
ON AUTOMATIC SURJECTIVITY OF SOME
ADDITIVE TRANSFORMATIONS

MUSTPHA ECH-CHÉRIF EL KETTANI
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Abstract

Let X be an infinite dimensional Banach space and let Φ : B(X) −→
B(X) be a spectrum preserving additive transformation. We show that
if the image of quasi-nilpotent operators contains all quasi-nilpotent
operators, then Φ is an automophism or an antiautomorphism of
B(X).
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1. Introduction

Throughout this paper we will denote byX an infinite dimensional complex
Banach space, X 0 the dual of X, B(X) the algebra of all linear bounded
operators on X, and QN(X) the set of quasi-nilpotent operators in B(X).
It seems that in the last few years there has been a growing interest in
problems of caracterizing transformations preserving some sets between
the algebras of linear bounded operators over infinite dimensional Banach
spaces, we can see for exemple [1], [5], [7], [8], [10], [11], [13]. It has been
proved by B. Aupetit [3] that if Φ : B(X) −→ B(X) is a spectrum preserv-
ing surjective additive transformation, then Φ is an automorphism or an
antiautomorphism of B(X). He asked the question what happens if such
transformation is not surjective. In this paper we propose to have the same
result of B. Aupetit by the same hypotheses but we assume only that the
image of quasi-nilpotent operators contains all quasi-nilpotent operators.

Let us fix some notations. For every T ∈ B(X) we denote by σ(T )
and ρ(T ) the spectrum and the spectral radius of T respectively. Every
operator on X of rank one can be written as x⊗ f for some x ∈ X − {0}
and f ∈ X 0 − {0}. We recall that x ⊗ f is defined by (x ⊗ f)y = f(y)x
for y ∈ X. The operator x⊗ f is a quasi-nilpotent operator if and only if
f(x) = 0. For x, y ∈ X and f , g ∈ X 0, the operator x ⊗ f + y ⊗ g is of
rank one if and only if either x and y are linearly dependent or f and g are
linearly dependent ( see [10] and [11] ). We denote by λ the operator λ.I
for every λ ∈ C and by F1(X) the set of rank one operators of B(X).

2. Main results

The aim of this work is to prove the following results:

Theorem 2.1. Let Φ : B(X) −→ B(X) be a spectrum preserving additive
transformation such that QN(X) ⊂ Φ(QN(X)). Then either
i) Φ(T ) = ATA−1, for every T ∈ B(X), where A : X −→ X is a bounded
bijective linear operator; or
ii) Φ(T ) = BT ∗B−1 for every T ∈ B(X), where B : X 0 −→ X is a bounded
bijective linear operator. In this case X must be reflexive.

Corollary 2.1. Let Φ : B(X) −→ B(X) be a spectrum preserving additive
transformation such that QN(X) ⊂ Φ(QN(X)). Then Φ is surjective.



On automatic surjectivity of some additive transformations 113

In order to prove those results we need some lemmas.
The following lemma is due to B. Aupetit ( [3], Corollaire 2.4 ).

Lemma 2.1. Let Φ : B(X) −→ B(X) be a spectrum preserving addi-
tive transformation. Then rank(T )≤ rank Φ(T ) for every T ∈ B(X). In
particular Φ is injective.

The following lemma is a result of A. Jafarian et A. R. Sourour ( [7],
Lemma 4 ).

Lemma 2.2. Let x ∈ X, f ∈ X 0, T ∈ B(X) and λ 6∈ σ(T ). λ ∈ σ(T +x⊗
f) if and only if f((λ− T )−1x) = 1.

Lemma 2.3. Let R ∈ F (X). The following conditions are equivalent:
1) rank(R) = 1,
2) For every Q ∈ QN(X). We have , ρ(Q+R) 6= 0 implies that there exists
r ∈ Q− {0, 1} such that ρ(Q+ rR) 6= 0.

Proof We show that 1) implies 2). Let us consider Q ∈ QN(X) and the
operator R of the form R = x⊗ f where x ∈ X − {0} and f ∈ X 0 − {0}.

For every λ ∈ C∗.

