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Abstract

Let p > 1 be an integer. We consider an unweighted balanced tree Bpk
of k levels with a root vertex of degree 2p, vertices from the level 2 until the
level (k − 1) of degree 2p+1 and vertices in the level k of degree 1. The case
p = 1 it was studied in [8, 9, 10]. We prove that the spectrum of the Laplacian

matrix L (Bpk) is σ (L (B
p
k)) = ∪kj=1σ

³
T
(p)
j

´
where, for 1 ≤ j ≤ k − 1, T (p)j

is the j× j principal submatrix of the tridiagonal k×k singular matrix T
(p)
k ,

T
(p)
k =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
√
2p 0 · · · 0

√
2p 2p + 1

√
2p

. . .
...

0
√
2p

. . .
. . . 0

...
. . .

. . . 2p + 1
√
2p

0 · · · 0
√
2p 2p

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

We derive that the multiplicity of each eigenvalue of Tj , as an eigenvalue

of L (Bpk) , is at least 2(2
p−1)2(k−j−1)p .Moreover, we show that the multiplicity

of the eigenvalue λ = 1 of L (Bpk) is exactly 2(2
p−1)2(k−2)p . Finally, we prove

that 3, 7 ∈ σ
¡
L
¡
B2k
¢¢
if and only if k is a multiple of 3, that 5 ∈ σ

¡
L
¡
B2k
¢¢

if and only if k is an even number, and that no others integer eigenvalues
exist for L

¡
B2k
¢
.
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1. Introduction

Let G be a graph with vertices 1, 2, ...., n. Let di be the degree of the
vertex i. Let A (G) be the adjacency matrix of G and let D (G) be the
diagonal matrix of vertex degrees. The Laplacian matrix of G is L (G) =
D (G) − A (G) . Clearly, L (G) is a real symmetric matrix. From this fact
and Geršgorin’s theorem, it follows that its eigenvalues are nonnegative real
numbers. Moreover, since its rows sum to 0, 0 is the smallest eigenvalue
of L (G) . In [7], some of the many results known for Laplacian matrices
are given. Fiedler [3] proved that G is a connected graph if and only if the
second smallest eigenvalue of L (G) is positive. This eigenvalue is called the
algebraic connectivity of G and it is denoted by a (G) . This concept has
been studied by many authors. In section 3 of [7], some results concerning
a (G) and some of its many applications are presented.

Denote by Bk an unweighted balanced binary tree of k levels. The tree
B4 and our labeling for its vertices are illustrated below

The number of vertices in Bk is

n = 1 + 2 + 22 + ....+ 2k−1 = 2k − 1.

The degree of the root vertex is 2 while the rest of the vertices have
degree 3, except the vertices in the level k with degree 1, and there are two
branches with the same number of vertices, say the left branch and right
branch.

Using the labels 1, 2, 3, ........, n = 2k − 1, in this order, our labeling for
the vertices of Bk [9] follows the steps:
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1. Label the vertices on the left branch from the bottom to the root
vertex and, in each level, from the left to the right.

2. Label the vertices on the right branch from the root vertex to the
bottom and, in each level, from the left to the right.

With this labeling the Laplacian matrix L (Bk) becomes a symmetric
persymmetric matrix, that is, a symmetric matrix with respect to the main
diagonal as well as to the secondary diagonal. In [9] by using properties
for this type of matrices, among other results, we characterized completely
the spectrum of L (Bk) : σ (L (Bk)) = ∪kj=1σ (Tj) where, for 1 ≤ j ≤ k − 1,
Tj is the j × j principal submatrix of the tridiagonal k× k singular matrix
Tk,

Tk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
√
2 0 · · · 0

√
2 3

√
2

. . .
...

0
√
2

. . .
. . . 0

...
. . .

. . . 3
√
2

0 · · · 0
√
2 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Other results concerning to L (Bk) can be found in [8] and [10]. In [8],
quite tight lower and upper bounds for the algebraic connectivity of Bk are
given; and, in [10], we find the integer eigenvalues of L (Bk).

