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Abstract

We give in this paper a convergence result concerning parallel syn-
chronous algorithm for nonlinear fixed point problems with respect to
the euclidean norm in R™. We then apply this result to some problems
related to convex analysis like minimization of functionals, calculus of
saddle point, convex programming...
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1. Introduction.

This study is motivated by the paper of Bahi[3] where he has given a conver-
gence result concerning parallel synchronous algorithm for linear fixed point
problems using nonexpansive linear mappings with respect to a weighted
maximum norm. Our goal is to extend this result to a nonlinear fixed point
problems,

(1.1) F(z*) ="

with respect to the euclidean norm, where F' : R™ — R" is a nonlinear
operator.

Section 2 is devoted to a brief description of asynchronous parallel algo-
rithm. In section 3 we prove the main result concerning the convergence of
the general algorithm in the synchronous case to a fixed point of a nonlinear
operator from R™ to R". To prove this result, we have assumed that F'is a
”contraction” in a senses more general than the nonexpansitiveness notion.
A particular case of this algorithm (Algorithm of Jacobi) is applied in sec-
tion 4 to the operator F' = (I +7T)~! which is called the proximal mapping
associated with the maximal monotone operator 1" (see Rockafellar[9]).

2. Preliminaries on asynchronous algorithms.

Asynchronous algorithms are used in the parallel treatment of problems
taking in consideration the interaction of several DIOCESSOTS. Write R"”
as the product H R, where « € N — {0} and n = Z n;. All vectors

=1
x € R considered in this study are splitted in the form x = (x1,...,%a)

where z; € R™. Let R™ be equipped with the inner product (., .); and the

>1/2

associated norm |||, = (.,. R"™ will be equipped with the inner prod-

[0
uct (z,y) = > (@,yi); where x,y € R" and the norm |[[z|| = <:1c,a:>1/2 =

=1

«
(S Nl

Define :
J ={J(p)},en a sequence of non empty sub sets of {1,...,a} and
S ={(s1(p); s $a(P)) } pen & sequence of N such that,

[o]Vi € {1,...,a}, the subset {p € N,i € J(p)} isinfinite. Vi € {1,...,a},Vp €
N,Si(p) <p. Vi e {]-a ...,O[} 7p1LIgOSl(p) = ©0.
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Consider an operator F' = (Fi, ..., F,) R"™ — R"™ and define the asyn-
chronous algorithm associated with F' by (see Bahi and al.[1], El Tarazi[4]),

20 = (29,..,20) e R®

ot BEMP,a P ip e g(p)
(2.1) ' g if ¢ J(p)

1=1,...,«

p=0,1,..

It will be denoted by (F,2°,.J,S). This algorithm describes the be-
haviour of iterative process executed asynchronously on a parallel computer
with « processors. At each iteration p+ 1, the ith processor computes ZL‘? +
by using (2.1) (Bahi[2]).

J(p) is the subset of the indexes of the components updated at the p'* step.
p—si(p) is the delay due to the ith processor when it computes the ¥ block

at the p”* iteration.

If we take s;(p) = p Vi € {1,...,a}, then (2.1) describes synchronous
algorithm (without delay). During each iteration, every processor executes
a number of computations that depend on the results of the computations
of other processors in the previous iteration. Within an iteration, each pro-
cessor does not interact with other processors, all interactions takes place
at the end of iterations (Bahi[3]).

If we take

silp)=p Vpe N,Vie{l,..,a}
Jp)=A{1,..,a} VpeN

then (2.1) describes the algorithm of Jacobi.

