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Abstract

This article is concerned with the existence result of the unilateral
problem associated to equations of the type

Au+ g(x, u,∇u) = f,

in Orlicz spaces, where f ∈ L1(Ω), the term g is a nonlinearity having
natural growth and satisfying the sign condition. Some stability and
positivity properties of solutions are proved.
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1. Introduction

Let Ω be a bounded domain in IRN and let Au = −diva(x, u,∇u) be a
Leray-Lions operator defined on its domain D(A) ⊂ W 1

0LM(Ω), where M
is an N -function which satisfies the ∆2-condition and f ∈ L1(Ω).

The author’s in [6] proved the existence of at least one solution for the
following nonlinear Dirichlet problem

Tk(u) ∈W 1
0LM(Ω), g(x, u,∇u) ∈ L1(Ω)Z

Ω
a(x, u,∇u)∇Tk(u− v) dx+

Z
Ω
g(x, u,∇u)Tk(u− v) dx

≤
Z
Ω
fTk(u− v) dx,

∀ v ∈W 1
0LM(Ω) ∩ L∞(Ω), ∀k > 0.

(1.1)

Where g is a nonlinearity having natural growth with respect to |∇u|,
and which satisfies the classical sign condition with respect to u.

It is our purpose, in this paper, to prove an existence theorem for the
corresponding obstacle problem. More precisely, we prove the existence of
at least one solution for the following unilateral problem

u ≥ ψ a.e. in Ω.
Tk(u) ∈W 1

0LM(Ω), g(x, u,∇u) ∈ L1(Ω)Z
Ω
a(x, u,∇u)∇Tk(u− v) dx+

Z
Ω
g(x, u,∇u)Tk(u− v) dx

≤
Z
Ω
fTk(u− v) dx,

∀ v ∈ Kψ ∩ L∞(Ω), ∀k > 0.

(1.2)

Where Kψ = {u ∈ W 1
0LM(Ω)/u ≥ ψ a.e. in Ω.)}, with ψ is a mea-

surable function on Ω such that ψ+ ∈ W 1
0LM(Ω) ∩ L∞(Ω), and where

Tk is the truncation operator at height k > 0, defined onR by Tk(s) =
max(−k,min(k, s)).

Let us point out that another work in the Lp case can be found in [17]
in the case of equation, and in [9] in the case of obstacle problems.

Note that this type of equations can be applied in sciences physics.
Non-standard examples ofM(t) which occur in the mechanics of solids and

fluids are M(t) = t log(1 + t),M(t) =

Z t

0
s1−α(arcsinhs)α ds (0 ≤ α ≤ 1)

and M(t) = t log(1 + log(1 + t)) (see [11, 12, 13, 10]) for more details).
This paper is organized as follows, sections 2 contain some preliminaries

and some technical lemmas. Section 3 is concerned with basic assumptions
and the main result which is proved in section 4, finally, we study the
stability and the positivity of solution.
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2. Preliminaries

2-1 Let M : R+ → R+ be an N-function, i.e. M is continuous, convex,

with M(t) > 0 for t > 0,
M(t)

t
→ 0 as t→ 0 and

M(t)

t
→∞ as t→∞.

Equivalently, M admits the representation: M(t) =
R t
0 a(s) ds where

a : R+ → R+ is nondecreasing, right continuous, with a(0) = 0, a(t) >
0 for t > 0 and a(t) tends to ∞ as t→∞.

The N -functionM conjugate toM is defined byM =
R t
0 ā(s) ds, where

ā :R+ → R+ is given by ā(t) = sup{s : a(s) ≤ t}.
The N -function M is said to satisfy the ∆2-condition if, for some k

M(2t) ≤ kM(t) ∀t ≥ 0(2.1)

it is readily seen that this will be the case if and only if for every r > 1
there exists a positive constant k = k(r) such that for all t > 0

M(rt) ≤ kM(t)(2.2)

When (2.1) and (2.2) holds only for t ≥ t0 for some t0 > 0 then M is said
to satisfy the ∆2-condition near infinity.

We will extend these N -functions as even functions on all IR. Moreover,
we have the following Young’s inequality

∀s, t ≥ 0, st ≤M(t) +M(s).

Let P and Q be two N -functions. P << Q means that P grows essentially

less rapidly than Q, i.e., for each > 0,
P (t)

Q( t)
→ 0 as t → ∞. This is the

case if and only if limt→∞
Q−1(t)
P−1(t)

= 0.

2-2 Let Ω be an open subset of IRN . The Orlicz class KM(Ω) ( resp.
the Orlicz space LM(Ω)) is defined as the set of (equivalence classes modulo
equality a. e. ) real valued measurable functions u on Ω such thatZ

Ω
M(u(x)) dx < +∞( resp.

Z
Ω
M

µ
u(x)

λ

¶
dx < +∞ for some λ > 0).

LM(Ω) is a Banach space under the norm

kukM,Ω = inf{λ > 0 :

Z
Ω
M

µ
u(x)

λ

¶
dx ≤ 1},
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and KM(Ω) is a convex subset of LM(Ω).

The closure in LM(Ω) of the set of bounded measurable functions with
compact support in Ω is denoted by EM(Ω).

The dual of EM(Ω) can be identified with LM(Ω) by means of the

pairing

Z
Ω
uv dx, and the dual norm of LM(Ω) is equivalent to k.kM,Ω.

2-3We now turn to the Orlicz-Sobolev spaceW 1LM(Ω)[resp. W
1EM(Ω)]

which is the space of all functions u such that u and its distributional deriva-
tives of order 1 lie in LM(Ω) [resp. EM(Ω)]. It is a Banach space under
the norm

kuk1,M =
X
|α|≤1

kDαukM .