Here we consider an unweighted balanced tree of k levels with a root
vertex of degree 2p, vertices from the level 2 until the level (k − 1) of degree
2p + 1 and vertices in the level k of degree 1. Denote by Bpk such a tree. In
particular, B1k = Bk. The number of vertices in B

p
k is

n = 1 + 2p + 22p + ..+ 2p(k−1) =
2pk − 1
2p − 1 .

For k = 2, Bp2 is the star graphK1,2p and it is known that the eigenvalues
of L (K1,2p) are 0, 2

p + 1 and 1 with multiplicity 2p − 1. Henceforth, we
assume k ≥ 3.

In this paper, we characterize completely the spectrum of L
¡
Bpk
¢
:

σ
¡
L
¡
Bpk
¢¢
= ∪kj=1σ

³
T
(p)
j

´
where, for 1 ≤ j ≤ k − 1, T (p)j is the j × j principal submatrix of the

tridiagonal k × k singular matrix T
(p)
k ,
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T
(p)
k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
√
2p 0 · · · 0

√
2p 2p + 1

√
2p

. . .
...

0
√
2p

. . .
. . . 0

...
. . .

. . . 2p + 1
√
2p

0 · · · 0
√
2p 2p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

2. The Laplacian matrix L (Bp
k) and its eigenvalues

We introduce the following notations:
If all the eigenvalues of an n× n matrix A are real numbers, we write

λn (A) ≤ λn−1 (A) ≤ ..... ≤ λ2 (A) ≤ λ1 (A) .

J is the reversal matrix, that is, the matrix with ones in the secondary
diagonal and zeros elsewhere. Observe that J2 is the identity matrix. The
order of J will be clear from the context in which it is used.

Im is the identity matrix of order m×m.
em is the all ones column vector of dimension m.
For j = 1, 2, 3, ....., k − 1, nj = 2(k−j)p−1.
For j = 1, 2, ...., k − 3, Cj is the block diagonal matrix defined by

Cj =

⎡⎢⎢⎢⎢⎢⎣
e2p 0 · · · 0
... e2p

...
...

. . . 0
0 · · · 0 e2p

⎤⎥⎥⎥⎥⎥⎦
with nj+1 diagonal blocks. The order of Cj is nj × nj+1.

Since the root vertex degree of Bpk is an even number, we can distinguish
two parts in Bpk with the same number of vertices, say the left part and the
right part. The tree B23 and our labeling for its vertices are shown below
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According to our labeling the vertices on the left part of B23 are 1, 2, 3,
4, 5, 6, 7, 8 on the level 3 and 9, 10 on the level 2, 11 is the root vertex,
and the vertices on the right part of B23 are 12, 13 on the level 2 and 14, 15,
16, 17, 18, 19, 20, 21 on the level 3. The Laplacian matrix L

¡
B23
¢
becomes

L
³
B23
´
=

⎡⎢⎣ U b 0
bT 4 bTJ
0 Jb JUJ

⎤⎥⎦
where

U =

"
I8 −C1
−C1 5I2

#
, C1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In general, using the labels 1, 2, 3, ........, n =
2kp − 1
2p − 1 , in this order, our

labeling for the vertices of Bpk follows the steps:
1. Label the vertices on the left part of Bpkfrom the bottom to the root

vertex and, in each level, from the left to the right.
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2. Label the vertices on the right part of Bpk from the root vertex to the
bottom and, in each level, from the left to the right.

As we expect, for this labeling the Laplacian matrix L
¡
Bpk
¢
becomes a

symmetric persymmetric matrix. More precisely

L
¡
Bpk
¢
=

⎡⎢⎣ U b 0
bT 2p bTJ
0 Jb JUJ

⎤⎥⎦(2.1)

where

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

In1 −C1 0 · · · 0

−CT
1 (2p + 1) In2 −C2

. . .
...

0 −CT
2

. . .
. . . 0

... (2p + 1) Ink−2 −Ck−2
0 · · · 0 −CT

k−2 (2p + 1) Ink−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.2)

and

b =
h
0 · · · · · · 0 −e2p−1

iT
.(2.3)

We recall a basic fact on symmetric persymmetric matrices of order
(2p+ 1)× (2p+ 1) [2] .

