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Abstract

A simple proof of (2n)-weak amenability of the triangular Banach

algebra T =
·
A A
0 A

¸
is given where A is a unital C∗-algebra.
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1. Introduction

The topological cohomology groups provide us some significant information
about Banach algebras such as their amenability, contractibility, stability,
and singular extensions.[4]

Suppose that A and B are unital Banach algebras and M is a unital
Banach A − B−module that is simultaneously a Banach space, a left A-
module and a right B-module satisfying a(mb) = (am)b, 1Am = m1B and

k axb k≤k a kk x kk b k. Then T =

"
A M
0 B

#
= {

"
a m
0 b

#
; a ∈

A,m ∈ M, b ∈ B} equipped with the usual 2 × 2 matrix addition and

formal multiplication and the norm k
"
a m
0 b

#
k=k a k + k m k + k b k is

said to be a triangular Banach algebra.

Note that the dualM∗ ofM together with the actions (φa)(x) = φ(ax)
and (bφ)(x) = φ(xb) is a Banach B−A−module. Similarly the (2n)-th dual
M(2n) ofM is a Banach A−B−module and the (2n−1)-th dualM(2n−1) of
M is a Banach B−A−module. In particular, A(n) is a Banach A-bimodule
when A is regarded as an A−bimodule in the natural way.

The notion of n-weak amenability was introduced by Dales, Ghahra-
mani and Gronbæck [2]. Let M be a Banach A-bimodule, Z1(A,M) =
{δ : A −→M; δ is bounded and linear, and δ(ab) = aδ(b) + δ(a)b} and
B1(A,M) = {δx : A −→ M; δx(a) = ax − xa, a ∈ A, x ∈ M}. Then
the first topological cohomology group H1(A,M) is defined to be the quo-
tient Z1(A,M)/B1(A,M). If H1(A,A(n))=0, then A is called n-weakly
amenable. If for all n,A is n-weakly amenable, A is said to be permanently
weakly amenable. For instance, every C∗-algebra is permanently weakly
amenable [2, Theorem 3.1].

Forrest and Marcoux investigated a relation between n-weak amenabil-

ity of triangular Banach algebra T =
"
A M
0 B

#
and those of algebras A

and B. In particular, they proved permanently weak amenability of the

triangular Banach algebra T =
"
A A
0 A

#
where A is a C∗-algebra.

In this paper we give a simple proof of the (2n)-weak amenability of

the Banach algebra T =

"
A A
0 A

#
in which A is a C∗-algebra, cf. [3,

Proposition 4.5].
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2. Preliminaries

Let P,Q andR be Banach spaces and φ : P×Q→ R be a bounded bilinear
map. Define a bilinear map φ∗ : R∗ × P → Q∗ by < q, φ∗(r∗, p) >=<
φ(p, q), r∗ >; p ∈ P, q ∈ Q, r∗ ∈ R∗ where < ., . > denotes the natural
pairing. Then φ∗∗∗ is called the dual of φ and has the following properties;
cf. [1]:

(i)φ∗∗∗(p, q) = φ(p, q); p ∈ P, q ∈ Q,
(ii)for fixed q∗∗ ∈ Q∗∗, p∗∗ 7→ φ∗∗∗(p∗∗, q∗∗) is weak*-continuous,
(iii)for fixed p ∈ P, q∗∗ 7→ φ∗∗∗(p, q∗∗) is weak*-continuous.
In general for fixed p∗∗ ∈ P∗∗, q∗∗ 7→ φ∗∗∗(p∗∗, q∗∗) is not weak*-continuous.
We shall call the bounded bilinear map φ regular, when for fixed p∗∗ ∈

P∗∗, q∗∗ 7→ φ∗∗∗(p∗∗, q∗∗) is weak*-continuous.
There are two important general examples as follows:
First, if X is a Banach left A-module with the outer multiplication

φ : A × X → X , then φ∗∗∗ : A∗∗ × X ∗∗ → X ∗∗ defines a Banach left
A∗∗-module structure on X ∗∗ extending φ.

Second, if A is a Banach algebra, P = Q = R = A and φ : A×A→ A
is defined by φ(a, b) = ab, then φ∗∗∗ is an associative multiplication on A∗∗
making that into a Banach algebra. If φ is regular then A is called Arens
regular.

Now, for each a, b ∈ A, f ∈ A∗, F,G ∈ A∗∗, put
(fa)(b) = f(ab), (Ff)(a) = F (fa), (FG)(f) = F (Gf) ;
(a.f)(b) = f(ba), (f.F )(a) = F (a.f), (F.G)(f) = G(f.F ).
We shall call FG and F.G the first (left) and the second (right) Arens

products, respectively. FG is nothing except φ∗∗∗. Indeed, φ∗(f, a)(b) =
f(ab), φ∗∗(F, f)(a) = F (f(a)) and φ∗∗∗(F,G)(f) = F (G(f)). Similarly
ψ∗∗∗(F,G) = G.F , where ψ : A×A→ A is defined by ψ(a, b) = ba.