The resolvent λ 7−→ (λ − Q)−1 is holomorphic from C∗ to B(X) and
(λ − Q)−1 =

P+∞
k=0 λ

−k−1Qk, so the function λ 7−→ (λ − Q)−1x is holo-
morphic from C∗ to X and (λ − Q)−1x =

P+∞
k=0 λ

−k−1Qkx. Therefore
the function λ 7−→ f((λ − Q)−1x) is holomorphic from C∗ to C and
(λ − Q)−1x =

P+∞
k=0 λ

−k−1Qkx, [ see [4], p:38-39 ]. 0 is not a remov-
able singularity of the function λ 7−→ f((λ−Q)−1x) because the Laurent’s
serie development f((λ − Q)−1x) =

P+∞
k=0 λ

−k−1f(Qkx) has not a regular
part ( we can also see that 0 is not a removable singurarity from the fact
that the resolvent is not an entire function over C ). So 0 is either a pole
or an essentiel singularity of the function λ 7−→ f((λ−Q)−1x).

In the case where 0 is a pole of the function f((λ−Q)−1x), we establish
that its principal part of the Laurent’s serie development has a finite num-
ber of terms, so there exists an integer n ∈ N such that f(Qmx) = 0
for every m ≥ n. If ρ(Q + R) 6= 0 there exists a non zero complex
number µ ∈ σ(Q + R). By Lemma 2.2 we have f((µ − Q)−1x) = 1
(*). Let us define the polynomial p(z) by p(z) =

Pn−1
k=1 f(Q

kx)zk+1. For
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every z ∈ C∗ we have (z − Q)−1 =
Pn−1

k=0 Q
kz−k−1, which implies that

(z−1−Q)−1 =Pn−1
k=0 Q

kzk+1 and therefore (z−1−Q)−1x =Pn−1
k=0 Q

kxzk+1,
thus p(z) = f((z−1−Q)−1x) for every z ∈ C∗. By (*) we have p 6= 0 which
implies that there exists a non zero complex number λ such that p(λ) = 1

2 ,
it holds that 2f((λ−1 −Q)−1x) = 1 and therefore λ−1 ∈ σ(Q+ 2R). Thus
ρ(Q+ 2R) 6= 0.

In the case where 0 is an essentiel singularity of the function λ 7−→
f((λ−Q)−1x). Picard’s ” Big ” Theorem asserts that, in a neighbourhood
of an essentiel singularity, an analytic function assumes all values, with at
most one possible exception, infinitely often. Thus, there exists α ∈ C∗ and
r ∈ Q∗ such that f((α−Q)−1x) = 1

r , which implies that rf((λ−Q)−1x) = 1
and therefore α ∈ σ(Q+ rR). So, ρ(Q+ rR) 6= 0.

To prove the reverse implication we follow a similar approch of the
Šemrl’s one [11]. We consider a quasi-nilpotent operator Q of rank greater
than one. Such an operator has a matrix representationÃ

Q1 Q2
0 Q3

!
, where Q3 is a quasi-nilpotent operator and Q1 is an

operator acting on a finite-dimensional space with a matrix representation

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . 1
0 0 0 . . . 0


or


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 respectively. Let us consider

an operator R having a matrix representation R =

Ã
R1 0
0 0

!
with

R1 equal to



0 −1/r 0 . . . 0
0 0 0 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 0. . . 0
1/r 0 0 . . . 0


or


0 −1/r 0 0
0 0 1/r 0
0 0 0 0
1/r 0 0 0



respectively, with r ∈ Q−{0, 1}. We have ρ(Q+R) 6= 0 but ρ(Q+rR) = 0.
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Lemma 2.4. Let Φ : B(X) −→ B(X) be a spectrum preserving additive
transformation such that QN(X) ⊂ Φ(QN(X)) and R ∈ B(X). Then, R
is of rank one if and only if Φ(R) is of rank one.

Proof Let R an operator of rank one in B(X). By the Lemma 2.3, for
every Q ∈ QN(X) satisfying ρ(Q + 2R) = 0 we have ρ(Q + R) = 0.
The transformation Φ preserves the spectrum then for every Q ∈ QN(X)
satisfying ρ(Φ(Q) + 2Φ(R)) = 0 we have ρ(Φ(Q) + Φ(R)) = 0. By the as-
sumption QN(X) ⊂ Φ(QN(X)), for every operator Q ∈ QN(X) satisfying
ρ(Q + 2Φ(R)) = 0 we have ρ(Q + Φ(R)) = 0. Applaying the Lemma 2.3
again we conclude that Φ(R) is of rank one. To prove the reverse implica-
tion it suffices to applay Lemma 2.1.