Thus, W 1LM(Ω) and W 1EM(Ω) can be identified with subspaces of the
product of N + 1 copies of LM(Ω). Denoting this product by

Q
LM , we

will use the weak topologies σ(
Q
LM ,

Q
EM) and σ(

Q
LM ,

Q
LM).

The space W 1
0EM(Ω) is defined as the (norm) closure of the Schwartz

space D(Ω) in W 1EM(Ω) and the space W
1
0LM(Ω) as the σ(

Q
LM ,

Q
EM)

closure of D(Ω) in W 1LM(Ω).

2-4 Let W−1LM(Ω) [resp. W−1EM(Ω)] denote the space of distribu-
tions on Ω which can be written as sums of derivatives of order ≤ 1 of
functions in LM(Ω) [resp. EM(Ω)]. It is a Banach space under the usual
quotient norm (for more details see [1]).

We now introduce the functional spaces we will need later.

For an N -function M, τ1,M0 (Ω) is defined as the set of measurable
functions u : Ω −→ R such that for all k > 0 the truncated functions
Tk(u) ∈W 1

0LM(Ω).

We gives the following lemma this is a generalization of Lemma 2.1 [2]
in Orlicz spaces.

Lemma 2.1. For every u ∈ τ1,M0 (Ω), there exists a unique measurable
function v : Ω −→ RN such that

∇Tk(u) = vχ{|v|<k} for all k > 0.
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Lemma 2.2. Let λ ∈ R and let u and v be two measurable functions
defined on Ω which are finite almost everywhere, and which are such that
Tk(u), Tk(v) and Tk(u+ λv) belong to W 1

0LM(Ω) for every k > 0 then

∇(u+ λv) = ∇(u) + λ∇(v) a.e. in Ω.
where ∇(u), ∇(v) and ∇(u + λv) are the gradients of u, v and u + λv
introduced in Lemma 2.1.

The proof of this lemma is similar to the proof of Lemma 2.12 [8] for
the Sobolev spaces.

We recall some lemmas introduced in [4] which will be used later.

Lemma 2.3. Let F : R → R be uniformly Lipschitzian, with F (0) = 0.
Let M be an N -function and let u ∈ W 1LM(Ω) ( resp. W 1EM(Ω)).
Then F (u) ∈ W 1LM(Ω) ( resp. W 1EM(Ω)). Moreover, if the set D of
discontinuity points of F 0 is finite, then

∂

∂xi
F (u) =

(
F 0(u) ∂

∂xi
u a.e. in {x ∈ Ω : u(x) /∈ D},

0 a.e. in {x ∈ Ω : u(x) ∈ D}.

Lemma 2.4. Let F : R → R be uniformly Lipschitzian, with F (0) = 0.
We suppose that the set of discontinuity points of F 0 is finite. LetM be an
N -function, then the mappingNF :W

1LM(Ω)→W 1LM(Ω) is sequentially
continuous with respect to the weak* topology σ(

Q
LM ,

Q
EM).

We give now the following lemma which concerns operators of Nemytskii
type in Orlicz spaces ( see [4]).

Lemma 2.5. Let Ω be an open subset of RN with finite measure.
LetM,P and Q be N -functions such that Q << P , and let F : Ω×R→

R be a Carathéodory function such that, for a.e. x ∈ Ω and all s ∈R :

|F (x, s)| ≤ c(x) + k1P
−1M(k2|s|),

where k1, k2 are real constants and c(x) ∈ EQ(Ω).
Then the Nemytskii operator NF defined by NF (u)(x) = F (x, u(x)) is

strongly continuous from P(EM(Ω),
1

k2
) = {u ∈ LM(Ω) : d(u,EM(Ω)) <

1

k2
} into EQ(Ω).
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3. Main results

Let Ω be an open bounded subset ofRN , N ≥ 2, with the segment property.
Let M be an N -function satisfying the ∆2-condition near infinity, and let
P be an N -function such that P << M . We consider the Leray-Lions
operator,

Au = −div(a(x, u,∇u)),
defined on D(A) ⊂W 1

0LM(Ω) intoW
−1LM(Ω) where a : Ω×R×RN → RN

is a Carathéodory function such that for a.e. x ∈ Ω and for all ζ, ξ ∈
RN(ζ 6= ξ) and all s ∈R,

|a(x, s, ζ)| ≤ k(x) + k1P
−1
M(k2|s|) + k3M

−1
M(k4|ζ|),(3.1)

(a(x, s, ζ)− a(x, s, ξ))(ζ − ξ) > 0,(3.2)

a(x, s, ζ)ζ ≥ αM

µ |ζ|
δ

¶
,(3.3)

with α, δ > 0 k1, k2, k3, k4 ≥ 0, k(x) ∈ EM(Ω).

Furthermore let g : Ω×R×RN → R be a Carathéodory function such
that for a.e. x ∈ Ω and for all s ∈ R and all ζ ∈ RN ,

g(x, s, ζ)s ≥ 0,(3.4)

|g(x, s, ζ)| ≤ b(|s|)(c(x) +M(|ζ|/λ)),(3.5)

where b : R+ →R+ is a continuous nondecreasing function, c is a given
positive function in L1(Ω), and λ > 0. Let the subset convex

Kψ = {u ∈W 1
0LM(Ω)/u ≥ ψ a.e. in Ω.)},

where ψ : Ω→R is a measurable function on Ω such that

ψ+ ∈W 1
0LM(Ω) ∩ L∞(Ω).(3.6)

Finally, we assume that

f ∈ L1(Ω),(3.7)

In the next section, we will prove the following theorem.
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Theorem 3.1. Assume that the hypotheses (3.1)-(3.7) holds. Then, there
exists at least one solution of the following unilateral problem

(P )



u ≥ ψ a.e. in Ω.
Tk(u) ∈W 1

0LM(Ω), g(x, u,∇u) ∈ L1(Ω)Z
Ω
a(x, u,∇u)∇Tk(u− v) dx+

Z
Ω
g(x, u,∇u)Tk(u− v) dx

≤
Z
Ω
fTk(u− v) dx,

∀ v ∈ Kψ ∩ L∞(Ω), ∀k > 0.

