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1. Introduction

This paper is devoted to the dynamic compensation problem for finite-
dimension singular systems.

Consider the linear invariant singular system

Ex 0(t) = Ax(t) + Bu(t)(1.1)

where x(t) ∈ IRn denotes the state at time t of the system; u(t) ∈
IRm, represent the input at time t and both E, A ∈ IRn×n as B ∈
IRn×m are constant matrices. When E = I or, in general, E is an
invertible matrix, the system (1.1) is called normal and singular (also called
descriptor, semistate or generalized) in the case where det(E) = 0.

Henceforth we will be concerned with a system (1.1) of singular type. In
order to guarantee existence of solutions of equation (1.1), we will assume
that the pencil (E,A) is regular in the following sense: there is α ∈ IR
such that det(αE − A) 6= 0. These systems arise in the study of several
control problems in science and technology. By this reason, in recent years
it has been an increasing interest to study them. Readers are referred to
Dai [7], Campbell [4, 5] and Favini and Yagi [15] as well as the references
contained therein for the details.

On the other hand, the problem of stabilizing a linear invariant control
system by a dynamic output feedback has a very extensive literature. At
present the theory for normal control systems of finite dimension is well
established and we refer to O’Reilly [34] and Wonham [49] for the most
important part of the theory. The extension of these results to singular
systems has attracted the attention of many authors last years. In partic-
ular, the pole assignment problem and the design of asymptotic observers
and compensators for the system (1.1) has been considered in several works
([7, 13, 17, 29, 32, 36, 37, 38, 42, 50]). This work has been concentrated on
systems with observed output given by

y(t) = Cx(t).

In these systems the observation is instantaneous. However in most of con-
crete systems their operation presents some time lag. The purpose of this
note is to study the dynamic compensation for singular systems described
by the equation (1.1) and having a time delay in the observed output. We
will restrict us to consider a point delay in the observer variables. Thus,
more specifically, our first objective is to determine a dynamic compensator
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for the system (1.1) with the output y(t) ∈ IRp at time t given by

y(t) = Cx(t− r),(1.2)

where C ∈ IRp×n is a time-invariant matrix and the constant r > 0
represents the time delay of the observation. After, we will apply this
compensator to design a tracking controller for the system (1.1)-(1.2) with
an appropriate controlled output. In a previous work ([22]) we have studied
this problem in the case r > 0 small enough. Now we remove this condition
by proposing a functional controller.

The theory of existence and uniqueness of solutions for the system (1.1)
has been discussed by several authors (see Campbell [4] and Dai [7] and
the references given therein). In particular, (1.1)-(1.2) is equivalent to the
system defined by

x01(t) = A1x1(t) + B1u(t),(1.3)

Nx02(t) = x2(t) + B2u(t)(1.4)

y(t) = C1x1(t− r) + C2x2(t− r)(1.5)

where x1 ∈ IRn1 , x2 ∈ IRn2 , n = n1+n2 and the matrices A1, B1, B2, C1,
C2 and N have appropriate dimensions (see [7] for the terminology).
Furthermore, the matrix N is nilpotent with index h. The system (1.3)-
(1.4)-(1.5) is called standard form of (1.1)-(1.2) and is obtained applying
a transformation of coordinates defined by invertible matrices P and Q so
that

x = P

"
x1
x2

#
; QE P =

"
I 0
0 N

#
; QAP =

"
A1 0
0 I

#

QB =

"
B1
B2

#
; C P = [C1, C2].

The subsystems (1.3) and (1.4) are called slow and fast subsystem, respec-
tively. Since (1.3) is a normal system, the state x1(t) can be obtained
from the variation of constants formula. Thus,

x1(t) = eA1tx1(0) +

Z t

0
eA1(t−s)B1u(s) ds.(1.6)

Furthermore, if u(·) is sufficiently smooth, the solution of (1.4) is given
by

x2(t) = −
h−1X
i=0

N iB2u
(i)(t).(1.7)
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This paper is organized as follows. Section 2 is dedicated to the definition
of the dynamic compensator. In section 3 we apply this compensator to the
problem of tracking a signal with regulation of constant disturbances and
in section 4 we extend the results of section 3 to include some non constant
disturbances. Finally, we have included two appendixes with some technical
results that will be needed in these sections.

2. Design of a dynamic compensator

In this section we shall be concerned with the design of an asymptotic
compensator for singular systems with delayed observed output.

The problem of feedback stabilization of normal control systems with
delays has been discussed in many works, employing different approaches.
In particular, our purposes in this paper are related to the results obtained
via the finite spectrum assignment method. Some authors have studied
different aspects of the problem of stabilization for a fixed time delay (see
[2, 6, 16, 28, 31, 33, 35, 40, 43, 44, 45, 46, 47, 41, 21]) while some others
have considered the problem of stabilization independent of delays ([23, 30,
3, 11, 24, 25, 10, 12, 8, 48, 27, 14, 6]). On the other hand, some of these
works are concentrated on the design of asymptotic observers with point
delays (commensurate or noncommensurate) while some others consider
distributed delays.

In this work we extend the approach of [28, 44, 21] to construct a
dynamic compensator for a singular system with delayed observed output.
We consider only a point delay and the proposed compensator will be a
normal system with distributed delay.

To motivate our construction we begin by defining a retarded singular
observer for the system (1.1)-(1.2).

We will say that the retarded singular system

Ez 0(t) = Az(t) + GC z(t− r) − Gy(t) + Bu(t),(2.1)

is a state observer of (1.1)-(1.2) if

lim
t→∞(z(t) − x(t)) = 0.