Following [3], we describe the action of T upon T (n):

Let T =
"
A M
0 B

#
be a triangular Banach algebra and"

F1 H1

0 G1

#
,

"
F2 H2

0 G2

#
∈ T ∗∗. Suppose that

"
F1 H1

0 G1

#
= weak∗ −

limi

"
ai mi

0 bi

#
and

"
F2 H2

0 G2

#
= weak∗ − limj

"
aj mj

0 bj

#
. Then F1 =

weak∗ − limi ai, F2 = weak∗ − limj aj , G1 = weak∗ − limi bi, G2 = weak∗ −
limj bj ,H1 = weak∗ − limimi and H2 = weak∗ − limimj . Therefore"

F1 H1

0 G1

# "
F2 H2

0 G2

#
= weak∗−limi limj

"
ai mi

0 bi

# "
aj mj

0 bj

#
=
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weak∗ − limi limj

"
aiaj mimj

0 bibj

#

=

"
weak∗ − limi limj aiaj weak∗ − limi limj mimj

0 weak∗ − limi limj bibj

#

=

"
F1F2 F1H2 +H1G2
0 G1G2

#
.

Hence the first Arens product on T ∗∗ is a matrix-like multiplication.
By repeatedly applying the first (or second) Arens product, one can

similarly make T (2n) for n > 1 into a Banach algebra. Thus an action of T
upon T (2n) is obtained when we restrict the Arens product to the image of
T in T (2n) under the canonical embedding. This action looks like standard
matrix multiplication.

It is easy to see that the actions of T upon T ∗ is given by"
a m
0 b

# "
f h
0 g

#
=

"
af +mh bh

0 bg

#
and"

f h
0 g

# "
a m
0 b

#
=

"
fa ha
0 hm+ gb

#
, in which"

a m
0 b

#
∈ T ,

"
f h
0 g

#
∈ T ∗.

The action of T upon T (3) is the restriction to T of the dual action
T (2) upon T (3). In fact, the action of T upon T ∗ can be generalized to the
action of T upon T (2m−1),m ≥ 2.

3. Main Result

We start by reviewing some results on (2n− 1)-weak amenability of trian-
gular Banach algebras:

Theorem 3.1. Let A and B be unital Banach algebras andM be a uni-

tal Banach A − B−module. Let T =

"
A M
0 B

#
be the corresponding

triangular Banach algebra. Let n be a positive integer. Then

H1(T , T (2n−1)) ' H1(A,A(2n−1))⊕H1(B,B(2n−1)).

It follows that T is (2n− 1)-weakly amenable if and only if both A and B
are.

[3, Theorem 3.7]
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Corollary 3.2. T =
"
A A
0 A

#
is (2n− 1)-weakly amenable if A is a C∗-

algebra.

Proof. Apply above theorem and permanently weak amenability of A
[2, Theorem 3.1].

Now let M be a Banach A − B−module and ρx,y : M −→ M(2n) be
defined by ρx,y(m) = xm −my, where x ∈ A(2n), m ∈M and y ∈ B(2n).
Recall that if A is a Banach algebra, so is A(2n) equipped with the (first)
Arens product Γ1 ◦Γ2 = w∗− limi limj aiaj where {ai} and {aj} are nets in
A(2n−2) converging in weak∗-topology to Γ1,Γ2 ∈ A(2n−2), respectively. We
could therefore define the centeralizer of A in A(2n) as ZA(A(2n)) = {x ∈
A(2n);xa = ax for all a ∈ A} and the central Rosenblum operator on M
with coefficients inM(2n) as ZRA,B(M,M(2n)) = {ρx,y;x ∈ ZA(A(2n)), y ∈
ZB(A(2n))}. The later space is clearly a subspace of HomA,B(M,M(2n)) =
{φ :M −→M(2n);φ(amb) = aφ(m)b, for all a ∈ A,m ∈M, b ∈ B}.
The following theorem play a key role in the subject:

Theorem 3.3. Let A and B be unital Banach algebras andM be a unital

Banach A − B−module. Let T =

"
A M
0 B

#
be the corresponding tri-

angular Banach algebra. If n is a positive integer and both A and B are
(2n)-weakly amenable, then

H1(T , T (2n)) = H1(M,M(2n))/ZRA,B(M,M(2n)).

We are ready to give our proof of Proposition 4.5 of [3]:

Theorem 3.4. T =

"
A A
0 A

#
is (2n)-weakly amenable if A is a C∗-

algebra.
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Proof. For each n, the von Neumann algebra A(2n) is unital with
the unit denoted by 1A(2n) . Clearly ZRA,A(A,A(2n)) ⊆ HomA,A(A,A(2n)).
For the converse, assume that φ ∈ Hom(A,A(2n)). Since φ(a) = φ(a.1.1) =
aφ(a) and φ(a) = φ(1.1.a) = φ(1)a, we have φ(1) ∈ ZA(A(2n)) and 1A(2n)−
φ(1) ∈ ZA(A(2n)). Hence

φ(a) = 1A(2n) .a− 1A(2n) .a+ φ(a) = ρ1A(2n) ,1A(2n)−φ(a)(a).

It follows that φ = ρ1A(2n) ,1A(2n)−φ(a) ∈ ZRA,A(A,A(2n)).Therefore

ZRA,A(A,A(2n)) = HomA,A(A,A(2n)).
Applying Theorem 2.5, we conclude that

H1(T ,T (2n)) = H1(A,A(2n))/ZRA,A(A,A(2n)) = 0.
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