Remark 3.1. We obtain the same results of our theorem if we suppose
that the sign condition (3.4) is fulfilled only near infinity.

4. Proof of main result

To prove the existence theorem we proceed by steps.
STEP 1: A priori estimates.
Let us define

gn(x, s, ξ) =
g(x, s, ξ)

1 + 1
n |g(x, s, ξ)|

and let us consider the sequence of approximate variational inequalities

(Pn)



un ∈ Kψ,

hAun, un − vi+
Z
Ω
gn(x, un,∇un)(un − v) dx

≤
Z
Ω
fn(un − v) dx,

∀v ∈ Kψ,

where fn is a regular function such that fn strongly converges to f in
L1(Ω). Since gn(x, s, ξ) is bounded and gn(x, s, ξ).s ≥ 0, then by using the
Proposition 5 and Remark 6 of [15] (withm = 1 and a0(x, s, ξ) = gn(x, s, ξ))
it is easy to verifie that (Pn) has at least one solution.

Let w = un − Tk(un − ψ+) ∈ Kψ. The choice of w as a test function in
(Pn), we obtain

hAun, Tk(un − ψ+)i+
Z
Ω
gn(x, un,∇un)Tk(un − ψ+) dx

≤
Z
Ω
fnTk(un − ψ+) dx.



300 A. Aharouch and M. Rhoudaf

which givesZ
Ω
a(x, un,∇un)∇Tk(un − ψ+) dx+

Z
Ω
gn(x, un,∇un)Tk(un − ψ+) dx

≤
Z
Ω
fnTk(un − ψ+) dx.

Since gn(x, un,∇un)Tk(un − ψ+) ≥ 0, we obtainZ
Ω
a(x, un,∇un)∇Tk(un − ψ+) dx ≤

Z
Ω
fnTk(un − ψ+) dx,

Consequently, we deduce thatZ
{|un−ψ+|≤k}

a(x, un,∇un)∇un dx ≤ C0k+

Z
{|un−ψ+|≤k}

a(x, un,∇un)∇ψ+ dx.

By using the Young’s inequality and the ∆2-condition we haveZ
{|un−ψ+|≤k}

M(|∇un|/δ) dx ≤ C 01 + C02k,

which implies thatZ
Ω
M(|∇Tk(un)|/δ) dx ≤

Z
{|un−ψ+|≤k+kψ+k∞}

M(|∇un|/δ) dx ≤ C 01 + C 02k.

(4.1)
Now, we prove that un converges to some function u in measure (and there-
fore, we can always assume that the convergence is a.e. after passing to
a suitable subsequence). We shall show that un is a Cauchy sequence in
measure.

Thanks to Lemma 5.7 of [14], there exists two positive constants C 03 and
C 04 such thatZ

Ω
M(u) dx ≤ C 04

Z
Ωdisplaystyle

PN

i=1
M(C03

∂u
∂xi

) dx
for all u ∈W 1

0LM(Ω).

Taking u = Tk(un)
C03δ

, we have

Z
Ω
M(

1

C 03δ
Tk(un)) dx ≤ C 04

Z
Ω

NX
i=1

M(
1

δ

∂Tk(un)

∂xi
) dx

≤ NC 04
Z
Ω
M(
∇Tk(un)

δ
dx
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then Z
Ω
M(C3Tk(un)) dx ≤ C4

Z
Ω
M(|∇Tk(un)|/δ) dx ≤ C1 + C2k.(4.2)

with C3 =
1

C03δ
and C4 = NC 04. Then, we deduce by using (4.1) and (4.2)

that

M(C3k)meas({|un| > k}) =
Z
{|un|>k}

M(C3Tk(un)) dx ≤
Z
Ω
M(C3Tk(un)) dx ≤

C1 + C2k, hence

meas({|un| > k}) ≤ C1 + C2k

M(C3k)
∀n and ∀k > 0.(4.3)

For every δ > 0, we have

meas({|un − um| > δ}) ≤ meas({|un| > k}) + meas({|um| > k})
+meas{|Tk(un)− Tk(um)| > δ}.(4.4)

Since Tk(un) is bounded in W 1
0LM(Ω), there exists some vk ∈ W 1

0LM(Ω),
such that

Tk(un) vk weakly in W 1
0LM(Ω)

Tk(un)→ vk strongly in EM(Ω) and a.e. in Ω.

Consequently, we can assume that Tk(un) is a Cauchy sequence in mea-
sure in Ω.

Let ε > 0. then, by (4.3) and (4.4), there exists some k(ε) > 0 such
that meas({|un − um| > δ}) < ε for all n,m ≥ n0(k(ε), δ, ). This proves
that (un) is a Cauchy sequence in measure in Ω, thus converges almost
everywhere to some measurable function u. Then

Tk(un) Tk(u) weakly in W 1
0LM(Ω) for σ(ΠLM ,ΠEM),

Tk(un)→ Tk(u) strongly in EM(Ω).