Proposition 2.1. Suppose that there exist a matrix G1 such that the
system

w 0(t) = A1w(t) + G1C1w(t− r)(2.2)

is asymptotically stable. Then there exists a matrix G such that the
system (2.1) is a state observer of (1.1)-(1.2).
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Proof. Let e(t) := z(t) − x(t) be the estimation of the error. Then

Ee 0(t) = Ae(t) + GC e(t− r).(2.3)

Using the coordinate transformation to reduce the pencil (E,A) to the
standard form, we obtain that (2.3) is equivalent to the equations

e01(t) = A1e1(t) + Q1GCPe(t− r),(2.4)

Ne02(t) = e2(t) + Q2GCPe(t− r).(2.5)

We can choose G so that QG has the block form QG =

"
G1
0

#
.

Since CP = [C1, C2], substituting these expressions into (2.4) and
(2.5) we obtain

e01(t) = A1e1(t) + G1C1e1(t− r) + G1C2e2(t− r),

Ne02(t) = e2(t).

From the last equation we infer that e2(t) = 0, for every t > 0, which in
turn implies that

e01(t) = A1e1(t) + G1C1e1(t− r), t > r,

which completes the proof.
Related with this property we point out that applying a perturbation

result of Halanay ([18], section 4.5) one can see that if (A1, C1) is detectable
(see Wonham [49]) and r > 0 is enough small then there exists a matrix
G such that the system (2.1) is a state observer of (1.1)-(1.2).

The observer proposed in (2.1) is a system of singular type with delays
in the state. These systems have been studied by Campbell [4]. To solve
(2.1), one must specify the initial function z(·) on [−r, 0] and this function
must satisfy some strong consistency conditions. Thus, this approach is
simple but has the disadvantage that, in general, the solutions are not
continuous functions. To avoid this bad behavior, next we will show that,
under appropriated hypotheses, we can define observers of normal type. In
fact, following Uetake [42] we can transform the system (1.1) in the form

eE [dx
dt
− µx(t)] = x(t) + eBu(t)(2.6)

where eB and eE are defined by

eE := (A− µE)−1E, eB := (A− µE)−1B(2.7)
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and µ is a constant such that µE − A is an invertible matrix. If the
system (E, A, C) is observable then there exists a matrix G such that
L := eE−GC is invertible and the polynomial det ((s− µ)L − I) is stable
(Uetake [42], Theorem 2). Now, we introduce the system

ψ 0(t) = L−1(I + µL)ψ(t) − L−2Gy(t) + L−1 eBu(t− r),(2.8)

φ(t) = ψ(t) − L−1Gy(t),(2.9)

where L−2 = (L−1)2. Then (2.8)-(2.9) is an asymptotic observer of the
system (1.1)-(1.2). In fact, if we define the error variable e(t) := φ(t) −
x(t− r), from (2.8)-(2.9) we obtain that

Lφ 0(t) = (I + µL)φ(t) + µGy(t) + eBu(t− r) − Gy 0(t)(2.10)

and collecting this expression with (2.6) follows that

Le 0(t) = (I + µL)e(t).

Thus
e 0(t) = L−1(I + µL)e(t)(2.11)

which is a stable system ([42]).
As a first application of the asymptotic observer (2.8)-(2.9) we consider

the design of a dynamic compensator for the system (1.1)-(1.2).
We begin by rewriting the equation for φ. Using the relation

µGy(t)−Gy0(t) = µGC(φ(t)− e(t))−GC(φ0(t)− e0(t))

from (2.10) we obtain that

φ 0(t) = L−1(I + µL+ µGC)φ(t)− L−1GCφ 0(t) + L−1GC(e0(t)− µe(t))

+L−1 eBu(t− r)

so that

(L+GC)φ 0(t) = (I + µL+ µGC)φ(t) + GC(e0(t)− µe(t)) + eBu(t− r)

which in turn implies that

Eφ 0(t) = Aφ(t) + (A− µE)GC(e0(t)− µe(t)) + Bu(t− r)(2.12)

and, applying the transformation of coordinates defined by P and Q, the
above expression yields

φ01(t) = A1φ1(t) + [A1 − µI, 0]P−1GC (e0(t)− µe(t))+
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B1 u(t− r).(2.13)

and

Nφ02(t) = φ2(t) + [0, I − µN ]P−1GC (e0(t)− µe(t))+

B2 u(t− r).(2.14)

In the sequel we denote by C([−r, 0]; IRn) the space of continuous func-
tions defined on [−r, 0] and values in IRn. Moreover, for a continuous func-
tion x : [−r,∞)→ IRn and t ≥ 0 we indicate by xt : [−r, 0]→ IRn, called
the history of x at t, the function given by xt(θ) := x(t+ θ), −r ≤ θ ≤ 0.

Following Olbrot [33] and Pandolfi [35] we consider a control law u(·)
defined by the equation

u 0(t) = K1(φ1, t) + K2(ut),(2.15)

where K1 and K2 are bounded linear operators from C([−r, 0], IRn1) and
C([−r, 0], IRm), respectively, into IRm.

We observe that (2.13)-(2.14)-(2.15) is a singular system with delays in
the control variables but not a retarded singular system as (2.1) because
equations (2.13)-(2.14)-(2.15) do not depend on φ2(t− r) or, in general, on
the history φ2,t.

Now we are able to establish the following result.

Theorem 2.1. Assume that the system (E, A, C) is observable and that
the pair (A1, B1) is controllable. Then there exists a matrix G and there
exist operatorsK1 andK2 such that the dynamical system (2.8)-(2.9)-(2.15)
is an asymptotic compensator of (1.1)-(1.2).

