote by

C*(t;B) ={f: IR — B/ f is T-periodic and D} f € C(IR; B)
para todo i < k}.
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Then, let us define the norm

k
.zy = Su Dif(t .
Iflloxeis) = sup 31Dz

We denote for 1 < p < oo, the spaces
LP(1;B) ={f : IR — B/ f is measurable,7- periodic and ||f||z»(r,5) < 00},

where 1
I fllze(rsm) = (/0 ||f(1f)!|§)9>p para 1 < p < 00

and
| fllzoe(rBy = sup [[f()]B-
0<t<r

Similarly, we denote by
WkP(r;B) = {f € LP(1;B) / Dif € LP(r; B) para todo i < k}.
In particular, H*(r; B) = W*2(r; B), when B is a Hilbert space.

The following results will be using in this paper.

Proposition 1.1. (Giga e Miyakawa [10]). If 0 < § < 1 + I the
following estimate is valid with a constant C; = C1(4,6, p),

(2.1)A™°Pu - Vv| < C1]|A%u||A?v| for any u € D(A%) and v € D(AP),

with 6 +60 +p > %4—%, p+9d> %, and 6, p > 0.
We consider too the Sobolev inequality [10],

1.1 8
2.2 oy < if = > _ 2
(2.2) lulrr) < Collul|gs, i ~ 25 v >0
and the inequality due to Giga and Miyakawa [10]
11 2y
(2.3) lu|pr o) < C3lAMul, if 25—y >0
Here, we note that if r = N in (2.3) it follows
N 1
(2.4) lulpn () < C3|AMu|, with v = 73
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Lemma 1.2. If u €D(A?) and 0 < 0 < 3, then

(2.5) |[A%u(2)| < 17| A u(z)|

where = min A; > 0.

Lemma 1.3. (Simon [10]) Let X, B and Y Banach spaces such that
X — B — Y, where the first embedding is compact and the second is
continuous. Then, if T" > 0 is finite, we have that the following embedding
is compact

L0, 7;X)N{¢: ¢ € L"(0,T;Y} — C(0,T;B),se 1 <r < c0.

Ours results are the following.

Theorem 1.4. (Existence). Let f € H'(r; H) (7 > 0). Then there
exists a constant Ko = Ko(N) > 0 such that if

M = sup |f < Ko,
Sup If], 5 ) < Ko

the problem (1.1)- (1.3) has an 7- periodic strong solution (u(t), h(t)) sat-
isfying

(u,h) € (H?(r; H))* N (H' (73 D(A)))* N (L% (73 D(A))* N (WH(7; V)%,

Theorem 1.5. (Uniqueness). The solution of (1.1)- (1.3) given in
Theorem 2.4 is unique.

The idea of the proof is use the spectral Galerkin method together
with compactness arguments. The principal problem is obtain the uniform
boundedness of certain norms of u”(¢) and h™(¢) in some point t*. This
difficult was early treated by Heywood [11] to prove the regularity of the
classical solutions for Navier-Stokes equations.
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3. Approximate problem and a priori estimates

By using the operator P, the periodic problem (1.1)- (1.3) is formulated as
a system of ordinary differential equations

%u(t) +vAu() + aP(u(t) - Vu(t)) — P(h(t) - Vh(t)) = aPE(t),

%h(t) + YAh(t) + P(u(t) - Vh(t)) — P(h(t) - Vu(t)) = 0,
u(z,t +7) = u(z,t); h(z,t +7) = h(z,t).
Where,
_Pm o 1
a=—, v=—, X = .
p 1 po

We consider V,, = span{w;(x), wa(x),...,w,(x)} and the approxima-
tions u"(t) = >>7_; ¢ju(t)wj(r) and h"(t) = 3% djn(t)wj(r), of u and h,
respectively satisfying the following system of ordinary differential equa-
tions

(au} + vAu" + aPu” - Vu® — Ph" - Vh",w;) = (af,w?),
(3.1) (b} + xAh" + Pu" - Vh" — Ph" - Vu",w;) = 0,
u'(t+7)=ut), h"(t+71)="h"(t).

