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Université Cadi Ayyad, Morocco

Received : Abril 2003. Acepted : March 2004.

Proyecciones
Vol. 23, No 2, pp. 81-90, August 2004.
Universidad Católica del Norte
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Abstract

The purpose of this paper is to identify the unknown source term
in a multidimensional parabolic equation by means of a one-point in-
terior measurement of the solution at x0 ∈ Ω, i.e. u(x0, .) on [0, T ];
or a one-point boundary measurement, i.e. u(x0, .) on [0, T ] with
x0 ∈ ∂Ω.
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1. Introduction

Let Ω be an open bounded domain ofRn (n ≥ 1) with ∂Ω ∈ C2+α boundary,
α ∈]0, 1[. Let T > 0 and let g = g(x, t) be a given function defined on
∂Ω× [0, T ]. We consider the following nonlinear parabolic equation:

∂tu = ∆u+ f(u) in Ω× [0, T ],
u(x, 0) = 0 in Ω,
u(x, t) = g(x, t) on ∂Ω× [0, T ].

(1.1)

It is well known that for smooth function f , Eq. (1.1) has a unique clas-
sical solution, which we denote by u(f), provided the data g is sufficiently
regular and satisfies compatibility conditions.

In our case the nonlinear source term f is assumed to be unknown, so
that additional information is needed to determine this function.

In this paper, we consider either a one-point interior measurement

u(f)(x0, t) = θ(t), t ∈ [0, T ];(1.2)

or a one-point boundary measurement

∂nu(f)(x0, t) = θ(t), t ∈ [0, T ],(1.3)

where x0 ∈ Ω (respectively, x0 ∈ ∂Ω) and ∂n will denote the derivative
with respect to the outward normal to ∂Ω.

More precisely, we are concerned with the unique identifiability of the
unknown source term; i.e. with the injectivity of the mapping

f → u(f)(x0, .) or f → ∂nu(f)(x0, .),

which leads to the uniqueness of f in the inverse problems (1.1)− (1.2) or
(1.1)− (1.3).

We also study the identifiability (or uniqueness) of the nonlinear term
a in the following parabolic equation:

∂tv = a(v)∆v in Ω× [0, T ],
v(x, 0) = 0 in Ω,
v(x, t) = h(x, t) on ∂Ω× [0, T ],

(1.4)

from the observation (1.2) or (1.3). Throughout this paper we denote by
v(a) the solution of Eq. (1.4) corresponding to a.
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A result in this direction has already been obtained by Choulli [3] for a
one-dimensional inverse problem (1.4)−(1.2) (see also, Cannon-DuChateau
[1] and DuChateau [2]). In [5], uniqueness results for the determination of
the unknown f (respectively, a) were obtained by Choulli and Zeghal, in
the multidimensional case, when the Dirichlet condition is replaced by a
Neumann one, from a lateral overdetermination; i.e. u(f) |∂Ω×[0,T ] (respec-
tively, v(a) |∂Ω×[0,T ]). For an extensive bibliography concerning identifia-
bility problems, the reader is referred to the review article [11] by Nakagiri
for a survey of Japanese work up to 1993, and to the survey paper by
Isakov [9]. Our results depend heavily on the maximum principles which
are contained in the books [8], [12] or [13].

2. Some properties of u(f) and v(a)

In this section we outline some properties of the solutions of Eqs. (1.1) and
(1.4). To this end, we first define

G =
n
g ∈ C2+α,1+α

2 (∂Ω× [0, T ]); g(., 0) = ∂tg(., 0)
o
,

eG = {g ∈ G; ∂tg > 0, on ∂Ω× (0, T ]} and H =
n
h ∈ eG; ∂th ∈ Go .

In view of the identifiability problems, we assume throughout that g ∈ eG
and h ∈ H.