Proof. We define the delay control system

z 0(t) = A1z(t) + B1u(t− r).(2.16)

The controllability of (A1, B1) and the results of Olbrot [33] and Pandolfi
[35] imply the existence of a control law u(·) defined by

u 0(t) = K1(zt) + K2(ut)(2.17)

such that u(t) and z(t) are exponentially convergent to zero as t→∞. Next
we will prove that this selection of operatorsK1 andK2 turns the dynamical
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system (2.8)-(2.9)-(2.15) into an asymptotic compensator of (1.1)-(1.2). It
is clear that the system (2.16)-(2.17) can be represented as

w 0(t) = Λ(wt)(2.18)

where w(t) :=

"
z(t)
u(t)

#
and Λ : C([−r, 0]; IRn1 × IRm) → IRn1 × IRm is

the operator defined by

Λ

Ã
ϕ
ψ

!
:=

"
A1ϕ(0) +B1ψ(−r)
K1(ϕ) +K2(ψ)

#
.

Using this notation and the fact that e0(t)− µe(t) = L−1e(t), the system
(2.13)-(2.15) can be rewritten as

w 0(t) = Λ(wt) + f(t)(2.19)

where w(t) :=

"
φ1(t)
u(t)

#
and f(t) :=

"
[A1 − µI, 0]P−1GC L−1e(t)

0

#
.

Choosing G so that L−1(I + µL) is a stable matrix, from (2.11) and
Appendix A we obtain that e(i)(t), i = 0, 1, · · · , h − 1, converge ex-
ponentially to zero as t → ∞ so that f has the same property. Now we
apply Proposition A.1 to compare the stability properties of systems (2.18)
and (2.19). We infer that both φ1(t) as u(t), as well as their derivatives

φ
(i)
1 (t) and u(i)(t), i = 1, 2, · · · , h − 1, converge exponentially to zero as

t→∞. Finally, from (2.14) and (1.7) we conclude that φ2(t) also converges
exponentially to zero as t→∞, which completes the proof.

3. Tracking and regulation of constant disturbances

Now we will employ our previous results to design a controller which reg-
ulates (i.e. remove the dependence on disturbances) and tracks (i. e. gets
the control variables to follow a reference signal) the system. Usually, we
will abbreviate our terminology saying that a controller with these proper-
ties is a regulator or that regulates the given system. In this section we only
consider constant disturbances. Specifically we consider a control system

Ex 0(t) = Ax(t) + Bu(t) + w,(3.1)

y(t) = Cx(t− r),(3.2)

z(t) = Dx(t)(3.3)
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where z(t) ∈ IRq denotes the controlled output, w designates an un-
known constant which represents an external disturbance and D ∈ IRq×n

is a matrix. Our objective is to design a dynamic compensator for which
the resulting closed-loop system with the perturbation w = 0 will be
exponentially stable and the controlled output z(t) will be regulated to a
reference signal z. Moreover, this property would occur for all w in a given
class of perturbations. In this section we discuss this problem for constant
perturbations.

Proceeding as in section 2, equation (3.1) can be expressed as

eE [dx
dt
− µx(t)] = x(t) + eBu(t) + ew(3.4)

where ew := (A− µE)−1w.(3.5)

Next we shall show that, under certain conditions, we can use the previous
construction, to define a PI feedback control to regulate the system. To
this end, we introduce a new variable ξ(t) defined by

ξ 0(t) = Dφ(t) −M ψ 0(t) − z,(3.6)

where M is an appropriate matrix to be determined.
Let φ1 and φ2 be the components of φ corresponding to the transfor-

mation φ := P

"
φ1
φ2

#
. Next we will show that the pair (ξ, φ1) can be

considered as the state variable of a normal control system with delays
in the control variables so that the corresponding non delayed system is
controllable.

Substituting ψ 0 given by (2.8) into (3.6) and using both (2.9) and the
definition of e(t) we obtain that

ξ 0(t) =
³
D −M L−1(I + µL) − µML−1GC

´
φ(t)− ML−1 eBu(t− r)

+ µML−1GCe(t) − z.(3.7)

In order to obtain a normal system we need to avoid the dependence of
the right hand side of (3.7) on φ2. To achieve this objective we choose the
matrix M as follows. If we put

P−1LP :=
"
L1,1 L1,2
L2,1 L2,2

#
,
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then we can select the matrix G so that L1,1 will be an invertible matrix
(see Lemma B.1 in the appendix B). Hence, if T stands for the inverse of
P−1LP, then we can write

T := P−1L−1P :=
"
T1,1 T1,2
T2,1 T2,2

#

where the block T2,2 is also invertible. Since

I + µL + µGC = I + µ eE
= (A− µE)−1A,

then
DP − ML−1 (I + µL + µGC)P = DP − ML−1(A− µE)−1AP

= DP − MP T (Q(A− µE)P )−1 QAP
= [D1, D2]
−[M1, M2]

T

"
(A1 − µI)−1A1 0

0 (I − µN)−1

#
:= [Ω1, Ω2],

where we have introduced the notations DP := [D1, D2], MP := [M1, M2]
and

Ω1 := D1 − M1 T1,1 (A1 − µI)−1A1 − M2 T2,1 (A1 − µI)−1A1
Ω2 := D2 − M1 T1,2 (I − µN)−1 − M2 T2,2 (I − µN)−1.