To show that the system (3.1) has an unique 7—periodic solution, we
consider the following linearized problem:

3.2) (au} +vAu",w;) = (af —aPv"-Vv"+ Pb"-Vb" w;),
t j j
(b + xAh",w;) = (—Pu"-Vh" + Ph".Vu", wj),

where v"(t) = 377 eju(t)w;(x) and b"(t) = X7 gjn(t)w;(z) are func-
tions given in Ct(7;V4,).

It is well know that the linearized system (3.2) has an unique 7—periodic
solution (u”(t),h"(t)) € (C(7;Vyn))? (see for instance, [1], [6]). On the
other hand, it is easily checked that the map: (v, b") — (u”,h") is con-
tinuous and compact in (C1(7;V;,))%

By using the Leray-Schauder principle is sufficient to show the bound-
edness

sup [u"(t)| < C  and sup [h"(t)| < C
0<t<r 0<t<r
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where C' is a positive constant independent of A , for all solutions of (1.1)
replacing Pu”-Vu" by APu”-Vu” , Ph"”-Vh"™ by APh"-Vh" , Pu”-Vh"
by APu”™ - Vh" and Ph"™ - Vu” by A Ph” - Vu" (0 < X < 1) (see [3]).
Then, multiplying (3.2); and (3.2);; by e;n(t) and gjn(t) respectively,
and adding in j, we obtain
ad

5 5[0+ v|Vu'? = (of u") + A(h" - Vh", u"),

ld
2dt
since a(u” - Vu™,u") = (u" - Vh",h") = 0.

Adding the above inequalities and using (2.3), we get

Ih"|? + x|Vh"[> = A(h" - Vu", h")

d
a(oz|u”|2 + |h”|2) + 21/]Vu”]2 + 2)(|Vh”|2 = 2(af,u")

2a||f||L2N/(N+2)(Q) HunHLW\’/(N*?)(Q)
2C3C(N)O[ |f|LN/2(Q) ]Vu”|

IN A

where C'(N) = \Q]% and |Q2| = the volume of Q. By using the Young
inequality, we obtain

(3.3) %(a|u“|2 + [h"*?) 4 v|Vu"|? + 2x|Vh"|? < C4C(N)*M?

where Cy = C3a?/v and M is defined as in theorem 2.4. Moreover, since
(u™, h™) are T—periodic functions, we have

Td 2 2
2l + |n"2)dt = 0.
A
and consequently, from (3.3), we obtain
/ (V[ VW"|? + 2x| VR 2)dt < CLC(N)2M>r.
0

It follows by Mean Value Theorem for integral, that there exists t* €
[0, 7] such that

v|Vu(t") 2 4+ 2x|Vh" (t*)|? < C4C(N)2M>7.
Now, using the Lemma 2.2, with 6 =0, = 1/2, we get

(3.4) ()] < V2T ()]
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and consequently

(3.5) " (#)[* < p7HVa" () < CaO(N)2M?/ (vp).
Analogously,
(3.6) [h"(°)[* < p~HVR™ ()] < C2O(N)*M?/ (2xp).-

Integrating (3.3) from t* to t + 7 (¢t € [0, 7]), we obtain

[ (¢ +7)* + [0 (t + 1)

alu(t)? + [0 () + C4O(N)?M>(t + 7 — t7)
aCyC (N2 M? ()™t + CLC(N)?M?(2ux) ! + 27C4C(N)2M?
= K;j.

IN A

Consequently,

(3.7) swp W' <Ky, sup WD < K,
0<t<r 0<t<r

where K7 is independent of A and n. Thus, we have proved the existence

of the solution (u”, h™) € (C(1;V,,))%.

Lemma 2.1. Let (u"(¢),h"(¢)) be the solution of (3.1) given above.
Suppose that
M < min{KZ_Q,Kg_?’, 1}

where

Ky = v Y (aCiCsC(N)™% + C1CsC (N5 + ;acgcglc(m*lmv)
K3 = x H2C1C5C(N)p 2 + %acgcglc(N)*luﬂ).

Then, we have

|ATa" (£)[2 + |ATh"(£)[> < C5C(N)p? Y2 M2 for any t € (—o0, +00).