If we take

si(p) =p Vpe N,Vie{l,..,a}
J(p)=p+1(mod a) ¥peN

then (2.1) describes the algorithm of Gauss-Seidel.
For more details about asynchronous algorithms see [1], [2], [3] and [4].
In the following theorem, Bahi[3] has shown the convergence of the sequence
{zP} defined by (2.1) in the synchronous linear case i.e s;(p) = p, Vp €
{1,...,a} and F is a linear operator.

e Theorem 1. Consider {T?} N a sequence of matrices in R™".
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Suppose
(ho)3 a subsequence {py}reN such that J(px) = {1,...,a},
(h1) Iy > 0Y,Vp € N, TP is nonexpansive’ with respect to a weighted
maximum norm ||.||, ., defined by

. _ JIRZAIFS
r € R", ||$”oo,’y - 11%1%}2 Yi

(h2) {TP} N converges to a matrix ) which is paracontracting with re-
spect to the norm |||,
(h3) Vp e N, N(I — Q) C N(I TP) (N denotes the null space).

then
1. V¥ € R™ the sequence {x? }peN is convergent in R"

2. lim 2P =z* e N(I — Q)

p—00
Proof.  See Bahi[3]. O

Remark 1. The hypothesis (hy) means that at times (iterations) the pro-
cessors are synchronized and all the components are updated. This subse-
quence can be chosen by the programmer (Bahi[2]).

3. Convergence of the general algorithm.

We establish in this section the convergence of the general parallel syn-
chronous algorithm to a fixed point of a nonlinear operator F' : R® — R"
with respect to the euclidean norm defined in section 2. First, we de-
fine a notion which will be used in the later and which generalize the
nonexpansiveness® notion of an operator F.

Definition 1. An operator F = (F,...,F,) : R" — R" is said to be
G-nonexpansive with respect to u € R"™ if,

vzl . 2% e R™,

(Fi(a"), ., Fa(a®)) = F(u)| < lrgag);‘

- uH

''4> 0means v; >0Vie€ {1,..,a}

2 A matrice A € R™*" is said to be nonexpansive with respect to the norm ||.|| if
vz € R", ||Az| < ||z||. A is said to be paracontracting if Vz € R", © # Az <—
Az < .

3 F is said to be nonexpansive if Vz,y € R", |[F(z) — F(v)|| < ||lz — y||-
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For example, the map F (1, z2) = (3+x3)"/2, |x1|+|x2|) is G-nonexpansive
with respect to all u € R2.

Theorem 2. Suppose

(ho) 3 a subsequence {Pk}keN such that J(pg) = {1,...,a}
(h1) Ju e R, F(u) =

Eh2§ Ve e R, ||[F(z) — (u)ll2 < (F(x) — F(u),z —u)

hs) Vzl, .., z* € R", ||(Fi(zh), ..., Fa(z®)) — F(u)|| < max 2" — u|

Then any parallel synchronous * algorithm defined by (2.1) associated
with the operator F' converges to a fixed point =* of F.

Proof.  [i] We prove first that the sequence {27} N is bounded.

Remark that (hg) gives,
Vie{l,..,a}3k; €N, ic J(ki)
Take p; = min{k; € N, i € J(k;)} and pg = ax pi. Then the se-
quence (||zP — ul||)p>p, is bounded.
Indeed, Vp > py :
R R

For i € {1,...,a}, let h; € N be such that ¢ € J(h;) (h; > p;). Take
for example h; = max{k; € N, i € J(k;) and p; < k; < p}. Therefore
:Uf“ = Fj(z") and then,

e <p+1, wl)—uH
= |[(Fy(zh),..., F, (:Eh"‘)—uH
< max |z ’—uH
1<i<a
= 2™ —ul|

where m < p.
Inductivelly it follows that ||zP — ul| < ||2° — ul|, so that the sequence
{2P} N is bounded.

“In this case s;(p) =p Vi € {1,...,a} Vp € N.
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[ii] The sequence {aP*}, N (Where {py},cn is defined by (hg)) contains
a subsequence noted also {#P*}, .y which is convergent in R" to an x*.
We show that z* is a fixed point of F'. For it, we consider the sequence
{y? = 2P — F(2P)},eN and prove that klglgo yPr = 0.

o —ul® =g+ F@) — ]
= gl + PP = ul® + 2P () — u, )

however
(F(aPF) —u,yP*) = (F(aP*) — F(u),aP* — F(a*))
= (F(aP*) = F(u), [zP* — F(u)] — [F(aP*) — F(u)])
= (F(a™) = F(u),aP* —u) — ||F(2P) — F(u)]?
>0 (by (h2))

lyPs* - < H%”’“—u\lz—HF(ﬂf”’“)—uzl)!2
= [l2?* = ul]” = []27F —ul|” (by (ho))