As T2,2 is invertible we can choose M2 so that Ω2 = 0. Consequently,
henceforth we will assume that

D2 − M1 T1,2 (I − µN)−1 − M2 T2,2 (I − µN)−1 = 0.(3.8)

Substituting these expressions into (3.7) we obtain that

ξ 0(t) = Ω1 φ1(t)− ML−1 eBu(t− r) + µML−1GCe(t) − z.(3.9)

On the other hand, it is easy to see that the estimate of the error e(t)
satisfies

e 0(t) = L−1(I + µL)e(t) − L−1eω(3.10)

so that, in this case,
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e0(t)− µe(t) = L−1(e(t)− eω).(3.11)

It is clear from this relation that equations (3.9) and (2.13) can be
written as

d

dt

"
ξ(t)
φ1(t)

#
=

"
0 Ω1
0 A1

# "
ξ(t)
φ1(t)

#

+

"
−ML−1 eB

B1

#
u(t− r) + f(t)(3.12)

where

f(t) :=

"
µML−1GCe(t) − z

[A1 − µI, 0]P−1GCL−1(e(t)− eω)
#
.

In order to study the stability of system (3.12) we introduce the follow-
ing control system, with delayed control action,

d

dt

·
ξ(t)
φ1(t)

¸
=

·
0 Ω1
0 A1

¸ ·
ξ(t)
φ1(t)

¸
+

· −ML−1 eB
B1

¸
v(t− r),(3.13)

with state space IRq × IRn1 and control space IRm. Next we denote by S
the (q + n1)× (m+ n1) matrix

S :=

"
D1 D2B2
−A1 B1

#
.(3.14)

The following statement formalizes our assertion about the variables ξ(t)
and φ1(t).

Lemma 3.1. If the pair (A1, B1) is controllable and the rank of S is
q + n1, then the system

d

dt

"
ξ(t)
φ1(t)

#
=

"
0 Ω1
0 A1

# "
ξ(t)
φ1(t)

#
+

"
−ML−1 eB

B1

#
v(t)(3.15)

also is controllable.

Proof. This property is consequence of the Hautus test ([20]). In fact, if
we use ρ to denote the rank of a matrix, since ρ[λI − A1, B1] = n1,
for every λ ∈ IC, then

ρ

"
λI −

"
0 Ω1
0 A1

#
,

"
−ML−1 eB

B1

##
= ρ

"
λI −Ω1 −ML−1 eB
0 λI −A1 B1

#

= q + n1,
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for all λ 6= 0. On the other hand, in order to determine the rank in the
case λ = 0 we begin by observing that

ML−1 eB = [M1, M2 ]TP
−1 eB

= [M1, M2 ]TP
−1(A− µE)−1B

= [M1, M2 ]T (Q(A− µE)P )−1QB

= M1

³
T1,1(A1 − µI)−1B1 + T1,2(I − µN)−1B2

´
+M2

³
T2,1(A1 − µI)−1B1 + T2,2(I − µN)−1B2

´
.

This expression and the definition of Ω1 allow us to write·
Ω1 ML−1 eB
−A1 B1

¸

=

·
I (M1T1,1 +M2T2,1)(A1 − µI)−1

0 I

¸
·

D1 (M1T1,2 +M2T2,2)(I − µN)−1B2
−A1 B1

¸
and combining this equality with (3.8) and applying our hypothesis about the rank
of S, it follows that

ρ

·
Ω1 ML−1 eB
−A1 B1

¸
= ρ

·
D1 (M1T1,2 +M2T2,2)(I − µN)−1B2
−A1 B1

¸

= ρ

·
D1 D2B2
−A1 B1

¸
= q + n1,

which completes the proof.
We close the system (3.12) by introducing a PI control law defined by

u 0(t) = K0(ξt) + K1(φ1, t) + K2(ut)(3.16)

where K0, K1 and K2 are bounded linear operators from
C([−r, 0], IRq), C([−r, 0], IRn1) and C([−r, 0], IRm), respectively, into IRm.

We can establish the following result. We refer to appendix A for the stability
concepts.

Proposition 3.1. Assume that (E, A, C) is observable, (A1, B1) is controlla-
ble and the rank of S is q + n1. Then there exists a matrix G and there exist
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operators K0, K1 and K2 such that the dynamical system (2.8)-(2.9)-(3.6) with
the control law (3.16) is asymptotically stable and lim

t→∞Dφ(t) = z̄. If we assume

in addition that the disturbance w = 0, then the system (2.8)-(2.9)-(3.6) with the
control law (3.16) regulates the control system (3.1)-(3.2)-(3.3).

Proof. We construct G as before. Now, proceeding as in the proof of Theorem 2.1
we introduce the auxiliary system

α0(t) =
·
0 Ω1
0 A1

¸
α(t) +

· −ML−1 eB
B1

¸
u(t− r)(3.17)

controlled by
u 0(t) = K(αt) + K2(ut)(3.18)

where K is a bounded linear operator from C([−r, 0],
IRq+n1) = C([−r, 0], IRq) × C([−r, 0], IRn1) into IRm. From Lemma 3.1 and
applying the results of Olbrot and Pandolfi already mentioned follow the existence
of operators K and K2 such that the solution of the close system (3.17)-(3.18) is
exponentially convergent to zero as t goes to infinity. We can represent K in the
block form as K := [K0, K1] where K0 and K1 are defined on C([−r, 0], IRq) and
C([−r, 0], IRn1), respectively. Next we will prove that this selection of operators
K0, K1 and K2 satisfies our assertions.