Proof. Taking A27u” and A?>Yh" as test functions in (3.1); and (3.1);;
respectively, we get
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d
gdt\AVu”P V| = (af, A27u") — a(Pu" - Vu", AYu")
+(Ph™ - Vh", A27u"),
1d n|2 2 n n 2911 n n 2911
th]AVh\ + x| |“=(Ph" - Vu", A7h") + (Pu" - Vh", A“7h").
Now, we estimate the right-hand sides of the above equalities as follows:
+2
|(af, AZTu™)| < aff] vya ) | AP0 v -2 g < u”|
here we use the Hélder’s inequality,
2 27-1 W
|(Pv-Vb,A“7¢)] = (A2 Pv- Vb )
< AV AT )|
2941 ]

where we use the Giga-Miyakawa estimate with § =~ and p =
Now, adding the above estimates, we get

2

S+ IA”h”I2+v\A 3 u”|2 &
(3.8) < aO3MyAT”uny+01a|A7u
+204| \AVu 2.

By using the Lemma 2.2 with § = v and 8 = 3, we obtain from (2.5) and
(3.5)

| AT ()2 < 02 V()] < M”il/z(%)l/QC(N)M
and o
AR < ()] < G e )M
Consequently, if M < 1, we have
A (@) < 2 Ey e,
v
|A'yhn(t>k)|2 < Ny—l/Q(%)l/ZC(N)Ml/Q.

2x
Thus,
[ATa"™(t%)* + [ATR™ ()] < C5sC(N) 2 M2
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where C5 = (94)1/2 (%)1/2.

Let T* = sup{T / |A"u"(t)|? + |A"h"(t)|? < C5C(N)p~Y/2MYV? for
any t € [t*,T)}.

We will prove by contradiction that 7% = co. In fact, if 7% (¢* < T™) is
finite it should follow that

|A7a"(t)2 + |ATh" (1) 2 < CsC(N)p? Y2 M2 for any t € [t*,T*) and

| AT (T)|? + | AT (T))? = C5sC(N) V2 M2,
Therefore, for such a value t = T, the estimates of the right-hand side of
(3.8) are

1+

aCsM|A™2 u(t)|
aCsCy ' C(N) ™ MP{|AMa (1)]* + | A0 (1) P} A

142y 142~

1
SACHC5 \CIN) ™ MY (B1A w1 + |47 00 ()}

142y

2 (1)

IN

A

142y

u”(t)]? < aC1C5C(N) V2 M2 A5 u" (1) ]2,

142+

aCi|ATu"(t)||A™2

2CH| AT (1)]| AT B (1)[|AT2 w'(8))
142y n

< CLOsC(N) V2 MY A2 u™()]> + |A

142

= h" (1))

C1 AU ()| |ATF 0 ()2 < CLOsC(N) 0~ Y2 M 2| A 0 (1),

Consequently, the above estimate and (3.8) implies

ad n d n 29+l 29+l o,
5 AT OF + 2 AR (O] + v AT u" () + XA bt (1)
< {(a+ DRy V? 4 %aRgu*V}MV?yA“f” u(t)|
1
+{2R Y2 + iaRg,u,_V}Ml/Q]AlJrz% h"(t)|?
= Ko MY AT A (1)) + KsMY2y| AT (1)),

where Ry = C1C5C(N), Ry = C3C5 *C(N) ™, Ky = v~ {(a+1) Ry~ /2 +
%aRg/f'y and K3 = x " H2Ryu "% + %aRgu_V. If M < min{K>, K3, 1},
we have

ad d
—— A" ()]? + —|A7h"(1))? t=T%
> % u” ()| +dt| (t)]* < 0 at
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Thus, in a neighborhood of t = T it follows
|ATa" (8)]2 + |ATh" (8) 2 < CsC(N)p? Y2 M2 for any t € [T*, T* + 6)
which implies T* = co. Therefore, this given
|ATa"(t)2 < CsC(N)p? "2 M2 for any t € (—o0, 00)

|AYh" (8)[2 < C5C(N)p? Y2 M2 for any t € (—o0, 00)

since u"(t) and h"(t) are periodics.

