Proyecciones
Vol. 23, N^{o} 2, pp. 89-95, August 2004.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/S0716-09172004000200002

A SIMPLE PROOF OF A THEOREM ON (2n)-WEAK AMENABILITY

MOHAMMAD SAL MOSLEHIAN
FATEMEH NEGAHBAN
Ferdowsi University, Irán

Received: January 2003. Accepted : December 2003.

Abstract

A simple proof of $(2 n)$-weak amenability of the triangular Banach algebra $\mathcal{T}=\left[\begin{array}{cc}\mathcal{A} & \mathcal{A} \\ 0 & \mathcal{A}\end{array}\right]$ is given where \mathcal{A} is a unital C^{*}-algebra.

AMS Classification : $46 H 25,46 L 5 \%$.
Key words and phrases : Triangular Banach algebra, n-weak amenability.

1. Introduction

The topological cohomology groups provide us some significant information about Banach algebras such as their amenability, contractibility, stability, and singular extensions.[4]

Suppose that \mathcal{A} and \mathcal{B} are unital Banach algebras and \mathcal{M} is a unital Banach $\mathcal{A}-\mathcal{B}$-module that is simultaneously a Banach space, a left \mathcal{A} module and a right \mathcal{B}-module satisfying $a(m b)=(a m) b, 1_{\mathcal{A}} m=m 1_{\mathcal{B}}$ and $\|a x b\| \leq\|a\|\|x\|\|b\|$. Then $\mathcal{T}=\left[\begin{array}{cc}\mathcal{A} & \mathcal{M} \\ 0 & \mathcal{B}\end{array}\right]=\left\{\left[\begin{array}{cc}a & m \\ 0 & b\end{array}\right] ; a \in\right.$ $\mathcal{A}, m \in \mathcal{M}, b \in \mathcal{B}\}$ equipped with the usual 2×2 matrix addition and formal multiplication and the norm $\left\|\left[\begin{array}{cc}a & m \\ 0 & b\end{array}\right]\right\|=\|a\|+\|m\|+\|b\|$ is said to be a triangular Banach algebra.

Note that the dual \mathcal{M}^{*} of \mathcal{M} together with the actions $(\phi a)(x)=\phi(a x)$ and $(b \phi)(x)=\phi(x b)$ is a Banach $\mathcal{B}-\mathcal{A}$-module. Similarly the ($2 n$)-th dual $\mathcal{M}^{(2 n)}$ of \mathcal{M} is a Banach $\mathcal{A}-\mathcal{B}$-module and the $(2 n-1)$-th dual $\mathcal{M}^{(2 n-1)}$ of \mathcal{M} is a Banach $\mathcal{B}-\mathcal{A}-$ module. In particular, $\mathcal{A}^{(n)}$ is a Banach A-bimodule when \mathcal{A} is regarded as an \mathcal{A}-bimodule in the natural way.

The notion of n-weak amenability was introduced by Dales, Ghahramani and Gronbæck [2]. Let \mathcal{M} be a Banach A-bimodule, $Z^{1}(A, \mathcal{M})=$ $\{\delta: \mathcal{A} \longrightarrow \mathcal{M} ; \delta$ is bounded and linear, and $\delta(a b)=a \delta(b)+\delta(a) b\}$ and $B^{1}(A, \mathcal{M})=\left\{\delta_{x}: \mathcal{A} \longrightarrow \mathcal{M} ; \delta_{x}(a)=a x-x a, a \in \mathcal{A}, x \in \mathcal{M}\right\}$. Then the first topological cohomology group $H^{1}(\mathcal{A}, \mathcal{M})$ is defined to be the quotient $Z^{1}(A, \mathcal{M}) / B^{1}(A, \mathcal{M})$. If $H^{1}\left(\mathcal{A}, \mathcal{A}^{(n)}\right)=0$, then \mathcal{A} is called n-weakly amenable. If for all n, \mathcal{A} is n-weakly amenable, \mathcal{A} is said to be permanently weakly amenable. For instance, every C^{*}-algebra is permanently weakly amenable [2, Theorem 3.1].