However, in (i) we have shown in particular that the sequence
{llz? — ul[} ey is decreasing (positive), it’s therefore convergent, so

lim [[zP —wu| = lim |[[2PF — ul|
p—00 k—oo
= lim [|aP*T! — o
k—o0
= [la" —u
and so
lim [y =0
k—o0
which implies that
¥ —F(z*)=0

that is x* is a fixed point of F.

iii] We prove as in (i) that the sequence {||zP — z* is decreasing (positive
peN
then it is convergent, so

lim ||z — z*|| = lim [[2P* —2¥|| =0
p—00 k—oo

Which proves that P — z* O
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Remark 2. We have used the hypothesis (hs) to prove that the sequence
{xp}peN is bounded. In the case of the parallel algorithm of Jacobi where
J(p) ={1,...,a} Vp € N, we don’t need this hypothesis, since in this case
Pt = F(2P) Vp € N, and use (hz) to obtain

|et! — uf| = P @) — F)]| < [l2? = ul,
hence the corollary,

Corollary 3. Under the hypotheses (hi), (he) and
(hO) vp S N7 J(p) = {17 ...,Oé}
The parallel Jacobi algorithm defined by

(3.1)

converges in R™ to an x* fixed point of F.

4. Applications.

4.1. Solutions of maximal monotone operators.

In this section, we apply the parallel Jacobi algorithm to the proximal
mapping F = (I + T)~! associated with the maximal monotone operator
T. We give first a general result concerning the maximal monotone oper-
ators. Such operators have been studied extensively because of their role
in convex analysis (minimization of functionals, min-max problems, convex
programming, ...) and certain partial differential equations (Rockafellar[9]).

Let T be a multivalued maximal monotone operator defined from R™ to
R”. A fundamental problem is to determine an z* in R" satisfying 0 € T'x*
which will be called a solution of the operator 7.

Theorem 4. Let T be a multivalued maximal monotone operator such
that T='0 #. Then every parallel Jacobi algorithm associated with the
single-valued mapping F' = (I +T)~! converges in R™ to an z* solution of
the problem 0 € T'x.
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Proof.
0eTr <= ze(l+T)
(4.1) — x=I+T)'2
— z=Fz

Thus, the solutions of T are the fixed points of F, so the condition 710 #
implies the existence of a fixed point u of R™. It remains to show that F' ver-
ifies the condition (h2) and apply Corollary 3. Consider z* € R" (i = 1,2)
and put ¢ = Fa! then a* € y* + Ty’ or 2' —y* € Ty'. As T is monotone we
have {(z! — y') — (22 — y?),y' — y?) > 0 and therefore (z! — 2%, y! — ¢?) —
|yt — y2||2 > 0 which implies ||Fz! — Fa:2H2 <(Fz! — Fa? 2! —2%) O

4.2. Minimization of functional.

Corollary 5. Let f : R® — R U {00} be a lower semicontinuous con-
vex function which is proper (i.e not identically +00). Suppose that the
minimization problem Hﬁin f(z) has a solution. Then any parallel Jacobi
algorithm associated with the single-valued mapping F = (I + 0f)~! con-
verges to a minimizer of f in R".

Proof.  Since in this case the subdifferential 0f is maximal monotone.
Moreover the minimizers of f are the solutions of df. We then apply
Theorem 4 to 0f. O
4.3. Saddle point.