Let µ be a positive constant and set

M = ku(µ)k∞ and N = khk∞.(2.1)

For the parabolic equation (1.1) (respectively, Eq. (1.4)), we look for the
source term f (respectively, a) in the set F (respectively, A) consisting of
functions f ∈ C1[0,M ] (respectively, a ∈ C1[0,M ]) satisfying f(0) = 0 and
0 ≤ f(s) ≤ µ on [0,M ] (respectively, δ ≤ a(s) ≤ γ on [0, N ], where δ, γ are
positive constants).

It is well known (see, for instance, Ladyzhenskaja et al [10] that if
f ∈ F , a ∈ A and the hypotheses on g and h are satisfied, then Eq. (1.1)
(respectively, Eq. (1.4)) has a unique solution u(f) (respectively, v(a)) in
C2+α,1+α

2 (Ω× [0, T ]).
Next, a simple application of the maximum principle leads to the ele-

mentary observation.
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Proposition 2.1. Let f ∈ F and a ∈ A. Then R(u(f)) ⊂ [0,M ] and
R(v(a)) = [0,N ], where R stands for a range of a function.

Proof. Let f ∈ F . Then the maximum principle applied successively to
−u(f), u(f)− u(µ), together with (2.1) leads to the following

0 ≤ u(f)(x, t) ≤ u(µ)(x, t) ≤M, on Ω× [0, T ].(2.2)

Thus the range of u(f) is contained in the domain of f . In a similar way,
we obtain the second assertion. 2

We will use the following Lemma.

Lemma 2.1. Let f ∈ F and g ∈ eG. Then, for all s1 > 0, there exists
s0 > 0 and T0, T1 with 0 < T0 < T1 ≤ T such that

s0 ≤ u(f)(x, t) ≤ s1 on Ω× [T0, T1].(2.3)

Proof. Let s1 > 0. It follows from the regularity of u(µ), u(µ)(x, 0) = 0,
and (2.2) that u(f) ≤ kt on Ω× [0, T ] (k = k∂tu(µ)k∞). Thus, there exists
T1, 0 < T1 ≤ T such that u(f)(x, t) ≤ s1 on Ω× [0, T1].

Now, let ψ = ψ(x, t) ∈ C2+α,1+α
2 (Ω × [0, T1]) be the solution of the

following parabolic equation:
∂tψ −∆ψ = 0 in Ω× [0, T1],
ψ(x, 0) = 0 in Ω,
ψ(x, t) = g(x, t) on ∂Ω× [0, T1],

and let ψh be the function defined by ψh(x, t) = ψ(x, t + h) − ψ(x, t) on
Ω × [0, T1 − h] for 0 < h < T1. Then ψh is the solution of the following
equation:

∂tψh −∆ψh = 0 in Ω× [0, T1 − h],
ψh(x, 0) = ψ(x, h) ≥ 0 in Ω,
ψh(x, t) = g(x, t+ h)− g(x, t) ≥ 0 on ∂Ω× [0, T1 − h].

By the maximum principle applied to −ψh, we obtain ψh ≥ 0 on Ω×[0, T1−
h]. Passing to the limit we deduce that ∂tψ ≥ 0 on Ω× [0, T1] and therefore

ψ(x, t) ≥ min{ψ(y, τ); y ∈ Ω} > 0, 0 < τ ≤ t ≤ T1 and x ∈ Ω,
(the second inequality follows from an application of the maximum principle
to ψ and the hypotheses on g). Since, min{ψ(y, τ); y ∈ Ω}→ 0 as τ → 0,
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one sees that there exists T0 ∈]0, T1] and s0 > 0 such that s0 ≤ ψ(x, t) ≤ s1
on Ω× [T0, T1].

