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Abstract

Let µ be a normal scalar sequence space which is a K-space under
the family of semi-normsM and let X be a locally convex space whose
topology is generated by the family of semi-norms X. The space µ{X}
is the space of all X valued sequences x = {xk} such that {q(xk)} ∈
µ{X} for all q ∈ X. The space µ{X} is given the locally convex topol-
ogy generated by the semi-norms πpq(x) = p({q(xk)}), p ∈ X, q ∈ M .
We show that if µ satisfies a certain multiplier type of gliding hump
property, then pointwise bounded subsets of the β-dual of µ{X} with
respect to a locally convex space are uniformly bounded on bounded
subsets of µ{X}.
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1. Introduction

In [Sw3], in order to establish uniform boundedness results for sequence
spaces, we introduced a gliding hump property in which the ”humps” in
the sequence space are multiplied by elements of another sequence space
in order to facilitate the convergence of a series whose elements are those
composed of the ”humps”. In this note we show that this gliding hump
property can be employed to establish uniform boundedness results for the
operator valued β-dual of certain vector-valued sequence spaces.

We describe the vector-valued sequence spaces which will be considered.
Let µ be a normal scalar-valued sequence space containing c00, the space
of all sequences which are eventually 0, and which is a Hausdorff locally
convex K-space whose topology is generated by the family of semi-norms
M. Let X (Y ) be a Hausdorff locally convex space whose topology is
generated by the family of semi-norms X (Y) and let L(X,Y ) be the space
of all continuous linear operators from X into Y . Let µ{X} be the space of
all X-valued sequences such that {q(xk)} ∈ µ for every q ∈ X . Since µ is
normal, µ{X} is a vector space and we supply µ{X} with the locally convex
topology generated by the family of semi-norms πpq(x) = p({q(xk)}) for
x = {xk} ∈ µ{X}, p ∈M, q ∈ X . For perfect sequence spaces these spaces
were introduced by Pietsch ([P]) and considered in [Ro],[F], [FP] and [Sw3];
they include such spaces as the space of absolutely pth power summable
series lp{X}. One of the basic problems in this area is to determine which
properties such as barrelledness of µ{X} are inherited from µ and X. For
example, sufficient conditions for quasi-barrelledness and barrelledness are
given in [FP],[F]. The β-dual of µ{X} with respect to Y , µ{X}βY , is
defined to be all sequences T = {Tk} ⊂ L(X,Y ) such that

P∞
k=1 Tkxk

converges for every x = {xk} ∈ µ{X} ([BL]); if T ∈ µ{X}βY and x ∈ µ{X},
we write T · x = P∞

k=1 Tkxk and if A ⊂ µ{X}, B ⊂ µ{X}βY , , we write
B · A = {T · x : T ∈ B, x ∈ A}. We consider sufficient conditions for a
family B ⊂ µ{X}βY which is pointwise bounded on µ{X} to be uniformly
bounded on bounded subsets of µ{X},i.e., we seek a uniform boundedness
or Banach-Mackey principle for the pair µ{X}, µ{X}βY .

2. Main Result

We first establish a lemma which will be used in the proof of our main
result. The pair (X,Y ) is said to satisfy the property UB (Uniform Bound-
edness) if for every family F ⊂ L(X,Y ) which is pointwise bounded on X is
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uniformly bounded on bounded subsets of X ([Sw2]12.5). For example , if
X is barrelled , then any pair (X,Y ) has UB by the Uniform Boundedness
Principle for barrelled spaces ([Sw1]24.11,[ Wi]9.3.4). An interval in N is a
subset of the form [m,n] = {k : m ≤ k ≤ n},m, n ∈ N,m ≤ n; a sequence
{Ik} of intervals is increasing if max Ik < min Ik+1. If I is an interval, the
characteristic function of I is denoted by CI and if x = {xk} is an X-valued
sequence, then CIx will denote the coordinatewise product of CI and x.

Lemma 1. Assume that ak > 0 and ak+1 ≥ ak for every k and that
(X,Y ) satisfies UB. If B ⊂ µ{X}βY is pointwise bounded on µ{X}, A ⊂
µ{X} is coordinatewise bounded and B ·A is unbounded in Y , then there
exist a continuous semi-norm r on Y , {T k} ⊂ B, {xk} ⊂ A and increasing
intervals {Ik} such that r(T k ·CIkx

k) > ak .

Proof : If the conclusion fails, there is a continuous semi-norm r on Y ,
xk ∈ A, T k ∈ B such that r(T k · xk) > ak + k. Put k1 = 1. There exists n1
such that r(

Pn1
j=1 T

k1
j xk1j ) > a1 + 1. Now for every j , {xkj : k} is bounded

by hypothesis and since c00{X} ⊂ µ{X} , {T k
j : k} is pointwise bounded on

X. By the UB property, {T k
j x

k
j : k} is bounded in Y . There exists k2 > k1

such that
Pn1

j=1
1
k2
r(T k2

j xk2j ) < 1. Hence, r(
P∞

j=n1+1 T
k2
j xk2j ) > ak2 . Pick

n2 > n1 such that r(
Pn2

j=n1+1
T k2
j xk2j ) > ak2 . Set I2 = [n1 + 1, n2]. Now

just continue this construction and relabel.