Lemma 1. LetA be a complex symmetric persymmetric (2p+ 1)×(2p+ 1)
matrix. Then, A has the form

A =

⎡⎢⎣ U b V J
bT a bTJ
JV Rb JUJ

⎤⎥⎦ ,(2.4)

where U and V are complex symmetric matrices of order p × p, b is a
p−dimensional complex column vector and a = ap+1,p+1 is a complex scalar.
Moreover, if

F=

"
U + V

√
2b√

2bT a

#
then

σ (A) = σ (F ) ∪ σ (U − V ) .
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Theorem 2.

σ
¡
L
¡
Bpk
¢¢
= σ (F ) ∪ σ (U)(2.5)

where

F =

"
U

√
2b√

2bT 2p

#
(2.6)

with U and b as in (2.2) and (2.3), respectively. Moreover, the smallest
eigenvalue and the largest eigenvalue of U are, respectively, the algebraic

connectivity of B(p)k and the second largest eigenvalue of L
³
B(p)k

´
. Also, the

largest eigenvalue of F is the largest eigenvalue of L
³
B(p)k

´
.

Proof. We apply Lemma 1 to L
¡
Bpk
¢
. By comparing (2.4) and (2.1) , we

see that U is defined by (2.2) , V = 0 and b is defined by (2.3) . Thus, by
Lemma 1, (2.5) follows immediately. The rest of the proof follows from (2.5)
together with the fact that the eigenvalues of U interlace the eigenvalues
of F. 2

Now, we search for the eigenvalues of U and F . The following lemma
is a slight variation of Lemma 3 in [9] and, because of this, its proof is
omitted.

Lemma 3. Let a, b and c be real numbers. Let

β1 = a,

βj = b− 2p

βj−1
, j = 2, 3, ..., k − 1, βj−1 6= 0,

and

βk = c− 2p

βk−1
.

Let
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M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

aIn1 C1 0 · · · · · · · · · 0

CT
1 bIn2 C2

. . .
...

0 CT
2

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . . bInk−2 Ck−2
0 · · · · · · · · · 0 Ck−2 bInk−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

aIn1 C1 0 · · · · · · · · · 0

CT
1 bIn2 Cn2

. . .
...

0 Cn2
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . . bInk−2 Cnk−2 0
...

. . . CT
2 bInk−1

√
2e2p−1

0 · · · · · · · · · 0
√
2eT2p−1 c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, (a) If βj 6= 0 for j = 1, 2, ...., k − 2,

detM = β2
(k−1)p−1
1 β2

(k−2)p−1
2 .....β2

3p−1
k−3 β2

2p−1
k−2 β2

p−1
k−1 .(2.7)

(b) detM 6= 0 if and only if βj 6= 0 for j = 1, 2, ...., k − 1.
(c) If βj 6= 0 for j = 1, 2, ...., k − 1,

detN = β2
(k−1)p−1
1 β2

(k−2)p−1
2 .....β2

3p−1
k−3 β2

2p−1
k−2 β2

p−1
k−1 βk.(2.8)

(d) If βj 6= 0 for j = 1, 2, ...., k then detN 6= 0. If βj = 0 for some
j, 1 ≤ j ≤ k − 2, then detN = 0. Also, if βk−1 6= 0 and βk = 0 then
detN = 0.

Theorem 4. Let
P0 (λ) = 1, P1 (λ) = λ− 1,(2.9)

Pj (λ) = (λ− 2p − 1)Pj−1 (λ)− 2pPj−2 (λ)
for j = 2, 3, ...., k − 1(2.10)
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and

Pk (λ) = (λ− 2p)Pk−1 (λ)− 2pPk−2 (λ) .(2.11)

Hence,

(a) If λ ∈ R is such that Pj (λ) 6= 0 for j = 1, 2, ...., k − 2, then

det (λI−U)(2.12)

= P
(2p−1)2(k−2)p−1
1 (λ)P

(2p−1)2(k−3)p−1
2 (λ) ....

.......P
(2p−1)22p−1
k−3 (λ)P

(2p−1)2p−1
k−2 (λ)P 2

p−1
k−1 (λ)

(b) det (λI − U) 6= 0 if and only if λ ∈ R is such that Pj (λ) 6= 0 for
j = 1, 2, ...., k − 1.
(c) If λ ∈ R is such that Pj (λ) 6= 0 for j = 1, 2, ...., k − 1, then

det (λI − F )(2.13)

= P
(2p−1)2(k−2)p−1
1 (λ)P

(2p−1)2(k−3)p−1
2 (λ) ....