Finally, using again the maximum principle to the function ψ − u(f),
we deduce that u(f) ≥ ψ onΩ× [0, T1], which achieves the proof. 2

Lemma 2.2. Let a ∈ A and h ∈ H. Then the following hold.
(i) ∆v(a) > 0 on Ω× (0, T ].
(ii) For all s1 > 0, there exists s0 > 0 and T0, T1 with 0 < T0 < T1 ≤ T
such that

s0 ≤ v(a)(x, t) ≤ s1 on Ω× [T0, T1].(2.4)

Proof. (i) Let w = e−λt∂tv(a), where λ ∈ R is to be selected in the sequel.
A straightforward calculations show that w is a solution of the following
equation: 

a(v)∆w + (c(x, t)− λ)w − ∂tw = 0 in Ω× [0, T ],
w(x, 0) = 0 in Ω,
w(x, t) = e−λt∂th(x, t) on ∂Ω× [0, T ],

where c = c(x, t) = a0(v(a)(x, t))∆v(a)(x, t). Since, c is bounded, we can
choose λ so large that c − λ ≤ 0. Then, by a maximum principle applied
to −w, we have w > 0 on Ω× (0, T ] (because ∂th(x, t) > 0 on ∂Ω× (0, T ]),
and consequently

∆v(a) =
w

a(v)
eλt > 0 on Ω× (0, T ].

(ii) By the maximum principle applied successively to v(δ)−v(a) and v(a)−
v(γ) and the fact that ∆v(δ) and ∆v(γ) are positive, we deduce

v(δ)(x, t) ≤ v(a)(x, t) ≤ v(γ)(x, t) ≤ kt on Ω× [0, T ],(2.5)

where k is a positive constant. The last inequality of (2.5) follows from the
regularity of v(γ) and the fact that v(γ)(x, 0) = 0.

Now, the rest of the proof is similar to that of Lemma 2.1, it suffices to
replace the function ψ by v(δ). 2
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3. The main results

Before stating our main results, let us make some notations. Let Fa (re-
spectively, Aa) be the set of real analytic functions of F (respectively,
A).

In the case of a one-point interior measurement, we have the following
result.

Theorem 3.1. (i) Let g ∈ eG and f1, f2 ∈ Fa. If u(f1)(x0, .) = u(f2)(x0, .)
on [0, T ], then f1 = f2.

(ii) Let h ∈ H and let a1, a2 ∈ Aa. If v(a1)(x0, .) = v(a2)(x0, .) on [0, T ],
then a1 = a2.

From this result we immediately obtain uniqueness of the solution of
the inverse problem (1.2).

Corollary 3.1. Under the hypotheses g ∈ eG and h ∈ eH, the inverse prob-
lem (1.2)associated to Eq. (1.1) (respectively, Eq. (1.4)), can possess at
most one solution in Fa(respectively, in Aa).

Proof of Theorem 3.1. (i) Let g ∈ eGand let f1, f2 ∈ Fa. Assume that

u(f1)(x0, .) = u(f2)(x0, .) on [0, T ].

We proceed by contradiction to prove that f1 = f2. To do so, assume this
is not true, i.e. f1 6= f2on [0,M ]. Since the zeros of an analytic function
are isolated, there exists s1 > 0, 0 < s1 ≤ M , such that f1 − f2is not
identically equal to zero on (0, s1]. We assume, without loss of generality,
that f1(s) > f2(s)for all s ∈ (0, s1].

Let w = e−λt(u(f1) − u(f2)), where λ ∈ R. By a straightforward
computation, we obtain the equation

∆w − ∂tw + (c(x, t)− λ)w = −F (x, t) in Ω× [0, T ],
w(x, 0) = 0 in Ω,
w(x, t) = 0 on ∂Ω× [0, T ],

(3.1)

where

F = F (x, t) = e−λt {f1(u(f2)(x, t))− f2(u(f2)(x, t))} ,
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and

c = c(x, t) =

Z 1

0
f 01 (su(f1)(x, t) + (1− s)u(f2)(x, t)) ds

is a bounded function. From Lemma 2.1, there exists s0 > 0 and T0, T1
with 0 < T0 < T1 ≤ T such that s0 ≤ u(f2)(x, t) ≤ s1 on Ω × [T0, T1]. So
that

F > 0 on Ω× [T0, T1].(3.2)

Now, let λ be so large that c − λ ≤ 0. Consequently, w ≥ 0 on Ω× [0, T1]
(use the maximum principle to −w). We deduce that min[T0,T1]w = 0 is
attained on {x0} × [T0, T1]. Since x0 ∈ Ω = Int(Ω), it follows from the
minimum principle that w = 0 on Ω × [T0, T1], which is in contradiction
with (3.1)-(3.2).