4. Estimates of derivatives of higher order

To show the convergence of the approximate solutions we shall derive es-
timates of derivatives of higher order. By Lemma 3.1, if M is sufficiently
small the approximate solutions satisfy

(4.1) sup [ AT (t)] < C(M), sup [ATh"(t)] < C(M)

with v = % — %, where C'(M) denotes a constant depending on M and
independent of n.
Lemma 3.1. Let (u™(¢),h"™(t)) be the solution of (3.1) given above.

Set . N
Mo= ([ it an = ([ itPan®.
0 0

Then, we have

sup |[Vu"(t)]? < C(My, M), sup |Vh™(t)]* < C(My, M),

0<t<r 0<t<t
and

s,1t1p(oz|u?(t)|2 + [ (1)|?) < C(My My, M),

where C(My, M) and C(Mo My, M) denote constants depending on My,
My, M and independent of n.
Proof. From (3.1) and using (2.1), we have

d
%a\Vu”\2+V|Au”|2

alf||Au"| + CralAMu™||Au™[? + 201 |AVh™|| Ah" || Au”],

IN
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1d
- th Ahn2
5 VR + x]4h®|

< C1|A7u"||Ah"? + C1|A7h™||Ah™ || Au™|.

Adding the above inequalities and using the estimate (4.1), we have

1d
(4.2) 5@V + [VRT12) 4 ] A2 + ] AR"

< aoff||[Au”| + C1C(M)(a + 1)|Au™|? + 2C,C(M)|Ah™ 2.
Recalling the periodicity of Vu™(t) and Vh"(t), we deduce from the
above inequality
/ (V] Au"? + x| AR"[2)dt < ZClC(M)/ V| A" [2dt.
0 0

—i—aMg(/ V|Au"|2)1/2dt+C1C(M)(a+1)/ V| Au™2dt
0 0

or, if dy = min{v, x} > 0,

/OT(]Au"|2 + AR )dt
< aMOdgl(/oTy]Au"]Z)l/thJr CLO(M)d; (a+2) /OTV|Au"\2dt.
Seeing that dy 'C1C(M)(a + 3) < 1, we obtain
/OT(|Au"|2 + AW 2)dt < C(Mo, M).

Newly, applying the Mean Value Theorem for integrals, we have that there
exists t* € [0, 7] such that

|Au"(t*)]2 + \Ah”(t*)\2 < T’lC(MO,M).
By using the Lemma 2.2 , with 6 = % , B =1, we have
[Vu"(t4)]? < p AW ()P < IO (Mo, M)

and
VR ()2 < p AR < e C(Mo, M),
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Now, integrating the inequality (4.2) from t* to t+ 7 (¢t € [0, 7]), we deduce
easily

(4.3)  sup |Vu"(t)]> < C(Moy, M), sup |Vh™(t)]> < C(My, M)
0<t<r 0<t<r

where C(Mj, M) is independent of n.
By other hand, from equations (3.1) we have

(ou} +vAu", ) = (af —aPu"-Vu"+ Ph"-Vh" uy),
h? + yAh",h?) = (—Pu"-Vh" 4 Ph".Vu" h}
£ t t

or, equivalently

5 dt\Vu"\Q + alul|* = (af,u}) + a(Pu” - Vu",u}) + (Ph™ - Vh", u}),

(4.4) |Vh"|2+yh"|2 (Ph™ - Vu", hl') — (Pu™ - Vh", h}).

2 dt
Now, we estimate the right-hand sides of the above inequalities, we have

n «
[(af, ui)| < SIF[* + 5 g

and

(V- Vb, ¢0)| < [vI[n Vbl an < CoC3[ATV[[VD|[VeY|

LN—2

where we use the Hélder inequality, the estimate (2.3) and Sobolev’s em-

bedding with r = =5 and v = 1.
Thus, by using the above estimates and the equalities (4.4), we get
1d n|2 n 2 n|2
@IV [ VRC) + ol + b

IN

B + S g+ CoCol AT [Vup |{|Fu”| + [ Vh"}

+C2Cs{|A"u"||Vh"||Vh}| 4+ |A"h"||Vu"||Vh}|}
(6 o

< SIER 4 Slupl+ C(Mo, M){CoCy|Vu| + [Vh')

Integrating from 0 to 7, we have

(45) [ aluf?+ byl < SM3 + C(Mo, M) [(Va| + [Vhy|ds
0 0
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By other hand, differentiating with respect to ¢ the equalities (3.1), we
obtain
auyy + vAud, wj)
af, — aPuy - Vu" + aPu" - Vuy + Phi - Vh" + Ph" - Vh}', wj),
hi, + xAh}, w;)
Puj - Vh" — Pu" - Vhi + Ph} - Vu" + Ph" - Vu}, wj).