........P
(2p−1)22p−1
k−3 (λ)P

(2p−1)2p−1
k−2 (λ)P 2

p−1−1
k−1 (λ)Pk (λ) .

(d) If λ ∈ R is such that Pj (λ) 6= 0, for j = 1, 2, ...., k then det (λI − F ) 6= 0.
If λ ∈ R is such that Pj (λ) = 0, for some j, 1 ≤ j ≤ k − 2, or if λ ∈ R is
such that Pk (λ) = 0 then det (λI − F ) = 0.

Proof. Let λ ∈ R. We apply Lemma 3 to the matrices M = λI − U
and N = λI − F. Then, a = λ− 1, b = λ− 2p − 1 and c = λ− 2p.

(a) Suppose that Pj (λ) 6= 0 for j = 1, 2, ...., k− 2. For brevity, we write
Pj (λ) = Pj . Then,

β1 = λ− 1 = P1
P0
6= 0 and βj = (λ− 2p − 1)−

2pPj−2
Pj−1

=
Pj
Pj−1

6= 0.
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From (2.7) ,

det (λI − U)

= P 2
(k−1)p−1
1

P 2
(k−2)p−1
2

P 2
(k−2)p−1
1

......
P 2

3p−1
k−3

P 2
3p−1

k−4

P 2
2p−1

k−2
P 2

2p−1
k−3

P 2
p−1

k−1
P 2

p−1
k−2

= P
(2p−1)2(k−2)p−1
1 P

(2p−1)2(k−3)p−1
2 ....P

(2p−1)22p−1
k−3 P

(2p−1)2p−1
k−2 P 2

p−1
k−1 .

Thus, (2.12) is proved.

(b) Suppose that Pj (λ) 6= 0 for j = 1, 2, ...., k− 1. Then, βj = Pj(λ)
Pj−1(λ)

6=
0, for j = 1, 2, ..., k−1. From Lemma 3, part (b) , it follows that det (λI − U) 6=
0. Conversely, suppose that det (λI − U) 6= 0 and Pj (λ) = 0 for some
j, 1 ≤ j ≤ k − 1. Since P0 (λ) = 1 6= 0, we may assume Pj−1 (λ) 6= 0 and

Pj (λ) = 0. Then βj =
Pj(λ)

Pj−1(λ)
= 0 and thus det (λI − U) = 0, which is a

contradiction.

(c) Suppose that Pj (λ) 6= 0 for j = 1, 2, ...., k − 1. Then, as in part (a),
βj =

Pj(λ)
Pj−1(λ)

6= 0 for j = 1, 2, ...., k − 1. Moreover,

βk = (λ− 2p)−
2p

βk−1
= (λ− 2p)− 2

pPk−2 (λ)

Pk−1 (λ)
=

Pk (λ)

Pk−1 (λ)
.

From (2.7),(2.8) and (2.12) ,

det (λI − F )

= P
(2p−1)2(k−2)p−1
1 P

(2p−1)2(k−3)p−1
2 ....P

(2p−1)22p−1
k−3 P

(2p−1)2p−1
k−2 P 2

p−1
k−1

Pk
Pk−1

= P
(2p−1)2(k−2)p−1
1 P

(2p−1)2(k−3)p−1
2 ....P

(2p−1)22p−1
k−3 P

(2p−1)2p−1
k−2 P 2

p−1−1
k−1 Pk.

Thus, (2.15) is proved.

(d) Suppose Pj (λ) 6= 0, for j = 1, 2, ...., k. Then, βj =
Pj(λ)

Pj−1(λ)
6= 0

for j = 1, 2, ...., k − 1 and βk =
Pk(λ)

Pk−1(λ)
6= 0. From Lemma 3, part (d) ,

det (λI − F ) 6= 0. Suppose Pj (λ) = 0 for some j, 1 ≤ j ≤ k − 2. Since
P0 (λ) = 1 6= 0, we may suppose Pj−1 (λ) 6= 0 and Pj (λ) = 0. Thus,

βj =
Pj(λ)

Pj−1(λ)
= 0 and therefore det (λI − F ) = 0. Finally, if Pk−1 (λ) 6= 0

and Pk (λ) = 0 then βk =
Pk(λ)

Pk−1(λ)
= 0 and hence det (λI − F ) = 0. 2

An immediate consequence of theorem 2 and theorem 4 is
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Corollary 5.