Forrest and Marcoux investigated a relation between n-weak amenability of triangular Banach algebra $\mathcal{T}=\left[\begin{array}{cc}\mathcal{A} & \mathcal{M} \\ 0 & \mathcal{B}\end{array}\right]$ and those of algebras \mathcal{A} and \mathcal{B}. In particular, they proved permanently weak amenability of the triangular Banach algebra $\mathcal{T}=\left[\begin{array}{cc}\mathcal{A} & \mathcal{A} \\ 0 & \mathcal{A}\end{array}\right]$ where \mathcal{A} is a C^{*}-algebra.

In this paper we give a simple proof of the $(2 n)$-weak amenability of the Banach algebra $\mathcal{T}=\left[\begin{array}{cc}\mathcal{A} & \mathcal{A} \\ 0 & \mathcal{A}\end{array}\right]$ in which \mathcal{A} is a C^{*}-algebra, cf. [3, Proposition 4.5].

2. Preliminaries

Let \mathcal{P}, \mathcal{Q} and \mathcal{R} be Banach spaces and $\phi: \mathcal{P} \times \mathcal{Q} \rightarrow \mathcal{R}$ be a bounded bilinear map. Define a bilinear map $\phi^{*}: \mathcal{R}^{*} \times \mathcal{P} \rightarrow \mathcal{Q}^{*}$ by $<q, \phi^{*}\left(r^{*}, p\right)>=<$ $\phi(p, q), r^{*}>; p \in \mathcal{P}, q \in \mathcal{Q}, r^{*} \in \mathcal{R}^{*}$ where $<., .>$ denotes the natural pairing. Then $\phi^{* * *}$ is called the dual of ϕ and has the following properties; cf. [1]:
(i) $\phi^{* * *}(p, q)=\phi(p, q) ; p \in \mathcal{P}, q \in \mathcal{Q}$,
(ii)for fixed $q^{* *} \in \mathcal{Q}^{* *}, p^{* *} \mapsto \phi^{* * *}\left(p^{* *}, q^{* *}\right)$ is weak *-continuous,
(iii)for fixed $p \in \mathcal{P}, q^{* *} \mapsto \phi^{* * *}\left(p, q^{* *}\right)$ is weak*-continuous.

In general for fixed $p^{* *} \in \mathcal{P}^{* *}, q^{* *} \mapsto \phi^{* * *}\left(p^{* *}, q^{* *}\right)$ is not weak*-continuous.
We shall call the bounded bilinear map ϕ regular, when for fixed $p^{* *} \in$ $\mathcal{P}^{* *}, q^{* *} \mapsto \phi^{* * *}\left(p^{* *}, q^{* *}\right)$ is weak*-continuous.

There are two important general examples as follows:
First, if \mathcal{X} is a Banach left \mathcal{A}-module with the outer multiplication $\phi: \mathcal{A} \times \mathcal{X} \rightarrow \mathcal{X}$, then $\phi^{* * *}: \mathcal{A}^{* *} \times \mathcal{X}^{* *} \rightarrow \mathcal{X}^{* *}$ defines a Banach left $\mathcal{A}^{* *}$-module structure on $\mathcal{X}^{* *}$ extending ϕ.

Second, if \mathcal{A} is a Banach algebra, $\mathcal{P}=\mathcal{Q}=\mathcal{R}=\mathcal{A}$ and $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ is defined by $\phi(a, b)=a b$, then $\phi^{* * *}$ is an associative multiplication on $\mathcal{A}^{* *}$ making that into a Banach algebra. If ϕ is regular then \mathcal{A} is called Arens regular.

Now, for each $a, b \in \mathcal{A}, f \in \mathcal{A}^{*}, F, G \in \mathcal{A}^{* *}$, put
$(f a)(b)=f(a b),(F f)(a)=F(f a),(F G)(f)=F(G f) ;$
$(a . f)(b)=f(b a),(f . F)(a)=F(a . f),(F . G)(f)=G(f . F)$.
We shall call $F G$ and $F . G$ the first (left) and the second (right) Arens products, respectively. $F G$ is nothing except $\phi^{* * *}$. Indeed, $\phi^{*}(f, a)(b)=$ $f(a b), \phi^{* *}(F, f)(a)=F(f(a))$ and $\phi^{* * *}(F, G)(f)=F(G(f))$. Similarly $\psi^{* * *}(F, G)=G . F$, where $\psi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ is defined by $\psi(a, b)=b a$.