(
(
(4.6) (
(=

Multiplying the first equality by ¢}, (t) and the second equality by d,(t),
and summing the result for j = 1,...,n, we obtain

ad, ., n
E%lut ? + v[Vuy|?
= (ozft, u}) — a(Puy - Vu", u}) + (Phy - Vh", u}) + (Ph" - Vh{, u}),
(47) 5P+ xihg

= (Phy - Vu", b)) + (Ph" - Vuy', hy) — (Puf - Vh", hy'),
since (Pu” - Vup,uy) = (Pu” - Vhi, h}) = 0.

We observe that using the Holder’s inequality, we obtain

N

|((Pée- Vv, by)| < || ,n[VVilbe] on

and using the inequality (2.2) and (2.3) with » = 3 and § = 1, we infer of
the above inequality

(4.8) |(Poy - Vv,by)| < CoC3]A7 || V||V
for any ¢, v, b € V. Analogously,
(49) |(P¢ : Vvt, bt)| S 0203|A7bt||v¢||Vvt|

If, we use the estimate (4.8) for second and third terms in equality (4.7);
and the estimate (4.9) in the last term of this equality, we get

ad
& SN+ |V ? < g 6|V + aCaCalATug| V||V

(4.10) —1—02(]3|A”’h?|Wh”HVu?| + C’203|A7ut ||th”th

similarly, we have

(4.11) 2dt|h“\2 + x|Vh[2 < CoC3| AR} |Vu™||Vh!|

+C5C5) AV || Vh"| |Vl | + CoCsAu?||Vh™||[VhY|.
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Adding the inequalities (4.10) and (4.11), we get

1 d n n n n
5@(041175 ? + |hp[?) 4+ v|Vu}|* + x| Vh]?

(4.12) < ap ME||Vul| + aRs|ATa} ||Vl
+R3{2[AThi!||Vuy| + 2[A7u|[Vhy| + [AThy||Vhy|}

where R = Cy,C3C(My, M) and we use the estimates (4.3).
By using the interpolation inequality (6 = 0,5 = 1/2)

_5 B—
|AVv| < Cy| APv| 75| Ady| 75
where 0 < § < v < 3; Cy = C(4,,7) and v € D(AP) , we have
1
ATap| < C(0, 5.y AR A% |,

we observe

\A%v] = |Vv], and |A%| = |v|.
and thus,
1
[A7af| < C(0, 5, )| Vg [ a7,

Then, the first term in (4.12) is bounded as follows
aRs| A" ||Vuf| < oL|Vup [P [uf |72 Vuf| < oL| Va7 g [
where L = CoC3C4C(My, M). Analogously, we have
ATB| < €4 Vhy g2,

and thus the last term of (4.12) is bounded of the following manner

R3|Ahy||Vhy| < LIVh} [ [b['727|Vhi| < L|Vhi 27 b2,
Now, we look the mixtes terms of (4.12)

2Ry Ahy [ Vuaf| < 2L|Vhy 27 by 12 Vg

similarly
2R;| A7y ||Vhy| < 2L|Vuy|? [up || Vhy|
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The above estimates imply the following differential inequality

1d
5@ 2 + 7 [2) + | Vup[ + x|V
(413) < ap EIVap|+ L Vg g

FLIVRY P2 oL Vi 2 Vg
21|V g 12 VB,

Integrating over [0, 7] we have, since u and h are periodics,

Jo WV} P+ x|Vhi[?) < C(My) + oL [ [Vap [P+ up =2
+L Jo [VRE P RE 2 4 2L 5 VR 2 [ 2 [V
+2L [¢ [Vup 7 [ug 1727 Vhy|.