σ (U) = ∪k−1j=1 {λ ∈ R : Pj (λ) = 0} ,

σ (F ) = ∪kj=1 {λ ∈ R : Pj (λ) = 0}

and
det

¡
λI − L

¡
Bpk
¢¢

= P
(2p−1)2(k−2)p
1 (λ) ..P

(2p−1)2(k−3)p
2 (λ) ..

P
(2p−1)22p
k−3 (λ)P

(2p−1)2p
k−2 (λ)P 2

p−1
k−1 (λ)Pk (λ)

(2.14)

Lemma 6. For j = 1, 2, 3, ..., k− 1, let Tj be the j× j principal submatrix
of the tridiagonal k × k matrix Tk

Tk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
√
2p 0 · · · · · · 0

√
2p 2p + 1

√
2p

. . .
. . .

...

0
√
2p

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . 2p + 1
√
2p

0 · · · · · · 0
√
2p 2p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(2.15)

Then,

det (λI − Tj) = Pj (λ) , j = 1, 2, ..., k.

Proof. It is well known (see for instance [1, page 229]) that the char-
acteristic polynomials pj of the j × j principal submatrix of the symmetric
tridiagonal k × k matrix T ,

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1 0 · · · · · · 0

b1 a2 b2
. . .

. . .
...

0 b2
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . ak−1 bk−1

0 · · · · · · 0 bk−1 ak

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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satisfy the three-term recursion formula

pj (λ) = (λ− aj) pj−1 (λ)− b2j−1pj−2 (λ)

with
p0 (λ) = 1 and p1 (λ) = λ− a1.

In our case, a1 = 1, aj = 2
p+1 for j = 2, 3, ..., k− 1, ak = 2p and bj =

√
2p

for j = 1, 2, ..., k − 1. For these values, the above recursion formula gives
the polynomials Pj , j = 0, 1, 2, ..., k. 2

Theorem 7. Let p ≥ 2. Let Tj , j = 1, 2, ..., k defined in lemma 6. Then,
(a) σ (U) = ∪k−1j=1σ (Tj)

(b) σ (F ) = ∪kj=1σ (Tj) .
(c) σ

¡
L
¡
Bpk
¢¢
= ∪kj=1σ (Tj).

(d) For j = 1, 2, ..., k − 1, the multiplicity of each eigenvalue of the
matrix Tj , as an eigenvalue of L

¡
Bpk
¢
, is at least 2(2

p−1)2(k−j−1)p .

Proof. (a) , (b) and (c) are immediate consequences of Corollary 5 and
Lemma 6. Moreover, since

det
³
λI − L

³
B(p)k

´´
= P

(2p−1)2(k−2)p
1 (λ)P

(2p−1)2(k−3)p
2 (λ) .....

........P
(2p−1)22p
k−3 (λ)P

(2p−1)2p
k−2 (λ)P

(2p−1)
k−1 (λ)Pk (λ)

and
det (λI − Tj) = Pj (λ) , j = 1, 2, ..., k − 1,

we have that the multiplicity of each eigenvalue of the matrix Tj , as an

eigenvalue of L (Bk) , is at least 2(2
p−1)2(k−j−1)p . 2

We recall the following interlacing property [4]:
Let T be a symmetric tridiagonal matrix with nonzero codiagonal en-

tries and λ
(j)
i be the i−th smallest eigenvalue of its j×j principal submatrix.

Then,

λ
(j+1)
j+1 < λ

(j)
j < λ

(j+1)
j < . . . < λ

(j+1)
i+1 < λ

(j)
i < λ

(j+1)
i <

. . . < λ
(j+1)
2 < λ

(j)
1 < λ

(j+1)
1 .
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From this interlacing property and theorem 7, we have

Theorem 8. (a) σ (Tj−1) ∩ σ (Tj) = φ for j = 2, 3, ..., k.
(b) The largest eigenvalue of Tk is the largest eigenvalue of L

¡
Bpk
¢
.