Lemma 2.5. Let Φ : B(X) −→ B(X) be a spectrum preserving additive
transformation such that QN(X) ⊂ Φ(QN(X)). Then Φ(λ) = λ for every
λ ∈ C.

Proof If λ = 0 we have Φ(0) = 0.
If λ 6= 0 we prove that for every x ∈ X the vectors λx and Φ(λ)x are
linearly dependent. Assume in the contrary that there exists x ∈ X such
that λx and Φ(λ)x are linearly independent. Let U the linear span of { λx,
Φ(λ)x }, and W a closed complement of U . Define an operator M on X
by

Mλx = 2λ2x− λΦ(λ)x

MΦ(λ)x = 4λ2x− 2λΦ(λ)x
Mw = 0 pour w ∈W.

Thus, we have that M ∈ B(X) and M2 = 0. By the assumption
QN(X) ⊂ Φ(QN(X)) there exists Q ∈ QN(X) such that M = Φ(Q). We
have σ(λ + Q) = {λ} and therefore σ(Φ(λ) +M) = {λ} this contradicts
the fact that (Φ(λ)+M)(λx) = 2λ(λx). Thus, for every x ∈ X the vectors
Φ(λ)x and λx are linearly dependent. As Φ preserves the spectrum we have
Φ(λ) = λ.

Lemma 2.6. Let Φ : B(X) −→ B(X) be a spectrum preseving additive
transformation such that QN(X) ⊂ Φ(QN(X)). Then the restriction of
Φ to F1(X) is 1-homogeneous on F1(X). ( i.e: Φ(αR) = αΦ(R) for every
α ∈ C and R ∈ F1(X) ).
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Proof Since every operator of rank one can be written in the form x⊗f for
some x ∈ X and f ∈ X 0, it is enough to prove that Φ(αx⊗ f) = αΦ(x⊗ f)
for every α ∈ C.

Let us fix α ∈ C∗, x ∈ X − {0} and f ∈ X 0 − {0}. We start by the
case where f(x) 6= 0, in which case we can take f(x) = 1. By the Lemma
2.4 there exists u ∈ X and ϕ ∈ X 0 such that Φ(x⊗ f) = u⊗ϕ. Because Φ
preserves the spectrum we have ϕ(u) = 1. Let us consider v ∈ X − {0} et
ψ ∈ X 0 − {0} such that ϕ(v) = 0 and ψ(u) = 0. Since the operators v ⊗ ϕ
and u ⊗ ψ are quasi-nilpotent there exists w, z ∈ X and h, k ∈ X 0 such
that

Φ(w ⊗ h) = v ⊗ ϕ and Φ(z ⊗ k) = u⊗ ψ.

By the Lemma 2.4 there exists uα ∈ X and ϕα ∈ X 0 such that Φ(αx⊗f) =
uα ⊗ ϕα. We have Φ(αx ⊗ f + x ⊗ f) = uα ⊗ ϕα + u ⊗ ϕ. The fact that
αx ⊗ f + x ⊗ f and the Lemma 2.4 implie that uα ⊗ ϕα + u ⊗ ϕ is of
rank one. Thus, either uα and u are linearly dependent or ϕα and ϕ are
linearly dependent. Assume that ϕα and ϕ. By absorbing a constant in
the first term of the tensor product uα ⊗ ϕα we get ϕα = ϕ. So we have
Φ(αx⊗ f + z ⊗ k) = uα ⊗ ϕ+ u⊗ ψ. Φ(x⊗ f + z ⊗ k) = u⊗ ϕ+ u⊗ ψ,
this and the Lemma 2.4 implie that x ⊗ f + z ⊗ k is of rank one which
holds that αx⊗ f + z ⊗ k is of rank one. So uα⊗ϕ+ u⊗ψ is of rank one.
Since ϕ(u) = 1 and ψ(u) = 0, the vectors ϕ and ψ are linearly independent.
Thus uα and u are linearly dependent and so there exists β ∈ C∗ such that
uα = βu. It holds that Φ(αx⊗f) = βu⊗ϕ. Since Φ preserves the spectrum
we conclude that α = β.