A scalar version of this lemma is given in [Sw3].
Our main result involves the gliding hump properties introduced in [Sw

3]. Let λ be a scalar-valued sequence space which contains c00. For the
space µ{X} these are given in the following definitions.

Definition 2. µ{X} has the strong λ gliding hump property (strong
λ-GHP) if whenever {Ik} is an increasing sequence of intervals and {xk} is
a bounded sequence in µ{X}, then for every t = {tk} ∈ λ the coordinate
sum of the series

P
tkCIkx

k belongs to µ{X}.
Definition 3. µ{X} has the weak λ gliding hump property (weak λ-

GHP) if whenever {Ik} is an increasing sequence of intervals and {xk} is
a bounded sequence in µ{X}, there is a subsequence {nk} such that the
coordinate sum

P
tkCInk

xk belongs to µ{X}.
Examples of spaces satisfying both strong and weak λ-GHP are given

in [Sw3]. For example, lp has strong lp-GHP for 0 < p ≤∞ and l∞ and c0
have strong c0 -GHP.
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The proof of our main result employs a matrix theorem due to Antosik
and Mikusinski which we now state for the convenience of the reader.

Theorem 4. Let M = [yij ] be an infinite matrix with entries from Y .
Suppose

(1) limi yij = 0 for every j,
(2) for every increasing sequence of positive integers {mj} there is a

subsequence {nj} of {mj} such that P∞
j=1 yinj → 0,

then yii→0.

For a proof (of a more general result), see [Sw 2],2.2.2. A matrix
satisfying the conditions of Theorem 4 is called a K-matrix and Theorem
4 is called the Antosik-Mikusinski Diagonal Theorem.

Theorem 5. Assume that λ contains a vector {bk} with bk > 0 for
every k. Assume that µ has strong λ-GHP and that (X,Y ) has UB. If
A ⊂ µ{X} is bounded and B ⊂ µ{X}βY is pointwise bounded on µ{X},
then B ·A is bounded.

Proof : Suppose the conclusion fails. Since µ is a K-space, A is co-
ordinatewise bounded so we may apply Lemma 1 with ak = k/bk. Let
the notation be as in Lemma 1 and define the matrix M by M = [mij ] =
[Ti/i · bjCIjx

j ]. We claim that M is a K-matrix in the sense of Antosik
and Mikusinski . First, the columns of M converge to 0 by the point-
wise boundedness of B. Let z = {zi} be the coordinatewise sum of the
series z =

P∞
j=1 bjCIjx

j . We claim that z ∈ µ{X}. Let q ∈ X . By

the strong λ-GHP the series
P∞

j=1

P
k∈Ij bjq(x

j
k)e

k , where ek is the se-
quence with a 1 in the kth coordinate and 0 in the other coordinates,
converges in µ to the element {q(zi)} ∈ µ. That is, z ∈ µ{X}. Therefore,P∞

j=1mij =
P∞

j=1 Ti/i·bjCIjx
j = Ti/i·z → 0 by the pointwise boundedness

of B. Since the same argument can be applied to any subsequence, M is
a K-matrix. By the Antosik-Mikusinski Diagonal Theorem the diagonal of
M converges to 0. But this contradicts the conclusion of Lemma 1 since
r(mii) > 1.

Remark 6. The proof above also applies if µ has the weak λ-GHP and
X is normed since in this case it is only necessary to check a single element
q ∈ X to establish that z ∈ µ{X}.

Remark 7. The assumption that the pair has the UB property is neces-
sary in Theorem 5. For assume that F ⊂ L(X,Y ) is a subset which is point-
wise bounded on X and let A ⊂ X be bounded. If x ∈ X,T ∈ L(X,Y ),
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put x1 = (x, 0, 0, ...), T 1 = (T, 0, 0, ...)and A1 = {x1 : x ∈ A}, F 1 = {T 1 :
T ∈ F}. Then A1 ⊂ µ{X}, F 1 ⊂ µ{X}βY and F 1 ·A1 = {Tx : T ∈ F, x ∈
A} = FA so F 1 is pointwise bounded on µ{X}. Thus, if the conclusion of
Theorem 5 holds, then FA is bounded so the pair (X,Y ) would have UB.

Remark 8. Without some assumption such as the GHP, the conclusion
of Theorem 5 cannot hold. For, let X be a non-barrelled normed space and
let {xk : k} ⊂ X be bounded in X and let B = {yk : k} ⊂ X 0 be weak*
bounded in X 0 with sup{|hyk, xki| : k} = ∞. Set A1 = {xkek : k} and
B1 = {y1k = (yk, yk, ...) : k}. Then A1 ⊂ c00{X} and B1 ⊂ c00{X}βR,
B1 is pointwise bounded ,c00{X} does not have l1-GHP and B1 · A1 =
{hyk, xki : k} is unbounded so the conclusion of Theorem 5 fails to hold.

A scalar version of Theorem 5 is given in [Sw3 ], Corollary 7; however
the proof of this result in [Sw3] relies on duality methods and cannot be
employed to obtain the operator-valued version given in Theorem 5. The
Antosik-Mikusinski diagonal Theorem is used in place of the duality meth-
ods. The assumptions on µ are also somewhat stronger in [Sw3]. Another
scalar Banach-Mackey type result is given in [F]3.7.
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