(c) The smallest eigenvalue of Tk−1 is the algebraic connectivity of Bpk.
(d) The largest eigenvalue of Tk−1 is the second largest eigenvalue of

L
¡
Bpk
¢
.

Example 1. Let p = 2 and k = 6. Then, n = 1365. The eigenvalues of
L
¡
B26
¢
, rounded to four decimal places, are given in the following table:

T1 : 1
T2 : 0.1716 5.8284
T3 : 0.0376 3.6222 7.3402
T4 : 0.0090 2.5606 5.4394 7.9910
T5 : 0.0022 2.0082 4.1501 6.5147 8.3248
S6 : 0 1.5359 3 5 7 8.4641

3. The integer eigenvalues of L (Bp
k)

The purpose of this section is to search for the integer eigenvalues of L
¡
Bpk
¢
.

The case p = 1 was studied in [10]. Then, we assume p ≥ 2. Since Bpk
is connected, 0 is a simple eigenvalue of Bpk. From theorem 7, Geřsgorin’s
theorem and the fact that L

¡
Bpk
¢
is a positive semidefinite matrix, it follows

that if λ is an eigenvalue of L
¡
Bpk
¢
then

0 ≤ λ ≤ 2p + 1 + 2
√
2p.

Since P1 (1) = 0, it follows that 1 is an eigenvalue of L
¡
Bpk
¢
. Next,

we prove that Pj (1) 6= 0 for j = 1, 2, ..., k. Keep in mind that we are
assuming p ≥ 2. From (2.10) , we obtain the second order homogeneous
linear difference equation

Pj (1) + 2
pPj−1 (1) + 2

pPj−2 (1) = 0(3.1)

for j = 1, 2, ...., k − 1, with the initial conditions P0 (1) = 1 and P1 (1) = 0.
The characteristic equation of (3.1) is

u2 + 2pu+ 2p = 0.(3.2)
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We have 22p−2 − 2p = 2p
¡
2p−2 − 1

¢
≥ 0 because p ≥ 2. Thus, the roots

of (3.2) are

α = −2p−1 +
√
22p−2 − 2p

β = −2p−1 −
√
22p−2 − 2p.

Let p = 2. Then α = β = −2 and the general solution of (3.1) is [6]:

Pj (1) = c1 (−2)j + c2j (−2)j .
From the initial conditions, we get c1 = 1 and c2 = −1. Hence

Pj (1) = (−2)j (1− j) , j = 1, 2, ...., k − 1.

Moreover

Pk (1) = −3Pk−1 (1)− 4Pk−2 (1)
= −3 (−2)k−1 (−k)− 4 (−2)k−2 (3− k)

= −3 (−2)k−1 (−k)− 2 (−2)k−1 (3− k)

= (−2)k−1 (5k − 6) 6= 0.

Therefore, if p = 2 then Pj (1) = 0 if and only if j = 1. Suppose now
p > 2. In this case, β < α < 0 and the general solution of (3.1) is [6]:

Pj (1) = c1α
j + c2β

j .

From the initial conditions, c1 + c2 = 1 and c1α + c2β = 0, we get

c1 =
β

β − α
and c2 = −

α

β − α
. Hence

Pj (1) =
β

β−αα
j − α

β−αβ
j

= 1
β−α

¡
αjβ − αβj

¢
.

Moreover

Pk (1) = (1− 2p)Pk−1 (1)− 2pPk−2 (1)
= Pk−1 (1)− 2p (Pk−1 (1) + Pk−2 (1)) 6= 0.

Hence, if p > 1 then Pj (1) = 0 if and only if j = 1.

Theorem 9. If p ≥ 2 then the multiplicity of λ = 1 as an eigenvalue of
L
¡
Bpk
¢
is (2p − 1) 2(k−2)p.
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Proof. It is an immediate consequence of (2.14) and the fact that
Pj (1) 6= 0 for all j ≥ 2 if p ≥ 2. 2

We recall an important fact concerning an integer eigenvalue of a tree
[5]: If λ > 1 is an integer eigenvalue of the Laplacian matrix of a tree with
n vértices then λ is a simple eigenvalue and exactly divides n.