Following [3], we describe the action of \mathcal{T} upon $\mathcal{T}^{(n)}$:
Let $\mathcal{T}=\left[\begin{array}{cc}\mathcal{A} & \mathcal{M} \\ 0 & \mathcal{B}\end{array}\right]$ be a triangular Banach algebra and $\left[\begin{array}{cc}F_{1} & H_{1} \\ 0 & G_{1}\end{array}\right],\left[\begin{array}{cc}F_{2} & H_{2} \\ 0 & G_{2}\end{array}\right] \in \mathcal{T}^{* *}$. Suppose that $\left[\begin{array}{cc}F_{1} & H_{1} \\ 0 & G_{1}\end{array}\right]=$ weak ${ }^{*}$
$\lim _{i}\left[\begin{array}{cc}a_{i} & m_{i} \\ 0 & b_{i}\end{array}\right]$ and $\left[\begin{array}{cc}F_{2} & H_{2} \\ 0 & G_{2}\end{array}\right]=$ weak $^{*}-\lim _{j}\left[\begin{array}{cc}a_{j} & m_{j} \\ 0 & b_{j}\end{array}\right]$. Then $F_{1}=$ weak $^{*}-\lim _{i} a_{i}, F_{2}=$ weak $^{*}-\lim _{j} a_{j}, G_{1}=$ weak $^{*}-\lim _{i} b_{i}, G_{2}=$ weak $^{*}-$ $\lim _{j} b_{j}, H_{1}=$ weak $^{*}-\lim _{i} m_{i}$ and $H_{2}=$ weak $^{*}-\lim _{i} m_{j}$. Therefore

$$
\left[\begin{array}{cc}
F_{1} & H_{1} \\
0 & G_{1}
\end{array}\right]\left[\begin{array}{cc}
F_{2} & H_{2} \\
0 & G_{2}
\end{array}\right]=w e a k^{*}-\lim _{i} \lim _{j}\left[\begin{array}{cc}
a_{i} & m_{i} \\
0 & b_{i}
\end{array}\right]\left[\begin{array}{cc}
a_{j} & m_{j} \\
0 & b_{j}
\end{array}\right]=
$$

$$
\begin{aligned}
& \text { weak }^{*}-\lim _{i} \lim _{j}\left[\begin{array}{cc}
a_{i} a_{j} & m_{i} m_{j} \\
0 & b_{i} b_{j}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\text { weak*}-\lim _{i} \lim _{j} a_{i} a_{j} & \text { weak } \\
0 & \text { weak }^{*}-\lim _{i} \lim _{j} m_{i} m_{j} \\
\lim _{j} b_{i} b_{j}
\end{array}\right] \\
& =\left[\begin{array}{cc}
F_{1} F_{2} & F_{1} H_{2}+H_{1} G_{2} \\
0 & G_{1} G_{2}
\end{array}\right] .
\end{aligned}
$$

Hence the first Arens product on $\mathcal{T}^{* *}$ is a matrix-like multiplication.
By repeatedly applying the first (or second) Arens product, one can similarly make $\mathcal{T}^{(2 n)}$ for $n>1$ into a Banach algebra. Thus an action of T upon $\mathcal{T}^{(2 n)}$ is obtained when we restrict the Arens product to the image of \mathcal{T} in $\mathcal{T}^{(2 n)}$ under the canonical embedding. This action looks like standard matrix multiplication.

It is easy to see that the actions of \mathcal{T} upon \mathcal{T}^{*} is given by
$\left[\begin{array}{cc}a & m \\ 0 & b\end{array}\right]\left[\begin{array}{cc}f & h \\ 0 & g\end{array}\right]=\left[\begin{array}{cc}a f+m h & b h \\ 0 & b g\end{array}\right]$ and
$\left[\begin{array}{cc}f & h \\ 0 & g\end{array}\right]\left[\begin{array}{cc}a & m \\ 0 & b\end{array}\right]=\left[\begin{array}{cc}f a & h a \\ 0 & h m+g b\end{array}\right]$, in which
$\left[\begin{array}{cc}a & m \\ 0 & b\end{array}\right] \in \mathcal{T},\left[\begin{array}{ll}f & h \\ 0 & g\end{array}\right] \in \mathcal{T}^{*}$.
The action of \mathcal{T} upon $\mathcal{T}^{(3)}$ is the restriction to \mathcal{T} of the dual action $\mathcal{T}^{(2)}$ upon $\mathcal{T}^{(3)}$. In fact, the action of \mathcal{T} upon \mathcal{T}^{*} can be generalized to the action of \mathcal{T} upon $\mathcal{T}^{(2 m-1)}, m \geq 2$.