We shall prove that the sequence (a(x, Tk(un),∇Tk(un)))n is bounded in
(LM(Ω))

N for all k > 0.
Let w ∈ (EM(Ω))

N be arbitrary. By condition (3.2), we have

(a(x, un,∇un)− a(x, un, w)) (∇un − w) ≥ 0.
ConsequentlyZ

{|un−ψ+|≤k}
a(x, un,∇un)(w −∇ψ+) dx

≤
Z
{|un−ψ+|≤k}

a(x, un,∇un)(∇un −∇ψ+) dx

+

Z
{|un−ψ+|≤k}

a(x, un, w)(w −∇un) dx.
(4.5)
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Using the argument above, we may assume that the first term on the
right remains bounded. Moreover, by (3.1), we have

|a(x, Tk(un), w)| ≤ c(x) + k1M
−1
M(k2|Tk(un)|) + k3M

−1
M(k4w) + k5.

Therefore,Z
Ω
M(

|a(x, Tk(un), w)|
µ

dx ≤ 1
µ

Z
Ω
M(c(x)) dx+

k3
µ

Z
Ω
M(k4w)

+k6+M(k2k)
µ meas(Ω) ≤ 1,

when µ > 0 is large enough. Hence a(x, Tk(un), w) is bounded in LM(Ω),
which implies that the second term on the right in ( 4.5) is also bounded. By
the theorem of Banach-Steinhaus, the sequence (a(x, un,∇un)χ{|un−ψ+|≤k})
remains bounded in LM(Ω). Since k arbitrary, we deduce that
(a(x, Tk(un),∇Tk(un)) also bounded in LM(Ω). Which implies that, for all
k > 0 there exists a function hk ∈ (LM(Ω))

N , such that

a(x, Tk(un),∇Tk(un)) hk weakly in (LM(Ω)
N for σ(ΠLM(Ω),ΠEM(Ω))

(4.6)

STEP 2: Strong convergence of truncation.
We fix k > 0. Let Ωr = {x ∈ Ω : |∇Tk(u(x))| ≤ r} and denote by χr the

characteristic function of Ωr. Clearly, Ωr ⊂ Ωr+1 and meas(Ω\Ωr) −→ 0 as
r −→∞.

Fix r and let s ≥ r, we have,

0 ≤
Z
Ωr
[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))][∇Tk(un)

−∇Tk(u)] dx

≤
Z
Ωs
[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))][∇Tk(un)

−∇Tk(u)] dx

=

Z
Ωs
[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)][∇Tk(un)

−∇Tk(u)χs] dx

≤
Z
Ω
[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)][∇Tk(un)

−∇Tk(u)χs] dx.

(4.7)

Now, consider the following function

ϕ(s) = seγs
2
, where γ > (K

b(k)

α
)2.
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It is well known that

ϕ0(s)−K
b(k)

α
|ϕ(s)| ≥ 1

2
, ∀sR,(4.8)

where K is a constant which will be used later.
Let k ≥ kψ+k∞, we define wn = T2k(un − Th(un) + Tk(un) − Tk(u))

where h > 2k > 0. For η = exp(−4γk2), we define the following function
as

vn,h = un − ηϕ(wn).(4.9)

We take vn,h as test function in (Pn) (for more explication concerned this
test function see the appendix II), we obtain,

hA(un), ηϕ(wn)i+
Z
Ω
gn(x, un,∇un)ηϕ(wn) dx ≤

Z
Ω
fnηϕ(wn) dx.

Which, implies that

hA(un), ϕ(wn)i+
Z
Ω
gn(x, un,∇un)ϕ(wn) dx ≤

Z
Ω
fnϕ(wn) dx.(4.10)

It follows thatZ
Ω
a(x, un,∇un)∇wnϕ

0(wn) dx+

Z
Ω
gn(x, un,∇un)ϕ(wn) dx

≤
Z
Ω
fnϕ(wn) dx.

(4.11)

Note that, ∇wn = 0 on the set where |un| > h + 4k, therefore, setting
m = 4k + h, and denoting by ε1h(n), ε

2
h(n), ... various sequences of real

numbers which converge to zero as n tends to infinity for any fixed value
of h, we get, by (4.11),Z

Ω
a(x, Tm(un),∇Tm(un))∇wnϕ

0(wn) dx+

Z
Ω
gn(x, un,∇un)ϕ(wn) dx

≤ RΩ fnϕ(wn) dx,

and since for x in the set {x ∈ Ω : |un(x)| > k}, we have that
ϕ(wn)g(x, un,∇un) ≥ 0, we deduce from (4.11) thatZ

Ω
a(x, Tm(un),∇Tm(un))∇wnϕ

0(wn) dx+

Z
{|un|≤k}

gn(x, un,∇un)ϕ(wn) dx

≤
Z
Ω
fnϕ(wn) dx.

(4.12)
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Splitting the first integral on the left hand side of (4.12) where |un| ≤ k
and |un| > k, we can write, using (3.3) and the fact that a(x, s, 0) = 0 for
all s ∈ IR.:Z

Ω
a(x, Tm(un),∇Tm(un))∇wnϕ

0(wn) dx

≥
Z
Ω
a(x, Tk(un),∇Tk(un))[∇Tk(un)−∇Tk(u)]ϕ0(wn) dx

−Ck

Z
{|un|>k}

|a(x, Tm(un),∇Tm(un))||∇Tk(u)| dx,
(4.13)

where Ck = ϕ0(2k). Since, as n tends to infinity, |∇Tk(u)|χ{|un|>k} strong
converges to zero in EM(Ω) while |a(x, Tm(un),∇Tm(un))| is bounded in
LM(Ω), the last term in the previous inequality tends to zero for every h
fixed.