It is clear that system (3.17)-(3.18) can be represented as

β0(t) = Λ(βt),

where β(t) :=

·
α(t)
u(t)

¸
and Λ is the operator defined by

Λ

 ϕ0
ϕ1
ψ

 :=

 Ω1ϕ1(0)−ML−1B̃ψ(−r)
A1ϕ1(0) +B1ψ(−r)

K0(ϕ0) +K1(ϕ1) +K2(ψ)

 .
Using this notation, equations (3.9), (2.13) and (3.16) can be reformulated as

β0(t) = Λ(βt) + f(t),(3.19)

where we have denoted β(t) :=

 ξ(t)
φ1(t)
u(t)

 and

f(t) :=

 µML−1GCe(t) − z
[A1 − µI, 0]P−1GCL−1(e(t)− eω)

0

 .
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From (3.10) and the Appendix A we obtain that e(t) converges as t→∞ and that
e(i)(t), i = 1, 2, · · · , h− 1, are exponentially convergent to zero as t →∞. This
implies that f(t) also converges when t → ∞. Turning to apply Appendix A to
system (3.19) we conclude that the functions ξ(t), φ1(t) and u(t) are convergent
when t goes to infinity. Furthermore, the derivatives ui(t), i = 1, 2, · · ·h − 1,
converge exponentially to zero as t→∞. Since φ2(t) satisfies the fast subsystem
(2.14), we can apply (1.7) to conclude that φ2(t) also converges exponentially to
zero as t→∞.

Next we represent by e, ξ, φ1, φ2 and u the limit at infinity of e(t), ξ(t), φ1(t),
φ2(t) and u(t), respectively. Consequently, from (3.10) we obtain that

e = (I + µL)−1 ew
and, substituting this value in (3.9), (2.13) and (2.14) we obtain the following set
of equations:

Ω1 φ1 + µML−1GC(I + µL)−1 ew − ML−1 eBu − z = 0,(3.20)

A1φ1 − µ[A1 − µI, 0]P−1GC(I + µL)−1 ew + B1u = 0,(3.21)

φ2 − µ[0, I − µN ]P−1GC(I + µL)−1 ew + B2u = 0.(3.22)

Since (3.21) and (3.22) are equivalent to

Aφ − µ(A− µE)GC(I + µL)−1 ew + Bu = 0,

multiplying this expression by ML−1(A− µE)−1 it yields that

ML−1(A− µE)−1Aφ = µML−1GC(I + µL)−1 ew − ML−1 eBu.
Substituting the right hand side of the above expression in (3.20) we see that

Ω1 φ1 + ML−1(A− µE)−1Aφ − z = 0

which, by the definition of Ωi, i = 1, 2, implies that Dφ = z. Finally, since
e = φ − x and e = (I + µL)−1 ew we conclude that Dx = z − (I + µL)−1 ew,
which completes the proof.

4. Tracking and regulation of some nonconstant disturbances

The conclusion of section 3 can be strengthen for some not zero, yet non constant,
disturbances. To obtain this extension, next we consider the regulator problem
for the singular system

Ex 0(t) = Ax(t) + Bu(t) + Ww(t),(4.1)

y(t) = Cx(t− r),(4.2)

z(t) = Dx(t),(4.3)
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where the disturbance w(t) ∈ IRd satisfies the equation

w 0(t) = V w(t),(4.4)

for some matrices W and V of appropriate dimensions.
Proceeding as in Dai ([7]) we can treat the regulator problem for this system

as the regulator problem for a system without perturbations. In fact, using the

definition xa :=

·
x
w

¸
we represent (4.1-4.4) as the augmented system

Eax
0
a(t) = Aaxa(t) + Bau(t),(4.5)

y(t) = Caxa(t− r),(4.6)

z(t) = Daxa(t),(4.7)

where we have introduced the notations

Ea :=

·
E 0
0 I

¸
; Aa :=

·
A W
0 V

¸
; Ba :=

·
B
0

¸
;

Ca := [C, 0] ; Da := [D, 0].

In what follows we show that, with appropriated hypotheses, we can apply the ap-
proach developed in section 3 to design an asymptotic regulator for the augmented
system (4.5)-(4.6)-(4.7).

We begin by observing that (Ea, Aa) is a regular pair. In order to follow the
scheme established in section 3, next we will assume that P , Q, A1, N , B1
and B2 represent the matrices previously defined in connection with the standard
form of (E,A). Proceeding in similar way as in section 2 we define fEa :=

(Aa − µEa)
−1Ea and fBa := (Aa − µEa)

−1Ba. If we assume that the system
(Ea, Aa, Ca) is observable then there exists a matrix Ga such that La :=fEa − GaCa is invertible and the polynomial det((s − µ)La − I) is stable.
Furthermore, the system

ψ0a(t) = L−1a (I + µLa)ψa(t) − L−2a Gay(t) + L−1a fBau(t− r),(4.8)

φa(t) = ψa(t) − L−1a Gay(t)(4.9)

is an asymptotic observer of (4.5)-(4.6). Specifically, if

ea(t) := φa(t) − xa(t− r)(4.10)

stands for the estimation of the error then

e0a(t) = L−1a (I + µLa)ea(t),(4.11)

which is a stable system.
We divide our development in several steps. In a first step, we reduce the

system (4.5)-(4.6)-(4.7) to its standard form by repeated transformation of coor-
dinates. Initially we apply the transformation which is performed by multiplying
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the equation (4.5) on the left by the matrix Q1a :=

·
Q 0
0 I

¸
and by substitut-

ing xa by

·
P 0
0 I

¸  x1
x2
w

. Next we apply a transformation of coordinates
in such way that the second and third components of the vector (x1, x2, w)

T are
permuted. It is clear that relative to the new coordinates the equation (4.5) takes
the form

x01(t) = A1x1(t) + W1w(t) + B1u(t),(4.12)

w 0(t) = V w(t),(4.13)

Nx02(t) = x2(t) + W2w(t) + B2u(t),(4.14)

where

·
W1

W2

¸
= QW . However, this singular system is not yet in standard form.