Since, in addition, n =
2kp − 1
2p − 1 is odd for any k and p, the only possible

integer eigenvalues of L
¡
Bpk
¢
greater than 1 are restricted to the odd positive

integers not exceeding 2p + 1 + 2
√
2p.

Lemma 10. Let p ≥ 2. If j = 1, 2, ...., k − 1 then Pj (λ) 6= 0 for all integer
λ > 1.

Proof. We already know that the multiplicity of each eigenvalue of the
matrix Tj , as an eigenvalue of L (Bk) , is at least 2(2

p−1)2(k−j−1)p and that

det (λI − Tj) = Pj (λ) . Moreover, for j = 1, 2, ..., k − 1, 2(2
p−1)2(k−j−1)p > 1

because p ≥ 2. Hence, if λ > 1 is an integer number such that Pj (λ) = 0
then λ is an eigenvalue of Tj with multiplicity greater than 1. This is a
contradiction because the integer eigenvalues greater than 1 of a tree are
simple. 2

Therefore in searching for the integer eigenvalues of L
¡
Bpk
¢
greater than

1, we have to look for the integer roots of the equation Pk (λ) = 0.
From now on, we consider p = 2. In this case, we may restrict the values

of λ to the interval (1, 9]. From the recursion formula

Pj (λ) = (λ− 5)Pk−1 (λ)− 4Pk−2 (λ) , j = 2, ...., k − 1

we obtain the second order homogeneous linear difference equation

Pj (λ)− (λ− 5)Pk−1 (λ) + 4Pk−2 (λ) = 0(3.3)

with P0 (λ) = 1 and P1 (λ) = λ − 1. The corresponding characteristic
equation is

u2 − (λ− 5)u+ 4 = 0.(3.4)

Let λ = 9. For this value the equation (3.4) becomes

(u− 2)2 = 0
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and the solution of (3.3) is

Pj (9) = 2
j + 3j2j = 2j (1 + 3j) .

Hence

Pk (9) = 4Pk−1 (9)− 4Pk−2 (9)
= 2k+1 (3k − 2)− 2k (3k − 5)
= 2k(3k + 1) 6= 0.

Thus, we may consider λ ∈ (0, 9) . Then, λ2−10λ+9 < 0 and the roots
of (3.4) is a pair of conjugate complex root :

u1 =
λ−5
2 +

√
10λ−λ2−9

2 i

and u2 =
λ−5
2 −

√
10λ−λ2−9

2 i

where i =
√
−1. Therefore, the general solution of (3.3) is [6, p. 29] :

Pj (λ) = ρj (c1 cosφ (λ) j + c2 sinφ (λ) j)

where

ρ =

⎡⎣µλ− 5
2

¶2
+

Ã√
10λ− λ2 − 9

2

!2⎤⎦ 1
2

= 2

and

cosφ (λ) =
λ− 5
4

and sinφ (λ) =

√
10λ− λ2 − 9

4
.(3.5)

From the initial conditions, we obtain c1 = 1 and

2 (cosφ (λ) + c2 sinφ (λ)) = λ− 1.

Hence, for j = 2, 3, ..., k − 1,

Pj (λ) = 2
j
µ
cosφ (λ) j +

λ+ 3√
10λ− λ2 − 9

sinφ (λ) j

¶
.

We already know that the possible integer eigenvalues greater than 1 of
L
¡
B2k
¢
are 3, 5 and 7.

Theorem 11. (a) 3 ∈ L
¡
B2k
¢
if and only if k is a multiple of 3.

(b) 7 ∈ L
¡
B2k
¢
if and only if k is a multiple of 3.

(b) 5 ∈ L
¡
B2k
¢
if and only if k is even.
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Proof. (a) Let λ = 3. Then, cosφ (3) = −12 and sinφ (3) =
√
3
2 . Hence,

φ (3) = 2π
3 . Moreover

Pk (3) = −Pk−1 (3)− 4Pk−2 (3)
= −2k−1

³
cos (k − 1)φ (3) +

√
3 sin (k − 1)φ (3)

´
−2k

³
cos (k − 2)φ (3) +

√
3 sin (k − 2)φ (3)

´
= −2k−1

Ã
cos (k − 1)φ (3) +

√
3 sin (k − 1)φ (3)

+2 cos (k − 2)φ (3) + 2
√
3 sin (k − 2)φ (3)

!