Now, observe thatZ
Ω
a(x, Tk(un),∇Tk(un))[∇Tk(un)−∇Tk(u)]ϕ0(wn) dx

=

Z
Ω
[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)]

×[∇Tk(un)−∇Tk(u)χs]ϕ0(wn) dx

+

Z
Ω
a(x, Tk(un),∇Tk(u)χs)[∇Tk(un)−∇Tk(u)χs]ϕ0(wn) dx

−
Z
Ω
a(x, Tk(un),∇Tk(un))∇Tk(u)χΩ\Ωsϕ0(wn) dx.

(4.14)

The second terms of the right hand side of (4.14) tend to 0. IndeedZ
Ω
a(x, Tk(un),∇Tk(u)χs)[∇Tk(un)−∇Tk(u)χs]ϕ0(wn) dx =Z

Ω
a(x, Tk(un),∇Tk(u)χs)∇Tk(un)ϕ0(Tk(n)− Tk(u)) dx

−
Z
Ω
a(x, Tk(un),∇Tk(u)χs)∇Tk(u)χsϕ0(wn) dx

by using Lemma 2.5, we have

a(x, Tk(un),∇Tk(u)χs)ϕ0(Tk(n)− Tk(u))→ a(x, Tk(u),∇Tk(u)χs)ϕ0(0)

strongly in (EM(Ω))
N .

and

a(x, Tk(un),∇Tk(u)χs)→ a(x, Tk(u),∇Tk(u)χs)
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strongly in (EM(Ω))
N .

Moreover,

∇Tk(un) ∇Tk(u) weakly in (LM(Ω))
N , for σ(ΠLM(Ω),ΠEM(Ω)),

and

∇Tk(u)χsϕ0(wn)→∇Tk(u)χsϕ0(wn) strongly in (LM(Ω))
N

by using the Lebesgue’s theorem. Combining the previous statement, we
deduce the result.

The third term of the right hand side of (4.14) tends to the quantity

−
Z
Ω
hk∇Tk(u)χΩ\Ωsϕ0(T2k(u− Th(u))) dx as n→∞, since by (4.6), we

have

a(x, Tk(un),∇Tk(un)) hk weakly in (LM(Ω))
N for

σ(ΠLM(Ω),ΠEM(Ω))

while

χΩ\Ωs∇Tk(u)ϕ0(wn)→ χΩ\Ωs∇Tk(u)ϕ0(T2k(u− Th(u))) strongly in

(EM(Ω))
N .

So that (4.13) yieldsZ
Ω
a(x, Tm(un),∇Tm(un))∇wnϕ

0(wn) dx

≥
Z
Ω
[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)]

×[∇Tk(un)−∇Tk(u)χs]ϕ0(wn) dx

−
Z
Ω
hk∇Tk(u)χΩ\Ωsϕ0(T2k(u− Th(u))) dx+ ε1h(n).

(4.15)
Since the N -function M satisfies the ∆2-condition near infinity, then there
exist two positive constants K and K 0 such that

M(t/λ) ≤ KM(t/δ) +K 0, ∀t ≥ 0.(4.16)

Endeed : if δ ≤ λ, we get M( tλ) ≤M( tδ ) ∀ t ≥ 0 and if δ
λ > 1, under the

condition (2.2) there exists k( δλ) > 0 such thatM(
δ
λt) ≤ k( δλ)M(t) ∀t ≥ t0

for some t0 > 0, hence M( tλ) ≤ k( tδ )M(t) ∀t ≥ δt0 and M( tλ) ≤ K 0 ∀0 ≤
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t ≤ δt0.

Finally, taking K = max(1, k( δλ)), we deduce (4.16).

For the second term of the left hand side of (4.12), we can estimate as
follows

Z
{|un|≤k}

gn(x, un,∇un)ϕ(wn) dx

≤
Z
{|un|≤k}

b(k)(c(x) +K 0 +KM(∇un/δ))|ϕ(wn)| dx

≤ b(k)

Z
Ω
(c(x) +K 0)|ϕ(wn)| dx

+K b(k)
α

Z
Ω
a(x, Tk(un),∇Tk(un))∇Tk(un)|ϕ(wn)| dx,

(4.17)

let us consider the last integral in the previous inequality

Z
Ω
a(x, Tk(un),∇Tk(un))∇Tk(un)|ϕ(wn)| dx

=

Z
Ω
[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)]

×[∇Tk(un)−∇Tk(u)χs]|ϕ(wn)| dx
+

Z
Ω
a(x, Tk(un),∇Tk(un))∇Tk(u)χs|ϕ(wn)| dx

+

Z
Ω
a(x, Tk(un),∇Tk(u)χs)[∇Tk(un)−∇Tk(u)χs]|ϕ(wn)| dx.

(4.18)

It is easy to see that the second term of the right hand side tends to the
quantity Z

Ω
hk∇Tk(u)χs|ϕ(T2k(u− Th(u)))| dx,

since a(x, Tk(un),∇Tk(un)) hk in (LM(Ω))
N for σ(ΠLM(Ω),ΠEM(Ω))

and

∇Tk(u)χs|ϕ(wn)|→ χs∇Tk(u)|ϕ(T2k(u−Th(u)))| strongly in (EM(Ω))
N .

Reasoning as in (4.14), the third term of the right hand side of (4.18) tends
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to 0. From (4.17) and (4.18), we obtain

Z
{|un|≤k}

gn(x, un,∇un)ϕ(wn) dx

≤ K b(k)
α

Z
Ω
[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)]

×[∇Tk(un)−∇Tk(u)χs]|ϕ(wn)| dx
+K b(k)

α

Z
Ω
hk∇Tk(u)χs|ϕ(T2k(u− Th(u)))| dx

+b(k)

Z
Ω
(c(x) +K 0)|ϕ(T2k(u− Th(u)))| dx+ ε3h(n).