By this reason we proceed to perform a new transformation of coordinates which
is constructed as in Lemma B.2 of the Appendix B. To apply this result we put

H :=

·
A1 W1

0 V

¸
and R := [0, W2] and we define the matrix X by means

of (B.3). The new transformation of coordinates is obtained by multiplying the

system (4.12-4.14) on the left by Q2a :=

·
I 0

−NX I

¸
and substituting the vector

(x1, w, x2)
T according to x1

w
x2

 := · I 0
X I

¸  x1
w
x2

 ,
where x2 is a new variable. The system obtained by applying to (4.12)-(4.13)-
(4.14) this transformation is given by

x01(t) = A1x1(t) + W1w(t) + B1u(t),

w 0(t) = V w(t),

Nx02(t) = x2(t) + B2u(t),

where

 B1
0
B2

 = · I 0
−NX I

¸  B1
0
B2

. Furthermore, since
X = −

h−1X
i=0

N i [0, W2]

·
A1 W1

0 V

¸i
,

then

X

·
B1
0

¸
= −

h−1X
i=0

N i [0, W2]

·
A1 W1

0 V

¸i ·
B1
0

¸
= 0,



Compensators for singular systems 269

which implies that B1 = B1 and B2 = B2.
We denote Qa := Q2aQ

1
a and define Pa as the product of the transformations

of this sequence that take xa into (x1, w, x2)
T . It is clear that the transformation

defined by Qa and Pa transfer the system (4.5) into its standard form.
As second step we define the regulator. We begin by introducing a variable

ξ(t) given by
ξ 0(t) = Daφa(t) −Ma ψ

0
a(t) − z.(4.15)

Moreover, using the transformation Pa we set φa := Pa

 φ11
φ12
φ2

 and we close the
system by defining the control law

u(t) = F12φ12(t) + v(t),(4.16)

v 0(t) = K0(ξt) + K1(φ11, t) + K2(vt).(4.17)

In these equations Ma is a q × (n + d) matrix, F12 is a m × d matrix
and K0, K1 and K2 are bounded linear operators from C([−r, 0], IRq),
C([−r, 0], IRn1) and C([−r, 0], IRm), respectively, into IRm. These matrices
and operators must be determined appropriately in order to obtain an asymptotic
regulator.

As third step we are going to show that it is possible to choose the matrices
Ma and F12 so that the variables ξ and φ11 be decoupled from φ12 and φ2. As
consequence of this selection we also obtain that the pair (ξ, φ11) is the state
variable of a system of type (3.13). We begin by studying the equation for φ11.
Proceeding in the same way as we obtained (2.12), it follows that

Eaφ
0
a(t) = Aaφa(t) + (Aa − µEa)GaCa(e

0
a(t)

−µea(t)) + Bau(t− r).
(4.18)

Multiplying this equation on the left by the transformation Qa, it is easy to
see that the system (4.18) is changed into

φ011(t) = A1φ11(t) + W1φ12(t) + B1(F12φ12(t− r) + v(t− r))
+ f11(t),

(4.19)

φ012(t) = V φ12(t) + f12(t),(4.20)

Nφ02(t) = φ2(t) + B2(F12φ12(t− r) + v(t− r)) +
f2(t)

(4.21)

where we have abbreviated our notations by introducing the functions f11(t), f12(t)
and f2(t). It is worth to point out that these functions, as well as g11, g12 and
f , which will be defined later, are obtained by algebraic operations from ea(t) by
which, assuming that ea(t) is exponentially convergent to zero as t→∞, we infer
that all them are also exponentially convergent to zero as t→∞.
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On the other hand, it follows from (4.20) that

φ12(t) = eV rφ12(t− r) +

Z t

t−r
eV (t−s)f12(s) ds

= eV rφ12(t− r) + g12(t)(4.22)

where g12(t)→ 0 as t→∞. Substituting this expression in (4.19) we infer that
φ011(t) = A1φ11(t) + (W1e

V r +B1F12)φ12(t− r) + B1v(t− r) + g11(t),

where g11 is a function such that g11(t)→ 0 as t→∞.
In order to avoid the dependence of φ11 on φ12, the above considerations

suggest to introduce the additional hypothesis

ρ[B, W ] = ρ[B].

Under this condition we can choose F12 so that

WeV r + BF12 = 0(4.23)

and utilizing this property in the preceding expression for φ11 we obtain

φ011(t) = A1φ11(t) + B1v(t− r) + g11(t).(4.24)

Next we derive the equation for ξ. From (4.15) we can write

ξ 0(t) = [Da −Ma L
−1
a (I + µLa + µGaCa) ]φa(t)

+ µMaL
−1
a GaCaea(t)− MaL

−1
a
fBau(t− r) − z.