In this paragraph, we apply Theorem 4 to calculate a saddle point of func-
tional L : R"xP — [—00, 4+00]. Recall that a saddle point of L is an element
(z*,y*) of R™"xP satisfying

L(z",y) < L(z",y") < L(z,y"), V(z,y) € R"x”
which is equivalent to

L(z*,y*) = inf L(z,y") = sup L(z",y)
IEGRTL yeRp

Suppose that L(z,y) is convex lower semicontinuous in z € R" and
concave upper semicontinuous in y € Rp.
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Such functionals are called saddle functions in the terminology of Rockafellar[6].
Let T}, be a multifunction defined in R"x? by

L(a:ay/) + <y/ - y,’U> S L(xvy)
(u,v) € Tp(w,y) <= ¢ < L(z',y) — (2 —2,u)
V(' y') € R™"xP

If L is proper and closed in a certain general sense, then 77, is maximal
monotone; see Rockafellar[6,7]. In this case the global saddle points of L
(with respect to minimizing in z and maximizing in y) are the elements
(z,y) solutions of the problem (0,0) € T7(z,y). That is

(0,0) € Tp(z*,y") <= (2*,y") = arg min max L(z,y)
zeR" yeRp

We can then apply Theorem 4 to the operator Ty, so,

Corollary 6. Let L be a proper saddle function from R"™xP? into [—o00, +00]
having a saddle point. Then any parallel Jacobi algorithm associated with
the single-valued mapping F = (I+Tp)~! from R"xP into R"xP converges
to a saddle point of L.

4.4. Convex programming.

We consider now the convex programming problem,

Min fo(z), z € R"
(4.2) (P) { fi(x) SO(O,)(l sez'gm)

where f; : R" — R (0 < ¢ < m) is lower semicontinuous convex func-
tions. This problem can be reduced to an unconstrained one by mens of
the Lagrangian,

Liz.y) = fole) + Y uifila)

where z € R" and y € (R4)™. We observe that L is a saddle function in
the sense of [6,p. 363], due to the assumptions of convexity and continuity.
The dual problem associated with (P) is,

{ Maz {go(y) = xleri)f;n L(z,y)}

4.
(*3) y € R)™
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If (z*,y*) is a saddle point of the Lagrangian L then z* is an optimal
solution of the primal problem (P) and y* is an optimal solution of the
dual problem (D).

Let 0L(x,y) the subdifferential of L at (z,y) € R"xP, be defined as the
set of vectors (u,v) € R"xP? satisfying

V(Zﬂl,y,) € Rn Xp L(l‘,y,) - <y/ - y,'U> S L(l‘,y) S L(:L‘,?y) - <$/ - LU,U>
(see Luque[5] and Rockafellar[6]).

Then the operator 77, : (z,y) — {(u,v) : (u, —v) € L(x,y)} is maximal
monotone [6, Cor. 37.5.2], so we apply Theorem 4 to T7.

Corollary 7. Suppose that the convex programming (P) defined by (4.2)
has a solution. Then any parallel Jacobi algorithm associated with the
single-valued mapping F = (I +Tp)~! from R"xP to R"xP converges to a
saddle point (z*,y*) of L, and so x* is a solution of the primal (P) and y*
a solution of the dual (D).

4.5. Variational inequality.

A simple formulation of the variational inequality problem is to find an
x* € R" satisfying

(4.4) (Az*,x —2*) > 0Vzr € R"

where A : R® — R” is a single-valued monotone and maximal operator®.
Which is equivalent to find an x* € R” such that

0 € Az" + N(z¥)
where N (x) is the normal cone to R™ at = defined by (see Rockafellar[6,9]),
N(z)={yeR": (y,x —2) >0Vz e R"}
Rockafellar[9] has considered the multifunction 7" defined in R™ by

(4.5) Tx = Az + N(x)

5 In fact, it’s sufficient that A is monotone and hemicontinuous, i.e verifying
lim+ (A(z + ty), h) = (Az, h) Vz,y,h € R".
t—0
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and shown in [8] that T is maximal monotone. The relation 0 € Tx* is
so that reduced to —Ax* € N(x*) or (—Az*,2* — z) > 0 Vz € R"™ which
is the variational inequality (4.4). Therefore the solutions of the operator
T (defined by (4.5)) are exactly the solutions of the variational inequality
(4.4). By using Theorem 4 we can write

Corollary 8. Let A : R™ — R" be a single-valued monotone and hemi-
continuous operator such that the problem (4.4) has a solution, then any
parallel Jacobi algorithm associated with the single-valued mapping F =
(I + T)~! (where T is defined by (4.5)) converges to x* solution of the
problem (4.4).
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