Proyecciones Vol. 23, N^o 2, pp. 89-95, August 2004. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172004000200002

A SIMPLE PROOF OF A THEOREM ON (2n)-WEAK AMENABILITY

MOHAMMAD SAL MOSLEHIAN FATEMEH NEGAHBAN Ferdowsi University, Irán

Received : January 2003. Accepted : December 2003.

Abstract

A simple proof of (2n)-weak amenability of the triangular Banach algebra $\mathcal{T} = \begin{bmatrix} \mathcal{A} & \mathcal{A} \\ 0 & \mathcal{A} \end{bmatrix}$ is given where \mathcal{A} is a unital C^{*}-algebra.

AMS Classification : 46H25, 46L57.

Key words and phrases : *Triangular Banach algebra, n-weak amenability.*

1. Introduction

The topological cohomology groups provide us some significant information about Banach algebras such as their amenability, contractibility, stability, and singular extensions.[4]

Suppose that \mathcal{A} and \mathcal{B} are unital Banach algebras and \mathcal{M} is a unital Banach $\mathcal{A} - \mathcal{B}$ -module that is simultaneously a Banach space, a left \mathcal{A} -module and a right \mathcal{B} -module satisfying a(mb) = (am)b, $1_{\mathcal{A}}m = m1_{\mathcal{B}}$ and $\| axb \| \leq \| a \| \| x \| \| b \|$. Then $\mathcal{T} = \begin{bmatrix} \mathcal{A} & \mathcal{M} \\ 0 & \mathcal{B} \end{bmatrix} = \{ \begin{bmatrix} a & m \\ 0 & b \end{bmatrix} ; a \in \mathcal{A}, m \in \mathcal{M}, b \in \mathcal{B} \}$ equipped with the usual 2×2 matrix addition and formal multiplication and the norm $\| \begin{bmatrix} a & m \\ 0 & b \end{bmatrix} \| = \| a \| + \| m \| + \| b \|$ is said to be a triangular Banach algebra.

Note that the dual \mathcal{M}^* of \mathcal{M} together with the actions $(\phi a)(x) = \phi(ax)$ and $(b\phi)(x) = \phi(xb)$ is a Banach $\mathcal{B} - \mathcal{A}$ -module. Similarly the (2n)-th dual $\mathcal{M}^{(2n)}$ of \mathcal{M} is a Banach $\mathcal{A} - \mathcal{B}$ -module and the (2n-1)-th dual $\mathcal{M}^{(2n-1)}$ of \mathcal{M} is a Banach $\mathcal{B} - \mathcal{A}$ -module. In particular, $\mathcal{A}^{(n)}$ is a Banach A-bimodule when \mathcal{A} is regarded as an \mathcal{A} -bimodule in the natural way.

The notion of *n*-weak amenability was introduced by Dales, Ghahramani and Gronbæck [2]. Let \mathcal{M} be a Banach A-bimodule, $Z^1(A, \mathcal{M}) = \{\delta : \mathcal{A} \longrightarrow \mathcal{M}; \delta \text{ is bounded and linear, and } \delta(ab) = a\delta(b) + \delta(a)b\}$ and $B^1(A, \mathcal{M}) = \{\delta_x : \mathcal{A} \longrightarrow \mathcal{M}; \delta_x(a) = ax - xa, a \in \mathcal{A}, x \in \mathcal{M}\}$. Then the first topological cohomology group $H^1(\mathcal{A}, \mathcal{M})$ is defined to be the quotient $Z^1(A, \mathcal{M})/B^1(A, \mathcal{M})$. If $H^1(\mathcal{A}, \mathcal{A}^{(n)})=0$, then \mathcal{A} is called *n*-weakly amenable. If for all n, \mathcal{A} is *n*-weakly amenable, \mathcal{A} is said to be permanently weakly amenable. For instance, every C^* -algebra is permanently weakly amenable [2, Theorem 3.1].

Forrest and Marcoux investigated a relation between *n*-weak amenability of triangular Banach algebra $\mathcal{T} = \begin{bmatrix} \mathcal{A} & \mathcal{M} \\ 0 & \mathcal{B} \end{bmatrix}$ and those of algebras \mathcal{A} and \mathcal{B} . In particular, they proved permanently weak amenability of the triangular Banach algebra $\mathcal{T} = \begin{bmatrix} \mathcal{A} & \mathcal{A} \\ 0 & \mathcal{A} \end{bmatrix}$ where \mathcal{A} is a C^* -algebra.