This expression can be modified by replacing

I + µLa + µGaCa = (Aa − µEa)
−1Aa

and by observing that

Daφa(t) = DaPa

 φ11(t)
φ12(t)
φ2(t)

 = [D1, D12, D2]

 φ11(t)
φ12(t)
φ2(t)


where D12 = −

h−1X
i=0

D2N
iW2 V

i. In fact, from the definition of Pa we know

that

DaPa = [D1, 0, D2]

·
I 0
X I

¸
= [ [D1, 0] + D2X, D2]

and since

D2X = −
h−1X
i=0

D2N
i [0, W2]

·
A1 W1

0 V

¸i

= [0, −
h−1X
i=0

D2N
iW2 V

i]
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the assertion follows. Thus, we find that

ξ 0(t) = DaPa

 φ11(t)
φ12(t)
φ2(t)

 − Ma L
−1
a (Aa − µEa)

−1AaPa

 φ11(t)
φ12(t)
φ2(t)


−Ma L

−1
a
fBau(t− r) + µMaL

−1
a GaCaea(t) − z

= D1φ11(t) + D12φ12(t) + D2φ2(t)−Ma L
−1
a
fBav(t− r)

+ µMaL
−1
a GaCaea(t) − z

− [M 0
11, M

0
12, M

0
2]

 A1φ11(t) +W1φ12(t) +B1F12φ12(t− r)
V φ12(t)

φ2(t) +B2F12φ12(t− r)


where we have used the notation

[M 0
11, M

0
12, M

0
2] :=Ma L

−1
a (Aa − µEa)

−1Q−1a .

Replacing in the last expression for ξ 0(t) the value of φ12(t) given by (4.22) and
designating D1 −M 0

11A1 as Ω1 we can write

ξ 0(t) = Ω1φ11(t) − Ma L
−1
a
fBav(t− r) + (D2 −M 0

2)φ2(t) + f(t) − z
+[(D12 −M 0

11W1 −M 0
12V )e

V r −M 0
11B1F12 −M 0

2B2F12 ]φ12(t− r)
(4.25)

where f(t) is a function that vanishes at ∞.

We select the matrix Ma so that M 0
12 = −D2N

h−2X
i=0

N iW2 V
i and M 0

2 = D2.

It is clear that

M 0
12V = −D2

h−2X
i=0

N i+1W2 V
i+1

= −D2

h−1X
i=0

N iW2 V
i +D2W2

= D12 +D2W2.

We denote temporarily by H the matrix that multiplies φ12(t − r) in (4.25).
Using the condition (4.23) and the last property we obtain that

H = (−M 0
11W1 −D2W2)e

V r − M 0
11B1F12 − M 0

2B2F12

= −[M 0
11,M

0
2]Q(WeV r +BF12)

= 0,
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which implies that the expression (4.25) yields

ξ 0(t) = Ω1φ11(t) − Ma L
−1
a
fBav(t− r) + f(t) − z(4.26)

Finally, it is clear that, with minor changes in the notations, equations (4.24) and
(4.26) can be reformulated as the system (3.12). The matrix S that arises in this
case is the same already defined in (3.14). Furthermore, proceeding as in the proof
of Lemma 3.1 we obtain that the system

d

dt

·
ξ(t)
φ11(t)

¸
=

·
0 Ω1
0 A1

¸ ·
ξ(t)
φ11(t)

¸
+

·
−MaL

−1
a
fBa

B1

¸
v(t)

is controllable. Taking in consideration that with this approach the perturbed
original system is transformed into an augmented system of type (3.1-3.3) which
is free of disturbances, applying Proposition 3.1 we can state the main result of
this work.

Theorem 4.1. Assume that the following conditions hold:

(i) The system (Ea, Aa, Ca) is observable;

(ii) The pair (A1, B1) is controllable;

(iii) ρ[B, W ] = ρ[B];

(iv) ρS = q + n1.

Then there exist matrices Ga and F12 and there exist operators K0, K1

and K2 such that the system (4.8)-(4.9)-(4.15) with the control law defined by
(4.16)-(4.17) is an asymptotic regulator of system (4.1)-(4.2)-(4.3)-(4.4).

A. Appendix

In this section we establish some properties of the asymptotic behavior of solu-
tions of retarded differential equations that are essential for our development. We
think that these properties are well known though we have not found them in the
literature. We thus include them for reference.

We begin by observing that if A is a stable matrix and f is a continuous
function such that limt→∞ f(t) = f0, then the solution of equation

x 0(t) = Ax(t) + f(t), t ≥ 0,

converges to −A−1f0 as t → ∞. Moreover, if kf (i)(t)k ≤ C1e
−αt, t ≥ 0, i =

1, 2, · · · , k, for some constants C1, α > 0, then there exist C2 ≥ 0 and β > 0 such
that kx(i)(t)k ≤ C2e

−βt, t ≥ 0, for all i = 1, 2, · · · k (see [39], Theorem 4.4.4).
Next we establish similar properties for retarded differential equations. In what
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follows we use the terminology of [19]. In particular, we denote by X(·) the
fundamental solution of the homogeneous retarded differential equation

x 0(t) = Λ(xt)(A.1)

where x(t) ∈ IRn and Λ : C([−r, 0]; IRn)→ IRn is a bounded linear operator . Here,
as is usual in the theory of retarded functional differential equations, we denote by
xt ∈ C([−r, 0]; IRn) the function defined by xt(θ) := x(t+ θ). We define Λ on IRn

by Λ(x) := Λ(x), where x denotes the constant function x(θ) := x, −r ≤ θ ≤ 0.
Moreover, we denote by x(·;ϕ, f) the solution of the nonhomogeneous initial value
problem

x 0(t) = Λ(xt) + f(t)(A.2)

x(θ) = ϕ(θ), −r ≤ θ ≤ 0,(A.3)

where ϕ is continuous on [−r, 0] and f is an appropriate function.
We say that a system (A.2) is asymptotically stable if there exist constants

C ≥ 0 and α > 0 such that

kX(t)k ≤ Ce−αt, t > 0.(A.4)

As a consequence of the variation of constants formula ([19]) and the asymptotic
behavior of the Laplace transform we can establish.

Proposition A.1. Assume that (A.1) is asymptotically stable and f : [0,∞) →
IRn is a continuous function.