We will prove the following estimate
T
(4.14) | IV + X VhER) < Oy, Mo, M),
0
If N =3, we have v = %, thus the last inequality implies

J§ (Vg P+ X|Vup ) < C(My) + C(Mo, M) J7 |V 2 uf| 2
(4.15)+C(Mo, M) J§ [V |2 b7 2 + C(Mo, M) [ Vb7 |2[bf |2 V|
+C (Mo, M) J Vg | [uf 2| V.

By using the Holder inequality, we get
T 3 n 1 T n T n
| v < ) g pan [ o
0 0 0
analogously
T T'Lé ’I’Ll T n T n
[ IvmpEm < ([ wpant [ omg e
0 0 0
and
T Lopl n T n T n 2 n|
i vy < () v e

T T 1 T n
([ Pan vy vy

IN

analogously

| o v < ([ pPant v o)
0 0 0 0
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From the inequality (4.13) and by using the above inequality together
with (4.5), we obtain

z
8

[ 1o+ i vhgR) < cn Mo D[ vV 4 3V
which implies the boundeness for N = 3,
T
| WIVuz? 4 xIVhER) < Oy, Mo, M),
0

If N =4, we have v = % and from the inequality (4.13), we have

d
%%Mum? + by [*) + v[Vup? + x|Vhi|? <
apHE|[Vay| + C (Mo, M){|Vup? + [Vhp||Vup| + [Vhi[*}.
From this, we find

3 e (@[uf [ + [P ?) + v|Vap® + x| Vhy|? <
C(My) + C (Mo, M)(v|Vup[? + x| Vhi[?).

thus,

| @AV x| O Rt < ) +C Mo M) [ (0T 243 T ).

Since, we can take (1 — C(Mo, My, M)) > 0 , we obtain the desired
result for N = 4.

Newly, by using the mean-value theorem for integral, we have that there
exists t* € [0, 7], such that
(4.16) vV ()2 4 x| Vh ()2 < 77 C(Mo My, M).

Consequently,

[} (t)]> < p~ MV ()P < v T O(Mo, My, M)
and

by (t)]* < p=H VB ()P < x 7l C(Mo My, M)

Integrating (4.13) from t* to ¢t + 7 with ¢ € [0, 7], and using the above
estimates, we get

Sttlp(aluf(t)l2 + b (1)[?) < C(Mo, My, M).



216 Eduardo A. Notte, Maria D. Rojas and Marko A. Rojas

Lemma 3.2. Let (u"(¢),h"(t)) be the approximate solution of (3.1)
given above. Then, we have

(4.17)sup |[Au"(t)| < C(Mo, My, M), sup|Ah"™(t)| < C(Mo, M1, M)
t t

(4.18) /OT(|Au?(t)|2 + AR (8)[2)dt < C(Mo My, M),

(4.19) [ O + b 0)2)ae < (00 M )
Proof. From the equalities (3.1), we obtain easily
(auy + vAu", Au") = (af —aPu”-Vu" + Ph".Vh" Au"),
(h? + yAh", Ah") = (—Pu™-Vh" + Ph"-Vu", Ah"),
consequently

(4.20) v|Au"? < a|f||Au”| + a|u}||Au”| + o|Pu™ - Vu"||Au” |+

' |Ph™ - Vh"|| Au"|,
(4.21) x| Ah™|* < |h?||Ah"™| + |Ph" - Vu"||Ah"| 4 |Pu” - Vh"||Ah"|.
Now, we use the Proposition 2.1 with § = ~,6 =0 and p = 1, to obtain
(4.22) |P¢ - V| < C1C(M)|A7¢||Av| < C1C(M)|Av|

where we use the estimate (4.22) , here we set ¢ = u” or h™ and v = u” or
h".
The inequalities (4.20) and (4.21) together with (4.22) imply

v[Au"|* + x|Ah"[* < alf]|Au”| + au}|[Au”| + [h}||Ah"|
+2C1C (M) AW + CLC(M)(1 + a)|Au”|2.

Using the Young inequality to the third first terms and the fact that
C(M) is small, we obtain

(423) |AW(t)] < C(Mo, My, M), [AB" ()] < C(My, My, M).
From of the equality (3.1), we have

& Vuf [ +v|Aug

o'

2
= (afy, Au}) — a(Pu} - Vu”, Au}) + a(Pu” - Vu}, Auy)
+(Phy - VB, AuP) + (Ph" - VhY, Aup),
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1 d n n n n n n n n
5 77|V ? + XA} = —(Pu} - Vh", Ah}) — (Pu” - Vhy, Ahy)
+(Ph{ - Vu", Ah}) + (Ph" - Vuy', Ahy).