(4.19)

Combining (4.12), (4.15) and (4.19), we obtain

Z
Ω
[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)]

×[∇Tk(un)−∇Tk(u)χs](ϕ0(wn)−K b(k)
α |ϕ(wn)|) dx

≤ ε4h(n) +

Z
Ω
hk∇Tk(u)χΩ\Ωsϕ0(T2k(u− Th(u))) dx

+K b(k)
α

Z
Ω
hk∇Tk(u)χs|ϕ(T2k(u− Th(u)))| dx

+b(k)

Z
Ω
(c(x) +K 0)|ϕ(T2k(u− Th(u)))| dx

+

Z
Ω
fϕ(T2k(u− Th(u)))| dx

which implies, by using (4.8),

Z
Ω
[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)]

×[∇Tk(un)−∇Tk(u)χs] dx
≤ ε5h(n) + 2

Z
Ω
hk∇Tk(u)χΩ\Ωsϕ0(T2k(u− Th(u))) dx

+2K b(k)
α

Z
Ω
hk∇Tk(u)χs|ϕ(T2k(u− Th(u)))| dx

+2b(k)

Z
Ω
(c(x) +K 0)|ϕ(T2k(u− Th(u)))| dx

+2

Z
Ω
fϕ(T2k(u− Th(u)))| dx.

(4.20)
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Consequently, from (4.7), we have

Z
Ωr
[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))]

×[∇Tk(un)−∇Tk(u)] dx
≤ ε6h(n) + 2

Z
Ω
hk∇Tk(u)χΩ\Ωsϕ0(T2k(u− Th(u))) dx

+2K b(k)
α

Z
Ω
hk∇Tk(u)χs|ϕ(T2k(u− Th(u)))| dx

+b(k)

Z
Ω
(c(x) +K 0)|ϕ(T2k(u− Th(u)))| dx

+2

Z
Ω
fϕ(T2k(u− Th(u)))| dx.

By passing to the lim sup over n, and letting h, s tend to infinity, we obtain
by the same method used in [4] that

∇un →∇u a.e. in Ω,(4.21)

which implies that hk = a(x, Tk(u),∇Tk(u)) ∀k > 0.

Again by (4.20), we get

lim sup
n→∞

Z
Ω
a(x, Tk(un),∇Tk(un))∇Tk(un) dx

≤ lim sup
n→∞

Z
Ω
a(x, Tk(un),∇Tk(un))∇Tk(u)χs dx

+lim sup
n→∞

Z
Ω
a(x, Tk(un),∇Tk(u)χs)(∇Tk(un)−∇Tk(u)χs) dx

+2

Z
Ω
a(x, Tk(u),∇Tk(u))∇Tk(u)χΩ\Ωsϕ0(T2k(u− Th(u))) dx

+2K b(k)
α

Z
Ω
a(x, Tk(u),∇Tk(u))∇Tk(u)χs|ϕ(T2k(u− Th(u)))| dx

+b(k)

Z
Ω
(c(x) +K 0)|ϕ(T2k(u− Th(u)))| dx

+2

Z
Ω
fϕ(T2k(u− Th(u)))| dx.

(4.22)

The first term of the right hand side of the last inequality tend toZ
Ω
a(x, Tk(u),∇Tk(u))∇Tk(u)χs dx and since a(x, Tk(un),∇Tk(un)) a(x, Tk(u),∇Tk(u))

weakly in (LM(Ω))
N for σ(ΠLM(Ω),ΠEM(Ω)) while ∇Tk(u)χs ∈ EM(Ω).

The second term of the right hand side of (4.22) tends to 0, since
a(x, Tk(un),∇Tk(u)χs)→ a(x, Tk(u),∇Tk(u)χs) strongly in (EM(Ω))

N while
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∇Tk(un) tends weakly to ∇Tk(u). We deduce that

lim sup
n→∞

Z
Ω
a(x, Tk(un),∇Tk(un))∇Tk(un) dx

≤
Z
Ω
a(x, Tk(u),∇Tk(u))∇Tk(u)χs dx

+2

Z
Ω
a(x, Tk(u),∇Tk(u))∇Tk(u)χΩ\Ωsϕ0(T2k(u− Th(u))) dx

+2K b(k)
α

Z
Ω
a(x, Tk(u),∇Tk(u))∇Tk(u)χs|ϕ(T2k(u− Th(u)))| dx

+b(k)

Z
Ω
(c(x) +K 0)|ϕ(T2k(u− Th(u)))| dx

+2

Z
Ω
fϕ(T2k(u− Th(u)))| dx.

Passing again to the limsup but now over h, and by using that the functions
a(x, Tk(u),∇Tk(u))∇Tk(u),
c(x) +K 0 and f belong to L1(Ω) and that

|ϕ(T2k(u− Th(u)))|→ 0,

ϕ0(T2k(u − Th(u))) → ϕ0(0) as h → ∞, one easily obtains by Lebesgue’s
theorem

lim sup
h→∞

lim sup
n→∞

Z
Ω
a(x, Tk(un),∇Tk(un))∇Tk(un) dx

≤
Z
Ω
a(x, Tk(u),∇Tk(u))∇Tk(u)χs dx

+2ϕ0(0)
Z
Ω
a(x, Tk(u),∇Tk(u))∇Tk(u)χΩ\Ωs dx.