In the case where uα and u are linearly dependent we get by absorbing
a costant in the second term of the tensor product that uα = u. We have
Φ(x⊗ f + w ⊗ h) = u⊗ ϕ+ v ⊗ ϕ so by the the Lemma 2.4 the operator
x⊗ f +w⊗ h is of rank one. Thus, the operator αx⊗ f +w⊗ h is of rank
one. We conclude that Φ(αx⊗ f +w⊗ h) = u⊗ϕα+ v⊗ϕ is an operator
of rank one. The fact that ϕ(u) = 1 and ϕ(v) = 0 implies that u and v
are linearly independent so ϕα and ϕ are linearly dependent. It holds that
there exists γ ∈ C∗ such that ϕα = γϕ. Thus, Φ(αx⊗ f) = γu⊗ ϕ. Since
Φ preserves the spectrum it holds that α = γ. Finally, we conlude that in
this case Φ(αx⊗ f) = αΦ(x⊗ f).

Let now paste to the case where f(x) = 0. We choose g ∈ X 0 satisfying
g(x) = 1. Then, Φ(αx⊗ f) = Φ(αx⊗ (f + g))− Φ(αx⊗ g) = αΦ(x⊗ f).
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Now we are ready to prove our main results.

Proof of Theorem 2.1
The Lemmas 2.1, 2.4 and 2.6 show that Φ is injective, preserves nilpotent
operators of rank one in both directions and is 1-homogeneous on F1(X)
respectively. The same hypotheses permit to P. Šemrl in [11] pp:531− 532
to conclude that for every x ∈ X and every f ∈ X 0 either

Φ(x⊗ f) = Ax⊗ Cf, (2)

where A : X −→ X and C : X 0 −→ X 0 are linear maps, or

Φ(x⊗ f) = Bf ⊗Dx, (3)

where B : X 0 −→ X and D : X −→ X 0 are linear maps.
Let us in the situation (2) and consider z 6∈ σ(T ) = σ(Φ(T )). Define

Fx,f (z) = < (z − T )−1x, f >

Gx,f (z) = < (z − Φ(T ))−1Ax,Cf > .

Where <,> denote the duality between X and X 0.

Step 1
We show that either Gx,f ≡ 0 or Fx,f ≡ Gx,f for every x ∈ X and every
f ∈ X 0.
If Fx,f 6= 1, then by the Lemma 2.2, the operator z−T −x⊗f is invertible
in B(X) and so z − Φ(T )− Ax⊗ Cf is invertible in B(X), implying that
Gx,f 6= 1. Equivalently, the equation Gx,f = 1 implies Fx,f = 1. But
the function Fx,f and Gx,f are linear in the parameters x and f and so if
Gx,f = w 6= 0, then Fx,f = w. By analyticity of the two functions, we see
that either Gx,f ≡ 0 or Fx,f ≡ Gx,f .
Let x1 ∈ X and f1 ∈ X 0. If Gx1,f1 6≡ 0, then by the foregoing argument
X 0 = {f ;Gx1,f ≡ 0} ∪ {f ;Fx1,f ≡ Gx1,f} a union of two subspaces. Thus
one of the two subspaces is all of X 0. Since Gx1,f1 6≡ 0, then Fx1,f ≡ Gx1,f

for every f ∈ X 0. Similarly we can prove that Fx,f ≡ Gx,f for every x ∈ X.
Finally we have either

< (z − T )−1x, f >=< (z − Φ(T ))−1Ax,Cf > (4)

or
< (z − Φ(T ))−1Ax,Cf >= 0, (5)
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for every x ∈ X 0, f ∈ X 0 and z 6∈ σ(T ) = σ(Φ(T )).

Step 2
We prove that only one of the relations (4) or (5) is satisfyed for every
T ∈ B(X).

Assume that there exist T1 ∈ B(X) satisfying (4) and there exist T2 ∈
B(X) satisfying (5). So we have

< (z − T1)
−1x, f >=< (z − Φ(T1))−1Ax,Cf > (6)

< (z − Φ(T2))−1Ax,Cf >= 0, (7)

for every x ∈ X, f ∈ X 0 and z 6∈ σ(T1) ∪ σ(T2). We multiply both re-
lations (6) and (7) by z and let z goes to infinity. We conclude that
< x, f >=< Ax,Cf >= 0, for every x ∈ X and erery f ∈ X 0. This is
a contradiction.