3. Main Result

We start by reviewing some results on $(2 n-1)$-weak amenability of triangular Banach algebras:

Theorem 3.1. Let \mathcal{A} and \mathcal{B} be unital Banach algebras and \mathcal{M} be a unital Banach $\mathcal{A}-\mathcal{B}$-module. Let $\mathcal{T}=\left[\begin{array}{cc}\mathcal{A} & \mathcal{M} \\ 0 & \mathcal{B}\end{array}\right]$ be the corresponding triangular Banach algebra. Let n be a positive integer. Then

$$
H^{1}\left(\mathcal{T}, \mathcal{T}^{(2 n-1)}\right) \simeq H^{1}\left(\mathcal{A}, \mathcal{A}^{(2 n-1)}\right) \oplus H^{1}\left(\mathcal{B}, \mathcal{B}^{(2 n-1)}\right)
$$

It follows that \mathcal{T} is $(2 n-1)$-weakly amenable if and only if both \mathcal{A} and \mathcal{B} are.

Corollary 3.2. $\mathcal{T}=\left[\begin{array}{cc}\mathcal{A} & \mathcal{A} \\ 0 & \mathcal{A}\end{array}\right]$ is $(2 n-1)$-weakly amenable if \mathcal{A} is a C^{*} algebra.

Proof. Apply above theorem and permanently weak amenability of \mathcal{A} [2, Theorem 3.1].

Now let \mathcal{M} be a Banach $\mathcal{A}-\mathcal{B}$-module and $\rho_{x, y}: \mathcal{M} \longrightarrow \mathcal{M}^{(2 n)}$ be defined by $\rho_{x, y}(m)=x m-m y$, where $x \in \mathcal{A}^{(2 n)}, m \in \mathcal{M}$ and $y \in \mathcal{B}^{(2 n)}$. Recall that if \mathcal{A} is a Banach algebra, so is $\mathcal{A}^{(2 n)}$ equipped with the (first) Arens product $\Gamma_{1} \circ \Gamma_{2}=w^{*}-\lim _{i} \lim _{j} a_{i} a_{j}$ where $\left\{a_{i}\right\}$ and $\left\{a_{j}\right\}$ are nets in $\mathcal{A}^{(2 n-2)}$ converging in weak*-topology to $\Gamma_{1}, \Gamma_{2} \in \mathcal{A}^{(2 n-2)}$, respectively. We could therefore define the centeralizer of \mathcal{A} in $\mathcal{A}^{(2 n)}$ as $Z_{\mathcal{A}}\left(\mathcal{A}^{(2 n)}\right)=\{x \in$ $\mathcal{A}^{(2 n)} ; x a=a x$ for all $\left.a \in \mathcal{A}\right\}$ and the central Rosenblum operator on \mathcal{M} with coefficients in $\mathcal{M}^{(2 n)}$ as $Z R_{\mathcal{A}, \mathcal{B}}\left(\mathcal{M}, \mathcal{M}^{(2 n)}\right)=\left\{\rho_{x, y} ; x \in Z_{\mathcal{A}}\left(\mathcal{A}^{(2 n)}\right), y \in\right.$ $\left.Z_{\mathcal{B}}\left(\mathcal{A}^{(2 n)}\right)\right\}$. The later space is clearly a subspace of $\operatorname{Hom}_{\mathcal{A}, \mathcal{B}}\left(\mathcal{M}, \mathcal{M}^{(2 n)}\right)=$ $\left\{\phi: \mathcal{M} \longrightarrow \mathcal{M}^{(2 n)} ; \phi(a m b)=a \phi(m) b\right.$, for all $\left.a \in \mathcal{A}, m \in \mathcal{M}, b \in \mathcal{B}\right\}$.
The following theorem play a key role in the subject:

Theorem 3.3. Let \mathcal{A} and \mathcal{B} be unital Banach algebras and \mathcal{M} be a unital Banach $\mathcal{A}-\mathcal{B}$-module. Let $\mathcal{T}=\left[\begin{array}{cc}\mathcal{A} & \mathcal{M} \\ 0 & \mathcal{B}\end{array}\right]$ be the corresponding triangular Banach algebra. If n is a positive integer and both \mathcal{A} and \mathcal{B} are (2n)-weakly amenable, then

$$
H^{1}\left(\mathcal{T}, \mathcal{T}^{(2 n)}\right)=H^{1}\left(\mathcal{M}, \mathcal{M}^{(2 n)}\right) / Z R_{\mathcal{A}, \mathcal{B}}\left(\mathcal{M}, \mathcal{M}^{(2 n)}\right)
$$

We are ready to give our proof of Proposition 4.5 of [3]:
Theorem 3.4. $\mathcal{T}=\left[\begin{array}{cc}\mathcal{A} & \mathcal{A} \\ 0 & \mathcal{A}\end{array}\right]$ is $(2 n)$-weakly amenable if \mathcal{A} is a C^{*} algebra.

Proof. For each n, the von Neumann algebra $\mathcal{A}^{(2 n)}$ is unital with the unit denoted by $1_{\mathcal{A}^{(2 n)}}$. Clearly $Z R_{\mathcal{A}, \mathcal{A}}\left(\mathcal{A}, \mathcal{A}^{(2 n)}\right) \subseteq \operatorname{Hom}_{\mathcal{A}, \mathcal{A}}\left(\mathcal{A}, \mathcal{A}^{(2 n)}\right)$. For the converse, assume that $\phi \in \operatorname{Hom}\left(\mathcal{A}, \mathcal{A}^{(2 n)}\right)$. Since $\phi(a)=\phi(a .1 .1)=$ $a \phi(a)$ and $\phi(a)=\phi(1.1 . a)=\phi(1) a$, we have $\phi(1) \in Z_{\mathcal{A}}\left(\mathcal{A}^{(2 n)}\right)$ and $1_{\mathcal{A}(2 n)}-$ $\phi(1) \in Z_{\mathcal{A}}\left(\mathcal{A}^{(2 n)}\right)$. Hence

$$
\phi(a)=1_{\mathcal{A}^{(2 n)}} \cdot a-1_{\mathcal{A}^{(2 n)}} \cdot a+\phi(a)=\rho_{1_{\mathcal{A}^{(2 n)}}, 1_{\mathcal{A}^{(2 n)}}-\phi(a)}(a) .
$$

It follows that $\phi=\rho_{1_{\mathcal{A}}^{(2 n)}, 1_{\mathcal{A}}{ }^{(2 n)}-\phi(a)} \in Z R_{\mathcal{A}, \mathcal{A}}\left(\mathcal{A}, \mathcal{A}^{(2 n)}\right)$.Therefore

$$
Z R_{\mathcal{A}, \mathcal{A}}\left(\mathcal{A}, \mathcal{A}^{(2 n)}\right)=\operatorname{Hom}_{\mathcal{A}, \mathcal{A}}\left(\mathcal{A}, \mathcal{A}^{(2 n)}\right)
$$

Applying Theorem 2.5, we conclude that

$$
H^{1}\left(\mathcal{T}, \mathcal{T}^{(2 n)}\right)=H^{1}\left(\mathcal{A}, \mathcal{A}^{(2 n)}\right) / Z R_{\mathcal{A}, \mathcal{A}}\left(\mathcal{A}, \mathcal{A}^{(2 n)}\right)=0
$$

References

[1] R. F. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2, pp. 839-848, (1951)..
[2] H. G. Dales, F. Ghahramani and N. Gronbæk, Derivations into iterated duals of Banach algebras, Studia Math 128, no. 1, pp. 19-54, (1998).
[3] B. E. Forrest and L. W. Marcoux, Weak amenability of triangular Banach algebras. Trans. Amer. Math. Soc. 354, no. 4, pp. 1435-1452, (2002).
[4] A. Ya. Helemskii, The homology of Banach and topological algebras, Kluwer, Dordrecht, (1989).

Mohammad Sal Moslehian

Department of Mathematics
Ferdowsi University
P. O. Box 1159

Mashhad 91775
Irán
e-mail : msalm@math.um.ac.ir

Fatemeh Negahban
Department of Mathematics
Ferdowsi University
P. O. Box 1159

Mashhad 91775
Irán