Now, we estimate the right-hand side as is usual, for example

|(P¢t : vv7bt)| < |¢t‘L%|VV|LN’Abt|

and
|(P¢ . VVt,bt)’ < |¢‘L137N |VVt|Ln|Abt’

—2

for any ¢,v,b €V,,.
Consequently, by using the lemmas 2.1, we have

1 d n n n n
5@(04!%% * +|Vh} %) + v|Au}|* + x| Ah}?

(4.24) < ;Xz|ft|2+aC’103|Vu?HA“f+§u”||Au?
+aCoCs|Vur|| AT T2 u?||Au?| + CoCs|Vh?|| A7 T2 h"||Au?|
+CoC3| VI | A7 30| Auf| + CoCs| V|| A7+ 20" || AhY|
+CaC3| V| A7 3hP|| AR | + CoC3|Vhy|| A7 3" || Aby|
+C5C5|Vh™[| A7 2u?||AR?|.

If N =3, then v = %, thus the lemma 2.1, implies

5 (@ Vup 4+ [V 2) + 2] Aup 4 x| b
2
e
(4.25) < 5yft|2+(J(MO,Ml,J\4)|Vu?||Au?|
3
+C(M05M15M)|AZU?HAU?| + C(Mo,Ml,M)|Vh?||AU?|
3
+C(M07M1aM)‘AZh?HAu?’ + C(M07M17M)|vu?|"4h?|
+C(Mo, My, M)|ATh[| A | + C(Mo, My, M)|Vhy|| Ahp|
+C(Mo, My, M)|Atup || Ahy|.
By using the momentum inequality with v = %, a = % and g =1, we
obtain
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[ATh[|Au?| < C|Vh}|?|AB}|2| Auj].
Analogously

[ATu}||Au}| < C|Vu}|2|Au}|? , |ATh}[|AR}| < C|Vh}|Z|AhY|2,

A%y |AB}| < C|Vuf|?|Auf| 7| Aby |
Consequently, by using the Young inequality, we have in (4.25)

d n n v n n
Sl Vup | + [V [?) + ] Aup 2 + x| by

< C|f|* + C(Moy, My, M) (a|Vui|* + |[Vh[?).

Integrating from ¢* to ¢ € [0, 7], we get

t oy
alVup (t)[? + [Vhy(t)]* + /t*(§\f4u?(8)|2 + x|Ah} (s)[*)ds

C(Mi) + C (Mo, My, M) + o Vui (t*) * + |Vhy ()

<
S C(MOaMlaM)a

where we use the estimates of the lemma 2.1.
If N =4, then v = %, this in (4.24), we have

d
%%(OéIVu?I2 + |Vhi[?) + 5] Auf|? + x| Ahg|?

< C|f|? + O(Mo, My, M)|Vul}||Au}| + C (Mo, My, M)|Vh}||Au}|
+C (Mo, My, M)|Ah} || Auf| + C (Mo, My, M)[Vui||Ahf|
+C/(Mo, My, M)| AR} |* + C (Mo, My, M)|Vhy || Ahy|

+C (Mo, My, M)|Au?|?.

The Young inequality implies

d

@(alvu?l2 + [Vhi?) + v|Au}* + x| Ah}[?

< C|f|? + C (Mg, My, M)|Vu}|? + C(My, My, M)|Vh}|?
—|—C(M0,M1,M)‘Ah?’2 + C(Mo,Ml,M)’Au?‘Q.

Since, we can consider (min{v, x} — C(My, M1, M)) > 0, integrating
from t* to t 4+ 7,we obtain



On the solutions of the magnetohydrodynamic type equations 219

t+71
a|Vul (t + 7)|? + |[Vh(t + 7)) +/ (|Aur(s)|? + |AhP(s)[?)ds
t*

(4.26) < C(My) + C(Mo, My, M) /tj+7(|Vu?(s)\2ds+ |Vhy(s)[*)ds

+a|Vul(t") 2 + [VhP ().