Step 3
We prove that < (z − T )−1x, f >=< (z − Φ(T ))−1Ax,Cf >, for every
T ∈ B(X).

By the second step either (4) is satisfyed for every T ∈ B(X) or (5)
is satisfyed for every T ∈ B(X). Assume that (5) is satisfyed, then for
T = z− I with z ∈ C∗ we have z 6∈ σ(T ) and < Ax,Cf >= 0. Thus, either
Ax = 0 or Cf = 0 and by (2) we have Φ(x ⊗ f) = Ax ⊗ Cf = 0. This
conctacictes the invjectivity of Φ.

Step 4
We prove that A is bounded and Φ(T ) = ATA−1 for every T ∈ B(X).

By the third step we have < (z−T )−1x, f >=< (z−Φ(T ))−1Ax,Cf >
for every T ∈ B(X), x ∈ X, f ∈ X 0 and z 6∈ σ(T ) = σ(Φ(T )). By the
closed graph theorem, we can easily establish the fact that A and C are
bounded. Now we multilply the equality by z 6= 0 ( for z = 0 the problem is
trivial ) we hold that < z(z−T )−1x, f >=< z(z−Φ(T ))−1Ax,Cf >, thus
< (I − 1

zT )
−1x, f >=< (I − 1

zΦ(T ))
−1Ax,Cf >. Taking the derivative at

z and taking the limit as z → ∞ we get < Tx, f >=< Φ(T )Ax,Cf > for
every x ∈ X, f ∈ X 0 and T ∈ B(X). Therefore

T = A0Φ(T )A, where A0 is the operator satisfying C = (A0)∗. (8)
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We prove that A and A0 are bijectives. The surjectivity follows easily
from (8). Assume that A0y = 0 for some y ∈ X and take T1 ∈ B(X) such
that Φ(T1) = y ⊗ g, where g ∈ X 0 satisfying g 6= 0 and g(y) = 0. We have
A0Φ(T1) = 0. By the relation (8) we get T1 = 0 and therefore y ⊗ g = 0,
which implies that y = 0. Thus, A0 is injective.
The fact that Φ(I) = I implies that A0A = I. Since A0 is bijective we
conclude that AA0 = I. So A0 = A−1. Therefore Φ(T ) = ATA−1 for every
T ∈ B(X).

Step 5
Let us go the situation (3) where Φ(x⊗ f) = Bf ⊗Dx. By a similar proof
used in the situation (2), we can show that B and D are bijectives. We
prove now that the space X is reflexive. Since Φ preserves the spectrum we
have (Dx)(Bf) = f(x), this implies that B and D are closed and therefore
are bounded. Let K : X −→ X 00 be the natural embedding of X into
X 00. Then the adjoit operator of D (i.e: D∗ ) is defined at least on the
image of K and D = (B−1)∗K where (B−1)∗ is the adjoint operator of
B−1. Thus, K is bijective and bounded. Therefore X is reflexive. We have
< Tx, f >=< Φ(T )Bf,Dx > for every x ∈ X, f ∈ X 0 and T ∈ B(X). So
we get < x, T ∗f >=< x,B0Φ(T )Bf >, where B0 is the operator satisfying
D = (B0)∗. Therefore T ∗ = B0Φ(T )B for every T ∈ B(X). By a similar
argument used in the fourth step, we can prove that B0 and B are bijectives
and B0 = B−1. Thus Φ(T ) = BT ∗B−1 for every T ∈ B(X).

Proof of Corollary 2.1
By Theorem 2.1 we have either Φ(T ) = ATA−1 for every T ∈ B(X), or
Φ(T ) = BT ∗B−1 for every T ∈ B(X), where A : X −→ X and B : X 0 −→
X are linear bounded isomorphisms. It is easy to conclude in the case where
Φ(T ) = ATA−1 that Φ is surjective. In the case where Φ(T ) = BT ∗B−1 we
have proved in the fifth step of Theorem 2.1 that in this case X is reflexive.
Therefore Φ is surjective.

Remark
In the case where X is a separable infinite dimensional complex Hilbert
space, the proof of our results becomes easier. In fact by a result of Fill-
more [6], every operator is a finite sum of square zero operators, and Φ is
surjective. Then we are in the same conditions of B. Aupetit [3].
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