(ii) Let h ∈ H and let a1, a2 ∈ Aa. Assume that v(a1)(x0, .) =
v(a2)(x0, .) on [0, T ] and a1 6= a2. Proceeding as in the proof of the first
item; we assume, without loss of generality, that a1(s) > a2(s) on (0, s1].
Thus, there exists s0 > 0 and T0, T1 with 0 < T0 < T1 ≤ T such that
s0 ≤ v(a2)(x, t) ≤ s1 on Ω× [T0, T1].

We obtain for w = e−λt(v(a1)− v(a2)) the following equation
a1(v(a1))∆w − ∂tw + (c(x, t)− λ)w = −F (x, t) in Ω× [0, T ],
w(x, 0) = 0 in Ω,
w(x, t) = 0 on ∂Ω× [0, T ],

(3.3)

where

F = F (x, t) = e−λt {a1(v(a2)(x, t))− a2(v(a2)(x, t))}∆v2(a2)(x, t),

c = c(x, t) = ∆v(a2)(x, t)

Z 1

0
a01 (sv(a1)(x, t) + (1− s)v(a2)(x, t)) ds,

and λ ≥ kck∞. Using Lemma 2.2(i), we deduce that F > 0 on Ω× [T0, T1].
Now, the rest of the proof is similar to the previous one. 2

Remark 3.1 LetAc ⊂ C1[0,N ] be the set of all function a such that a−1{0}
has no accumulation point. Then we have the following corollary.

Corollary 3.2. Let h ∈ H and let a1, a2 ∈ A. Assume that a1 − a2 ∈ Ac.
If v(a1)(x0, .) = v(a2)(x0, .) on [0, T ], then

max
Ω×[0,T ]

v(a1) = max
Ω×[0,T ]

v(a2) = m and a1 = a2 on [0,m].
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Note that the condition a1 − a2 ∈ Ac, in the previous corollary, occurs
frequently in the inverse problems where the unknown is the nonlinear term
appearing in the equation (see, for instance, [7], [5], [2] and [4]).

In the case of a one-point boundary measurement, we have the following
result.

Theorem 3.2. (i) Let g ∈ eG and let f1, f2 ∈ Fa. If ∂nu(f1)(x0, .) =
∂nu(f2)(x0, .) on [0, T ], then f1 = f2.

(ii) Let h ∈ H and let a1, a2 ∈ Aa. If ∂nv(a1)(x0, .) = ∂nv(a2)(x0, .) on
[0, T ], then a1 = a2.

Proof. Let g ∈ eG and let f1, f2 ∈ Fa. Assume that

∂nu(f1)(x0, .) = ∂nu(f2)(x0, .) on [0, T ].(3.4)

We argue as in the proof of Theorem 3.1. Suppose that f1 6= f2. Since
the minimum of the solution w of Eq. (3.1) is attained on {x0} × [0, T ] ⊂
∂Ω×[0, T ] and w is not constant on Ω×[T0, T1] (since F > 0 on Ω×[T0, T1]),
it follows from the minimum principle that

∂nw < 0 on {x0} × [T0, T1],

which is in contradiction with (3.4).

The proof of the second item is similar. 2

The following result is immediate from the theorem above.

Corollary 3.3. Under the hypotheses of Corollary 3.1, the inverse problem
(1.3) associated to Eq. (1.1) (respectively, Eq. (1.4)), can possess at most
one solution in Fa(respectively, in Aa).
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