Therefore, using the estimates (4.14) and (4.16), we obtain the desired
estimative.
Equalities (4.6) imply

a]uﬁ]Q = a(fy,u}}) — v(Au}, u}}) — a(Pu} - Vu", uj}) — a(Pu” - Vu}, uy)
+(Ph - Vh", ) + (Ph" - VB, u})
C(If* + |Aup? + [Vu} [ |ATa"* + |Au”*|Vu}

<
+|Vhy[?|A7h"* + | A" | Vh][?),
Ih,[? = —x(Ah}, h}) — (Puj - Vh", h},) — (Pu™ - Vh, h,)
+(Phy - Vu", h}}) + (Ph" - Vu}, hy)
< C(|Ah}|? + [Vu | A"h" > + |Au"|*| Vhy|?

+|Vh 2| A7u"? 4 |Ah" 2| Vul 2.

By using the estimates (4.26), (4.17) and (4.18), we obtain the estimate
(4.19).

5. Proof of Theorems

By the Aubin-Lions theorem, we have from estimates (3.7) that there exist
a subsequences u"(t) and h"(t) such that

u"” — u, h" — h, strongly in L>(r;V).

Also, by the estimates (4.1), we have

u"” — u, h" — h, w*" in L*(7; D(A)).
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and

uy — uy, by — hy, w* in L®(7; V).

and the functions u(t) and h(t) satisfies

u,h € H2(m; H) N HY (7; D(A)) N L>®(1; D(A)) N W (; V).
We will show that

u; — uy, hi’ — hy, strongly in L (7; H).

Taking ¢ = u; and ¢ = hy in Lemma 2.3, with X = VY = B = H, we
obtain the desired convergencies.

Once these later convergencies are established, it is a standard proce-
dure take the limit along the previous subsequences in (3.1) to conclude
that (u,h) is a periodic strong solution of (1.1)-(1.3).

To prove the uniqueness, we consider that (uj, h;) and (uz, hy) are two
solutions of problem (1.1)- (1.3). By defining differences

0 =u; —ug, { =h; — ho.

They satisfy

(0 +vA0,6) = (€-Vhy +hy-VE 6) — a8 - Vug, 6) + a(us - V6, 6),
(ft + XA§7w) = (5 ’ VU1 + h2 : V0,¢> - (0 : Vhl, w) - (uQ ' v57 1/})

for all ¢, € V.
Setting ¢ = 0 and ¥ = £ in the above inequalities, after of adding, we
get

S @0P )+ V0P +x|VER = (0-VE ) —(€-VE m) +a(0- V0, ua).

By other hand, using the Giga-Miyakawa result with d =, 0 = p = %,
we get

(0-VE hy) (A77PO-VE AVhy)

C1|AZ6]|AZE|| ATl | < C1O(M)| VO] VE]

IN
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where, we use the estimate given in the lemma 2.2 Analogously
a(f-Vh,us) < C1C(M)|VO)? , (€-VE uy) < CLO(M)|VEP

Consequently, we obtain

1d
5.1) =
( )th

Since C(M) < 1, we have

(0] + €]*) + v|VO* + x|VE]* < C(M)(v|VO|* + x|VE]?).

90l + |eP) + LAVOP + X|VEP) < 0.
We recall that
017 < n7H VO, 1€ < | VER.
Consequently,
L(vul0? + xpulé[?) < LWV + x| VEP).

Thus, we have in (5.1)
d
2 (a0 + [&]%) + La(al6]? + [¢*) <0,

where Ly = Lymin{r, x}(1 +1) > 0.
Finally,

ald®)]” + €O < (al6(0) + [£(0)[*) exp(—L1t)

for any ¢ € (0, 00).
Since 6(t) and £(t) are periodic in ¢, for any ¢ € (—o0, +00) there exists
a positive integer ng such that ¢ + ng7 > 0 and

ald@®)* + €)1 = al0(t +nom)* + [€(t +noT) .

Hence, it follows,

al0()] + [E@)* < (alf(0)* + [£(0)[*) exp(—Lant)
(n > ng), which implies
alb@®)* + €@ =0

and finally u; = us and h; = ho.
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