(a) If f(t) converges to f0 as t→∞, then x(t;ϕ, f)→ −Λ̄−1f0.
(b) If f(t) converges exponentially to zero as t → ∞, then the same occurs

with x(t;ϕ, f).

(c) If f is a function of class C(k) such that f(t) converges to f0 as t→∞, and
f (i)(t)→ 0 as t→∞ for every i = 1, 2, · · · , k, then x(i)(t)→ 0 as t→∞
for every i = 1, 2, · · · , k.

(d) If f is a function of class C(k) such that f(t) converges to f0 as t→∞, and
f (i)(t) converges exponentially to zero as t→∞ for every i = 1, 2, · · · , k,
then x(i)(t) also converges exponentially to zero as t → ∞ for every i =
1, 2, · · · , k.

Proof. Since X(t) satisfies the condition (A.4) then the Laplace transform X̂(λ)
of X(t) is defined for Re(λ) > −α. Furthermore, since X(·) is the solution of
equation

X 0(t) = Λ(Xt)

with initial condition X0(θ) :=

½
I, θ = 0,
0, θ < 0

we obtain

λX̂(λ)− I = Λ(X̂t(λ)) = Λ(e
−λθX̂(λ))
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which implies that limλ→0 X̂(λ) = −Λ(I)−1. From the variation of constants
formula ([19], Theorem 1.6.1) it follows that

x(t;ϕ, f) = y(t) +

Z t

0

X(t− s)f(s) ds(A.5)

where y denotes the solution of (A.1) with initial condition ϕ. Since y(t) → 0 as
t→∞ only remains to prove that

u(t) :=

Z t

0

X(t− s)f(s) ds

converges to −Λ−1f0 as t goes to infinity. Using the Cauchy criterion we easily
derive that u(t) is convergent as t→∞. On the other hand, applying theorem 34.2
and theorem 34.3 in [9] we can write

lim
t→∞u(t) = lim

λ→0
λ û(λ)

= lim
λ→0

λX̂(λ)f̂(λ)

= −Λ−1f0,
which completes the proof of (a). The assertions (b), (c) and (d) are quite easy to
prove as consequence of the variation of constant formula (A.5) and the properties
of the solution y(t) of the homogeneous equation (A.1). In fact, if T (t) denotes the
solution semigroup of (A.1), then T (t) is exponentially stable and differentiable
for t > r ([19]). Since y(t) = [T (t)ϕ](0), from the properties of differentiable
semigroups ([39]) we obtain that

ky(i)(t)k ≤ C1e
−αt, i = 0, 1, · · · , k, t ≥ 0,

for some constant C1 ≥ 0. Furthermore, it follows from (A.5) that

x 0(t;ϕ, f) = y 0(t) + X(t)f(0) +

Z t

0

X(t− s)f 0(s) ds.

Turning to apply the previous arguments, but utilizing the last expression, we es-
tablish the assertions for x 0(t;ϕ, f). We complete the proof proceeding inductively.

B. Appendix

In this section we collect some simple results of purely algebraic nature, which
have been used in the previous sections.

Lemma B.1. Assume that (E, A, C) is observable. Let L := eE−GC and set

P−1LP :=
·
L1,1 L1,2
L2,1 L2,2

¸
.
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Then we can select the matrix G so that both L and L1,1 are invertible matrices
and det((s− µ)L − I) 6= 0, for Re(s) ≥ 0.

Proof. In fact, if we select G so that matrix P−1G :=

·
G1
0

¸
, from the

definition of L and eE and using the transformation of coordinates we can write

P−1LP = P−1(A− µE)−1EP − P−1GCP
= P−1(A− µE)−1Q−1QEP − P−1GCP

= (Q(A− µE)P )−1QEP − P−1GCP

=

·
A1 − µI 0

0 I − µN

¸−1 ·
I 0
0 N

¸
− P−1GCP

=

·
(A1 − µI)−1 0

0 (I − µN)−1

¸ ·
I 0
0 N

¸
−
·
G1C1 G1C2
0 0

¸
=

·
(A1 − µI)−1 −G1C1 −G1C2

0 (I − µN)−1N

¸
.

Thus L1,1 = (A1 − µI)−1 − G1C1; L1,2 = −G1C2; L2,1 = 0 and L2,2 =
(I − µN)−1N . In view of N is a nilpotent matrix, the above expression implies
that

det ((s− µ)L − I) = det ((s− µ)L1,1 − I) det ((s− µ)L2,2 − I)

=
+− det ((s− µ)L1,1 − I) .

Since (A1, C1) is observable the pair ((A1 − µI)−1, C1) also is observable and
we can choose G1 so that L1,1 is invertible and the solutions of the equation
det ((s− µ)L1,1 − I) = 0 are located in Re(s) < 0. This completes the proof.

Next we establish the existence of a suitable coordinate transformation to
reduce a singular system in block form to its standard form.

Lemma B.2. Let N, H and R be n × n, m × m and n × m matrices,
respectively, such that N is nilpotent. Then there exists a n ×m matrix X for
which the following conditions hold:·

Im 0
−NX In

¸ ·
Im 0
0 N

¸ ·
Im 0
X In

¸
=

·
Im 0
0 N

¸
(B.1)

and ·
Im 0
−NX In

¸ ·
H 0
R In

¸ ·
Im 0
X In

¸
=

·
H 0
0 In

¸
.(B.2)

Proof. Let h be the index of N . We define X as the matrix

X := −
h−1X
i=0

N iRHi.(B.3)
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It is clear from this definition that N XH = R + X and that, in turn, relations
(B.1) and (B.2) are easy consequence of this property.

Acknowledgements : The authors are grateful to the referee for his com-
ments and suggestions.
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