Using again the fact that a(x, Tk(u),∇Tk(u))∇Tk(u) ∈ L1(Ω) and letting
s→∞ we get, since meas(Ω\Ωs)→ 0,

lim sup
h→∞

lim sup
n→∞

Z
Ω
a(x, Tk(un),∇Tk(un))∇Tk(un) dx

≤
Z
Ω
a(x, Tk(u),∇Tk(u))∇Tk(u) dx.

On the other hand, by Fatou’s lemma,Z
Ω
a(x, Tk(u),∇Tk(u))∇Tk(u) dx

≤ lim sup
h→∞

lim sup
n→∞

Z
Ω
a(x, Tk(un),∇Tk(un))∇Tk(un) dx,

which implies
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lim
n→∞

Z
Ω
a(x, Tk(un),∇Tk(un))∇Tk(un) dx =

Z
Ω
a(x, Tk(u),∇Tk(u))∇Tk(u) dx.

(4.23)
Thanks to (4.16), we have

M(|∇Tk(un)|/λ) ≤ K 0 +KM(|∇Tk(un)|/δ)

and by using (4.23), one obtains, by Vitali’s theorem,

M(|∇Tk(un)|/λ)→M(|∇Tk(u)|/λ) in L1(Ω),(4.24)

STEP 3: Passing to the limit. Let v ∈ Kψ ∩ L∞(Ω), we take un −
Tk(un − v) as test function in (Pn), we can writeZ

Ω
a(x, Tk+kvk∞(un),∇Tk+kvk∞(un))∇Tk(un − v) dx

+

Z
Ω
g(x, un,∇un)Tk(un − v) dx

≤
Z
Ω
fnTk(un − v) dx.

(4.25)

By Fatou’s lemma and the fact that

a(x, Tk+kvk∞(un),∇Tk+kvk∞(un)) a(x, Tk+kvk∞(u),∇Tk+kvk∞(u))

weakly in (LM(Ω))
N for σ(ΠLM ,ΠEM) on easily see thatZ

Ω
a(x, Tk+kvk∞(u),∇Tk+kvk∞(u))∇Tk(u− v) dx

≤ lim inf
n→∞

Z
Ω
a(x, Tk+kvk∞(un),∇Tk+kvk∞(un))∇Tk(un − v) dx.

(4.26)

Now, we need to prove that

gn(x, un,∇un)→ g(x, u,∇u) strongly in L1(Ω),(4.27)

in particular it is enough to prove that the functions gn(x, un,∇un) are
equiintegrable of gn(x, un,∇un). To this purpose. We take un−(Tl+1(un)−
Tl(un)) (with l ≥ kψ+k∞) as test function in (Pn) (see Appendix III), we
obtain Z

{|un|>l+1}
|gn(x, un,∇un)| dx ≤

Z
{|un|>l}

|fn| dx.
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Let ε > 0, then there exists l(ε) ≥ 1 such thatZ
{|un|>l(ε)}

|g(x, un,∇un)| dx < ε/2.(4.28)

For any measurable subset E ⊂ Ω, we haveZ
E
|gn(x, un,∇un)| dx ≤

Z
E
b(l(ε))(c(x) +M(∇Tl(ε)(un)/λ)) dx

+

Z
{|un|>l(ε)}

|g(x, un,∇un)| dx.

In view by (4.24) there exists η(ε) > 0 such thatZ
E
b(l(ε))(c(x) +M(|∇Tl(ε)|(un)/λ)) dx < ε/2

for all
E
such that meas(E) < η(ε).

(4.29)

Finally, by combining (4.28) and (4.29), one easily hasZ
E
|gn(x, un,∇un)| dx < ε for all E such that meas(E) < η(ε),

which allows us, by using (4.26) and (4.27), to pass to the limit in (4.25).
This completes the proof of Theorem.

Remark 4.1. :The results obtained in Theorem 3.1, remains true if we
replace (3.1) by the general growth condition

|a(x, s, ξ)| ≤ b(s)(h(x) +M
−1
M(k|ξ|))

where k ≥ 0, h ∈ EM(Ω) and b : IR+ → IR is a nondecreasing continuous
function.

Remark 4.2. : Note that we obtain the existence result without assum-
ing the coercivity condition. However one can overcome this difficulty by
introduced the function wn = T2k(un−Th(un)+Tk(un)−Tk(u)) in the test
function (4.9).
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Corollary 4.1. Assume that the hypothesis (3.1)-(3.7) holds. Let fn any
sequence of function in L1(Ω) that converges to f weakly in L1(Ω) and let
un the solution of the following unilateral problem

(P 0n)



un ≥ ψ a.e. in Ω.

un ∈ τ1,M0 (Ω), g(x, un,∇un) ∈ L1(Ω)Z
Ω
a(x, un,∇un)∇Tk(un − v) dx+

Z
Ω
g(x, un,∇un)Tk(un − v) dx

≤
Z
Ω
fnTk(un − v) dx,

∀ v ∈ Kψ ∩ L∞(Ω), ∀k > 0.

Then, there exists a subsequence of un still denoted un such that un con-
verges to u almost everywhere and Tk(un) Tk(u) weakly in W 1

0LM(Ω).
Further u is a solution of the unilateral problem (P ).

Proof. We give the proof briefly.

Step 1. A priori estimates
We proceed as previous, we take v = ψ+ as test function in (P 0n), we

get Z
Ω
M(|∇Tk(un)|/δ) dx ≤ C1.(4.30)

Hence, by the same method used in the first step in the proof of Theorem
3.1 there exists a function u (with Tk(u) ∈ W 1

0LM(Ω) ∀k > 0) and a
subsequence still denoted by un such that

Tk(un) Tk(u), n→∞ weakly in W 1
0LM(Ω), ∀k > 0.