In this paper we give a simple proof of the (2*n*)-weak amenability of the Banach algebra $\mathcal{T} = \begin{bmatrix} \mathcal{A} & \mathcal{A} \\ 0 & \mathcal{A} \end{bmatrix}$ in which \mathcal{A} is a C^* -algebra, cf. [3, Proposition 4.5].

2. Preliminaries

Let \mathcal{P}, \mathcal{Q} and \mathcal{R} be Banach spaces and $\phi : \mathcal{P} \times \mathcal{Q} \to \mathcal{R}$ be a bounded bilinear map. Define a bilinear map $\phi^* : \mathcal{R}^* \times \mathcal{P} \to \mathcal{Q}^*$ by $\langle q, \phi^*(r^*, p) \rangle = \langle \phi(p,q), r^* \rangle; p \in \mathcal{P}, q \in \mathcal{Q}, r^* \in \mathcal{R}^*$ where $\langle ..., ... \rangle$ denotes the natural pairing. Then ϕ^{***} is called the dual of ϕ and has the following properties; cf. [1]:

(i) $\phi^{***}(p,q) = \phi(p,q); p \in \mathcal{P}, q \in \mathcal{Q},$

(ii) for fixed $q^{**} \in \mathcal{Q}^{**}, p^{**} \mapsto \phi^{***}(p^{**}, q^{**})$ is weak*-continuous,

(iii) for fixed $p \in \mathcal{P}, q^{**} \mapsto \phi^{***}(p, q^{**})$ is weak*-continuous.

In general for fixed $p^{**} \in \mathcal{P}^{**}, q^{**} \mapsto \phi^{***}(p^{**}, q^{**})$ is not weak*-continuous. We shall call the bounded bilinear map ϕ regular, when for fixed $p^{**} \in \mathcal{P}^{**}, q^{**} \mapsto \phi^{***}(p^{**}, q^{**})$ is weak*-continuous.

There are two important general examples as follows:

First, if \mathcal{X} is a Banach left \mathcal{A} -module with the outer multiplication $\phi : \mathcal{A} \times \mathcal{X} \to \mathcal{X}$, then $\phi^{***} : \mathcal{A}^{**} \times \mathcal{X}^{**} \to \mathcal{X}^{**}$ defines a Banach left \mathcal{A}^{**} -module structure on \mathcal{X}^{**} extending ϕ .

Second, if \mathcal{A} is a Banach algebra, $\mathcal{P} = \mathcal{Q} = \mathcal{R} = \mathcal{A}$ and $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ is defined by $\phi(a, b) = ab$, then ϕ^{***} is an associative multiplication on \mathcal{A}^{**} making that into a Banach algebra. If ϕ is regular then \mathcal{A} is called Arens regular.

Now, for each $a, b \in \mathcal{A}, f \in \mathcal{A}^*, F, G \in \mathcal{A}^{**}$, put (fa)(b) = f(ab), (Ff)(a) = F(fa), (FG)(f) = F(Gf);(a, f)(b) = f(ba), (f, F)(a) = F(a, f), (F, G)(f) = C(f, F)

 $(a.f)(b) = f(ba), \ (f.F)(a) = F(a.f), \ (F.G)(f) = G(f.F).$

We shall call FG and F.G the first (left) and the second (right) Arens products, respectively. FG is nothing except ϕ^{***} . Indeed, $\phi^*(f, a)(b) = f(ab), \phi^{**}(F, f)(a) = F(f(a))$ and $\phi^{***}(F, G)(f) = F(G(f))$. Similarly $\psi^{***}(F, G) = G.F$, where $\psi : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ is defined by $\psi(a, b) = ba$.

Following [3], we describe the action of \mathcal{T} upon $\mathcal{T}^{(n)}$:

Let
$$\mathcal{T} = \begin{bmatrix} \mathcal{A} & \mathcal{M} \\ 0 & \mathcal{B} \end{bmatrix}$$
 be a triangular Banach algebra and
 $\begin{bmatrix} F_1 & H_1 \\ 0 & G_1 \end{bmatrix}, \begin{bmatrix} F_2 & H_2 \\ 0 & G_2 \end{bmatrix} \in \mathcal{T}^{**}$. Suppose that $\begin{bmatrix} F_1 & H_1 \\ 0 & G_1 \end{bmatrix} = weak^* - \lim_i \begin{bmatrix} a_i & m_i \\ 0 & b_i \end{bmatrix}$ and $\begin{bmatrix} F_2 & H_2 \\ 0 & G_2 \end{bmatrix} = weak^* - \lim_j \begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix}$. Then $F_1 = weak^* - \lim_i a_i, F_2 = weak^* - \lim_j a_j, G_1 = weak^* - \lim_i b_i, G_2 = weak^* - \lim_j b_j, H_1 = weak^* - \lim_i m_i and H_2 = weak^* - \lim_i m_j$. Therefore
 $\begin{bmatrix} F_1 & H_1 \\ 0 & G_1 \end{bmatrix} \begin{bmatrix} F_2 & H_2 \\ 0 & G_2 \end{bmatrix} = weak^* - \lim_i \lim_j \begin{bmatrix} a_i & m_i \\ 0 & b_i \end{bmatrix} \begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} = weak^* - \lim_i \lim_j \left[\begin{bmatrix} a_i & m_i \\ 0 & b_i \end{bmatrix} \begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} = weak^* - \lim_i \lim_j \left[\begin{bmatrix} a_i & m_i \\ 0 & b_i \end{bmatrix} \begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} = weak^* - \lim_i \lim_j \left[\begin{bmatrix} a_i & m_i \\ 0 & b_i \end{bmatrix} \begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} = weak^* - \lim_i \lim_j \left[\begin{bmatrix} a_i & m_i \\ 0 & b_i \end{bmatrix} \end{bmatrix} \begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} = weak^* - \lim_i \lim_j \left[\begin{bmatrix} a_i & m_i \\ 0 & b_i \end{bmatrix} \end{bmatrix} \begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} = weak^* - \lim_i \lim_j \left[\begin{bmatrix} a_i & m_i \\ 0 & b_i \end{bmatrix} \end{bmatrix} \begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} = weak^* - \lim_i \lim_j \left[\begin{bmatrix} a_i & m_i \\ 0 & b_i \end{bmatrix} \end{bmatrix} \begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} = weak^* - \lim_i \lim_j \left[\begin{bmatrix} a_i & m_i \\ 0 & b_i \end{bmatrix} \end{bmatrix} \begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} = weak^* - \lim_i \lim_j \left[\begin{bmatrix} a_i & m_i \\ 0 & b_i \end{bmatrix} \end{bmatrix} \begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} = weak^* - \lim_j \left[\begin{bmatrix} a_i & m_i \\ 0 & b_i \end{bmatrix} \end{bmatrix} = weak^* - \lim_j \left[\begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} \end{bmatrix} = weak^* - \lim_j \left[\begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} \end{bmatrix} = weak^* - \lim_j \left[\begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} \end{bmatrix} = weak^* - \lim_j \left[\begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} \end{bmatrix} = weak^* - \lim_j \left[\begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} \end{bmatrix} = weak^* - \lim_j \left[\begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} \end{bmatrix} = weak^* - \lim_j \left[\begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} \end{bmatrix} = weak^* - \lim_j \left[\begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} \end{bmatrix} = weak^* - \lim_j \left[\begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} \end{bmatrix} = weak^* - \lim_j \left[\begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} \end{bmatrix} = weak^* - \lim_j \left[\begin{bmatrix} a_j & m_j \\ 0 & b_j \end{bmatrix} \end{bmatrix} \end{bmatrix}$

$$weak^* - \lim_i \lim_j \begin{bmatrix} a_i a_j & m_i m_j \\ 0 & b_i b_j \end{bmatrix}$$
$$= \begin{bmatrix} weak^* - \lim_i \lim_j a_i a_j & weak^* - \lim_i \lim_j m_i m_j \\ 0 & weak^* - \lim_i \lim_j b_i b_j \end{bmatrix}$$
$$= \begin{bmatrix} F_1 F_2 & F_1 H_2 + H_1 G_2 \\ 0 & G_1 G_2 \end{bmatrix}.$$

Hence the first Arens product on \mathcal{T}^{**} is a matrix-like multiplication.

By repeatedly applying the first (or second) Arens product, one can similarly make $\mathcal{T}^{(2n)}$ for n > 1 into a Banach algebra. Thus an action of Tupon $\mathcal{T}^{(2n)}$ is obtained when we restrict the Arens product to the image of \mathcal{T} in $\mathcal{T}^{(2n)}$ under the canonical embedding. This action looks like standard matrix multiplication.