= −2k−1

⎛⎜⎜⎜⎝
cos kφ (3) cosφ (3) + sin kφ (3) sinφ (3)

+
√
3 sin kφ (3) cosφ (3)−

√
3 cos kφ (3) sinφ (3)

+2 cos kφ (3) cos 2φ (3) + 2 sin kφ (3) sin 2φ (3)

+2
√
3 sin kφ (3) cos 2φ (3)− 2

√
3 cos kφ (3) sin 2φ (3)

⎞⎟⎟⎟⎠
= −2k−1

⎛⎜⎝ −12 cos kφ (3) + 1
2

√
3 sin kφ (3)−

√
3
2 sin kφ (3)

−32 cos kφ (3)− cos kφ (3)−
√
3 sin kφ (3)−√

3 sin kφ (3) + 3 cos kφ (3)

⎞⎟⎠
= 2k

√
3 sin kφ (3) .

Consequently, Pk (3) = 0 if and only if k = 2πl
φ(3) = 3l some positive

integer l.

(b) Let λ = 7. Then, cosφ (7) = 1
2 and sinφ (7) =

√
3
2 . Hence, φ (7) = π

3 .
Moreover

Pk (7) = 3Pk−1 (7)− 4Pk−2 (7)

= 2k−1
µ
3 cos (k − 1)φ (7) + 5√

3
sin (k − 1)φ (7)

¶
−2k

µ
cos (k − 2)φ (7) + 5√

3
sin (k − 2)φ (7)

¶
= 2k−1

Ã
3 cos (k − 1)φ (7) + 5

√
3 sin (k − 1)φ (7)

−2 cos (k − 2)φ (7)− 10√
3
sin (k − 2)φ (7)

!

= 2k−1

⎛⎜⎜⎜⎝
3 cos kφ (7) cosφ (7) + 3 sin kφ (7) sinφ (7)

+5
√
3 sin kφ (7) cosφ (7)− 5

√
3 cos kφ (7) sinφ (7)

−2 cos kφ (7) cos 2φ (7)− 2 sin kφ (7) sin 2φ (7)
− 10√

3
sin kφ (7) cos 2φ (7) + 10√

3
cos kφ (7) sin 2φ (7)

⎞⎟⎟⎟⎠
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= 2k−1

⎛⎜⎝
3
2 cos kφ (7) +

3
2

√
3 sin kφ (7) + 5

√
3
2 sin kφ (7)−

15
2 cos kφ (7) + cos kφ (7)−

√
3 sin kφ (7)

+ 5√
3
sin kφ (7) + 5 cos kφ (7)

⎞⎟⎠
= 2k−1

14

3

√
3 sin kφ (7) .

It follows, Pk (7) = 0 if and only if k = πl
φ(7) = 3l some for positive

integer l.
(c) Let λ = 5. Then, cosφ (5) = 0 and sinφ (5) = 1. Hence, φ (5) = π

2 .
Moreover

Pk (5) = Pk−1 (5)− 4Pk−2 (5)
= 2k−1 (cos (k − 1)φ (5) + 2 sin (k − 1)φ (5))
−2k (cos (k − 2)φ (5) + 2 sin (k − 2)φ (5))

= 2k−1
Ã

cos (k − 1)φ (5) + 2 sin (k − 1)φ (5)
−2 cos (k − 2)φ (5)− 4 sin (k − 2)φ (5)

!

= 2k−1

⎛⎜⎜⎜⎝
cos kφ (5) cosφ (5) + sin kφ (5) sinφ (5)

+2 sin kφ (5) cosφ (5)− 2 cos kφ (5) sinφ (5)
−2 cos kφ (5) cos 2φ (5)− 2 sin kφ (5) sin 2φ (5)
−4 sin kφ (5) cos 2φ (5) + 4 cos kφ (5) sin 2φ (5)

⎞⎟⎟⎟⎠
= 2k−1 (sin kφ (5)− 2 cos kφ (5) + 2 cos kφ (5) + 4 sin kφ (5))
= 2k−15 sin kφ (5) .

It follows, Pk (5) = 0 if and only if k =
πl
φ(5) = 2l for some positive integer

l. 2
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