Step 2. Strong convergence of truncation
The choice of v = Th(un − ηφ(wn)), h > kψ+k∞ as test function in

(P 0n), we get, for all l > 0Z
Ω
a(x, un,∇un)∇Tl(un − Th(un − ηφ(wn)))

+

Z
Ω
g(x, un,∇un)Tl(un − Th(un − ηφ(wn))) dx

≤
Z
Ω
fnTl(un − Th(un − ηφ(wn))) dx.
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Which implies thatZ
{|un−ηφ(wn)|≤h}

a(x, un,∇un)∇Tl(ηφ(wn)) dx

+

Z
Ω
g(x, un,∇un)Tl(un − Th(un − ηφ(wn))) dx

≤
Z
Ω
fnTl(un − Th(un − ηφ(wn))) dx.

Letting h tends to infinity and choosing l large enough, we deduceZ
Ω
a(x, un,∇un)∇φ(wn) +

Z
Ω
g(x, un,∇un)φ(wn) dx ≤

Z
Ω
fnφ(wn) dx.

The rest of the proof of this step is the same as in step 2 of the proof of
Theorem 3.1.

Step 3. Passing to the limit

This step is similarly to the step 3 in the proof of Theorem 3.1, by using
the Egorov’s theorem in the last term of (P 0n).

Remark 4.3. If the assumptions of Theorem 3.1 hold and f ≥ 0, then
u ≥ 0.

The use v = Th(u
+) as function test in (P ), we obtainZ

Ω
a(x, u,∇u)∇Tk(u− Th(u

+)) dx

+

Z
Ω
g(x, u,∇u)Tk(u− Th(u

+)) dx

≤
Z
Ω
fTk(u− Th(u

+)) dx.

Since g(x, u,∇u)Tk(u− Th(u
+)) ≥ 0, we deduceZ

Ω
a(x, u,∇u)∇Tk(u− Th(u

+)) dx ≤
Z
Ω
fTk(u− Th(u

+)) dx,

we remark also, using f ≥ 0Z
Ω
fTk(u− Th(u

+)) dx ≤
Z
{u≥h}

fTk(u− Th(u)) dx.
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On the other hand, by using (3.3), we conclude

α

Z
Ω
M(|∇Tk(u−)/δ|) dx ≤

Z
{u≥h}

fTk(u− Th(u)) dx.

Letting h tend to infinity, we concludeZ
Ω
M(|∇Tk(u−)/δ|) dx = 0,

so that ∇Tk(u−) = 0 a.e. in Ω, which gives Tk(u−) = c a.e.. in Ω, where
c is a real constant which depends on k. Since Tk(u

−) ∈W 1
0LM(Ω), hence

Tk(u
−) = 0 a.e. in Ω which gives u− = 0 a.e. in Ω, implying that u ≥ 0

a.e. in Ω.

Appendix I : Our hypotheses satisfies the conditions (A1) − (A4) of
Proposition 5 of [15], with ϕ = bβ(x) = b(x) = 0, and in (A4) it suffices to

impose with
X
|β|=m

instead of
X
|β|≤m

in the right hand side (see Remark 6 of

[15]).
Endeed :
In our paper we take, (Aβ(x, s, ξ))|β|=1 = a(x, s, ξ) and A0(x, s, ξ) =

gn(x, s, ξ).
In the one hand, since gn(x, s, ξ) is bounded and c(x) ∈ EM it is clear

our hypotheses verifies the conditions (A1) − (A3) of proposition 5 [15].
On the other hand from (3.3), we have a(x, s, ξ).ξ ≥ αM( |ξ|δ ) and since
gn(x, s, ξ).s ≥ 0 (see (3.4)), then

a(x, s, ξ).ξ ≥ αM( |ξ|δ ) =
α
NNM( |ξ|δ )

≥ α
N

NX
i=1

M(
|ξi|
δ
).

Which implies

(Aβ(x, s, ξ))|β|=1.ξ +A0(x, s, ξ).s ≥ α

N

NX
i=1

M(
|ξi|
δ
).

Appendix II : We shall prove that vn,h ∈ Kψ.
It is clear that vn,h ∈W 1

0LM(Ω), then it remains to verified that vn,h ≥
ψ.



L1 data in Orlicz spaces 315

-If wn ≤ 0, we get vn,h ≥ un ≥ ψ.

-If wn ≥ 0, we have w2n ≤ 4k2 which implies that wne
γw2n ≤ wne

4γk2 ,
hence un − ηwne

γw2n ≥ un − ηwne
4γk2 = un −wn.

Remark that un − wn ≥ Th(un) − Tk(un) + Tk(un), on the one hande
Th(un)− Tk(un) + Tk(un) ≥ ψ. Endeed

Th(un)− Tk(un) + Tk(un) =



Tk(u) if |un| ≤ k
un − k + Tk(u) if k ≤ un ≤ h
h− k + Tk(u) if un ≥ h
un + k + Tk(u) if −h ≤ un ≤ −k
−h+ k + Tk(u) if un ≤ −h

≥



Tk(u) if |un| ≤ k
Tk(u) if k ≤ un ≤ h
Tk(u) if un ≥ h
un if −h ≤ un ≤ −k
−h ≥ un if un ≤ −h.

Finally, since k ≥ kψ+k∞, u ≥ ψ and un ∈ Kψ, we deduce the result.

Appendix III : As in Appendix II, it is easy to see that the following
function

un − (Tl+1(un)− Tl(un)) =



un if |un| ≤ l
l if l ≤ un ≤ l + 1

un − 1 ≥ l if un ≥ l + 1
un if −l − 1 ≤ un ≤ −l

un + 1 ≥ un if un ≤ −l − 1.
belongs to Kψ.
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