It is easy to see that the actions of \mathcal{T} upon \mathcal{T}^* is given by $\begin{bmatrix} a & m \\ 0 & b \end{bmatrix} \begin{bmatrix} f & h \\ 0 & g \end{bmatrix} = \begin{bmatrix} af + mh & bh \\ 0 & bg \end{bmatrix} \text{ and } \begin{bmatrix} f & h \\ 0 & g \end{bmatrix} \begin{bmatrix} a & m \\ 0 & b \end{bmatrix} = \begin{bmatrix} fa & ha \\ 0 & hm + gb \end{bmatrix}, \text{ in which } \begin{bmatrix} a & m \\ 0 & b \end{bmatrix} \in \mathcal{T}, \begin{bmatrix} f & h \\ 0 & g \end{bmatrix} \in \mathcal{T}^*.$

The action of \mathcal{T} upon $\mathcal{T}^{(3)}$ is the restriction to \mathcal{T} of the dual action $\mathcal{T}^{(2)}$ upon $\mathcal{T}^{(3)}$. In fact, the action of \mathcal{T} upon \mathcal{T}^* can be generalized to the action of \mathcal{T} upon $\mathcal{T}^{(2m-1)}$, $m \geq 2$.

3. Main Result

We start by reviewing some results on (2n-1)-weak amenability of triangular Banach algebras:

Theorem 3.1. Let \mathcal{A} and \mathcal{B} be unital Banach algebras and \mathcal{M} be a unital Banach $\mathcal{A} - \mathcal{B}$ -module. Let $\mathcal{T} = \begin{bmatrix} \mathcal{A} & \mathcal{M} \\ 0 & \mathcal{B} \end{bmatrix}$ be the corresponding triangular Banach algebra. Let n be a positive integer. Then

$$H^1(\mathcal{T}, \mathcal{T}^{(2n-1)}) \simeq H^1(\mathcal{A}, \mathcal{A}^{(2n-1)}) \oplus H^1(\mathcal{B}, \mathcal{B}^{(2n-1)}).$$

It follows that \mathcal{T} is (2n-1)-weakly amenable if and only if both \mathcal{A} and \mathcal{B} are.

[3, Theorem 3.7]

Corollary 3.2. $\mathcal{T} = \begin{bmatrix} \mathcal{A} & \mathcal{A} \\ 0 & \mathcal{A} \end{bmatrix}$ is (2n-1)-weakly amenable if \mathcal{A} is a C^* -algebra.

Proof. Apply above theorem and permanently weak amenability of \mathcal{A} [2, Theorem 3.1].

Now let \mathcal{M} be a Banach $\mathcal{A} - \mathcal{B}$ -module and $\rho_{x,y} : \mathcal{M} \longrightarrow \mathcal{M}^{(2n)}$ be defined by $\rho_{x,y}(m) = xm - my$, where $x \in \mathcal{A}^{(2n)}$, $m \in \mathcal{M}$ and $y \in \mathcal{B}^{(2n)}$. Recall that if \mathcal{A} is a Banach algebra, so is $\mathcal{A}^{(2n)}$ equipped with the (first) Arens product $\Gamma_1 \circ \Gamma_2 = w^* - \lim_i \lim_j a_i a_j$ where $\{a_i\}$ and $\{a_j\}$ are nets in $\mathcal{A}^{(2n-2)}$ converging in weak*-topology to $\Gamma_1, \Gamma_2 \in \mathcal{A}^{(2n-2)}$, respectively. We could therefore define the centeralizer of \mathcal{A} in $\mathcal{A}^{(2n)}$ as $Z_{\mathcal{A}}(\mathcal{A}^{(2n)}) = \{x \in$ $\mathcal{A}^{(2n)}; xa = ax$ for all $a \in \mathcal{A}\}$ and the central Rosenblum operator on \mathcal{M} with coefficients in $\mathcal{M}^{(2n)}$ as $ZR_{\mathcal{A},\mathcal{B}}(\mathcal{M}, \mathcal{M}^{(2n)}) = \{\rho_{x,y}; x \in Z_{\mathcal{A}}(\mathcal{A}^{(2n)}), y \in$ $Z_{\mathcal{B}}(\mathcal{A}^{(2n)})\}$. The later space is clearly a subspace of $Hom_{\mathcal{A},\mathcal{B}}(\mathcal{M}, \mathcal{M}^{(2n)}) =$ $\{\phi : \mathcal{M} \longrightarrow \mathcal{M}^{(2n)}; \phi(amb) = a\phi(m)b$, for all $a \in \mathcal{A}, m \in \mathcal{M}, b \in \mathcal{B}\}$. The following theorem play a key role in the subject:

Theorem 3.3. Let \mathcal{A} and \mathcal{B} be unital Banach algebras and \mathcal{M} be a unital Banach $\mathcal{A} - \mathcal{B}$ -module. Let $\mathcal{T} = \begin{bmatrix} \mathcal{A} & \mathcal{M} \\ 0 & \mathcal{B} \end{bmatrix}$ be the corresponding triangular Banach algebra. If n is a positive integer and both \mathcal{A} and \mathcal{B} are (2n)-weakly amenable, then

$$H^{1}(\mathcal{T},\mathcal{T}^{(2n)}) = H^{1}(\mathcal{M},\mathcal{M}^{(2n)})/ZR_{\mathcal{A},\mathcal{B}}(\mathcal{M},\mathcal{M}^{(2n)}).$$

We are ready to give our proof of Proposition 4.5 of [3]:

Theorem 3.4. $\mathcal{T} = \begin{bmatrix} \mathcal{A} & \mathcal{A} \\ 0 & \mathcal{A} \end{bmatrix}$ is (2*n*)-weakly amenable if \mathcal{A} is a C^* -algebra.

Proof. For each *n*, the von Neumann algebra $\mathcal{A}^{(2n)}$ is unital with the unit denoted by $1_{\mathcal{A}^{(2n)}}$. Clearly $ZR_{\mathcal{A},\mathcal{A}}(\mathcal{A},\mathcal{A}^{(2n)}) \subseteq Hom_{\mathcal{A},\mathcal{A}}(\mathcal{A},\mathcal{A}^{(2n)})$. For the converse, assume that $\phi \in Hom(\mathcal{A},\mathcal{A}^{(2n)})$. Since $\phi(a) = \phi(a.1.1) = a\phi(a)$ and $\phi(a) = \phi(1.1.a) = \phi(1)a$, we have $\phi(1) \in Z_{\mathcal{A}}(\mathcal{A}^{(2n)})$ and $1_{\mathcal{A}^{(2n)}} - \phi(1) \in Z_{\mathcal{A}}(\mathcal{A}^{(2n)})$. Hence

$$\phi(a) = 1_{\mathcal{A}^{(2n)}} \cdot a - 1_{\mathcal{A}^{(2n)}} \cdot a + \phi(a) = \rho_{1_{\mathcal{A}^{(2n)}}, 1_{\mathcal{A}^{(2n)}} - \phi(a)}(a).$$

It follows that $\phi = \rho_{1_{\mathcal{A}(2n)}, 1_{\mathcal{A}(2n)} - \phi(a)} \in ZR_{\mathcal{A}, \mathcal{A}}(\mathcal{A}, \mathcal{A}^{(2n)})$. Therefore

 $ZR_{\mathcal{A},\mathcal{A}}(\mathcal{A},\mathcal{A}^{(2n)}) = Hom_{\mathcal{A},\mathcal{A}}(\mathcal{A},\mathcal{A}^{(2n)}).$

Applying Theorem 2.5, we conclude that

$$H^1(\mathcal{T},\mathcal{T}^{(2n)})=H^1(\mathcal{A},\mathcal{A}^{(2n)})/ZR_{\mathcal{A},\mathcal{A}}(\mathcal{A},\mathcal{A}^{(2n)})=0.$$

References

- R. F. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2, pp. 839-848, (1951)..
- [2] H. G. Dales, F. Ghahramani and N. Gronbæk, Derivations into iterated duals of Banach algebras, Studia Math 128, no. 1, pp. 19-54, (1998).
- [3] B. E. Forrest and L. W. Marcoux, Weak amenability of triangular Banach algebras. Trans. Amer. Math. Soc. 354, no. 4, pp. 1435-1452, (2002).
- [4] A. Ya. Helemskii, The homology of Banach and topological algebras, Kluwer, Dordrecht, (1989).

Mohammad Sal Moslehian

Department of Mathematics Ferdowsi University P. O. Box 1159 Mashhad 91775 Irán e-mail : msalm@math.um.ac.ir

Fatemeh Negahban

Department of Mathematics Ferdowsi University P. O. Box 1159 Mashhad 91775 Irán