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Abstract

We study the existence and uniqueness of a plate equation in a
bounded domain of Rn, with a dissipative nonlinear term, localized
in a neighborhood of part of the boundary of the domain. We use
techniques from control theory, the unique continuation property and
Nakao method to prove the uniform stabilization of the energy of the
system with algebraic decay rates depending on the order of the non-
linearity of the dissipative term.
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1. Introduction

Our goal in this paper is to investigate the qualitative properties of the
following initial boundary value problem for a plate equation in a domain
Ω of Rn, 1 ≤ n ≤ 3:

utt +42u+ ρ(x, ut) = 0 x ∈ Ω, t ≥ 0
u(x, 0) = u0(x) x ∈ Ω
ut(x, 0) = u1(x) x ∈ Ω
u(x, t) = 0 x ∈ ∂Ω, t ≥ 0
∂u
∂η (x, t) = 0 x ∈ ∂Ω, t ≥ 0

(1.1)

The domain Ω is a bounded open set of Rn, 1 ≤ n ≤ 3, with regular
boundary (C3class), u = u(x, t), u1 ∈ H1

0 (Ω), u0 ∈ H2
0 (Ω) ∩H3(Ω) and

ρ : Ω̄×R→ R a function specified as follows.

Let a : Ω̄ → R+, a ∈ L∞(Ω) be a function with a(x) ≥ a0 > 0 in a
neighborhood ω of part of the boundary of Ω, ω ⊂ Ω̄. The hypotheses on
the dissipative term ρ(x, ut), ρ : Ω×R→ R, are:
i) ρ(x, s)s ≥ 0, s ∈ R, x ∈ Ω;
ii) ρ and ∂ρ

∂s continuous in Ω×R;
iii) There exist constants K1 > 0, K2 > 0 and p ∈ R, −1 < p ≤ 2, such
that:

K1 a(x) |s|p+1 ≤ |ρ(x, s)| ≤ K2 a(x) [ |s|p+1 + |s| ], ∀s ∈ R, ∀x ∈ Ω;

iv)
∂ρ

∂s
(x, s) ≥ 0, ∀s ∈ R, ∀x ∈ Ω.

In this paper, we show the uniform stabilization of the total energy for
the system (1.1) with algebraic rates. To prove this result we use some
energy identities associated with localized multipliers in order to construct
special difference inequalities for the associated energy. These ideas come
from Control Theory (see J.-L. Lions [11], V. Komornik [8], A. Haraux
[6] and M. Nakao [13]). The main estimates in this work are obtained
using the unique continuation principle (see Kim [9] and Tucsnak [14]) for
the plate equation and Nakao’s Lemma. This work generalizes a previous
investigation of Tucsnak [14]) who studied the case with linear dissipation.
The proof for this linear case is considerably simpler than the problem
considered in our case.

In this work, we have considered for simplicity that the spatial dimen-
sion is N = 1, 2 or 3, but with slight modifications the results hold for
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N > 3. In this case, the number p in hypothesis (iii) which give the growth
of the function ρ, is to be such that −1 < p ≤ 2

N−2 for the case N > 2.
Furthermore, we can only impose the condition (iii) on ρ(x, s) for |s| ≥ 1
and the additional condition

K3 a (x) |s|r+1 ≤ |ρ (x, s)| ≤ K4 a (x)
³
|s|r+1 + |s|

´
for |s| ≤ 1 with r some real constant such that −1 < r <∞. Of course, in
this case, the decay rates will depend in an explicit way on numbers p and
r (see [13], [2]).

One of the first studies of stabilization of evolution models with locally
distributed damping was performed by Zuazua [16], who studied the semi-
linear wave equation with a linear locally distributed damping. Nakao [13]
studied the wave equation with highly nonlinear locally distributed damp-
ing, where the function which localizes the dissipation has growth towards
infinity similar to the case considered in the present paper. Similar prob-
lems were studied by several authors. We mention Martinez [12] and Tébou
[15] for the wave equation and Alabau-Komornik [1], Horn [7] and Guesmia
[5], Bisognin, Bisognin and Charão [2] for systems of elasticity.

2. Existence and Uniqueness

2.1. Local Solutions

Let (wk)k∈N be a basis of V = H2
0 (Ω)∩H3(Ω) and Vm = span({w1, · · · , wm}).

The approximate problem is: find um(t) =
mX
j=1

gjm(t)wj , defined in

some interval [0, tm), which is the solution of the following system, associ-
ated to the problem (1.1):

(u
00
m(t), wk)L2(Ω) + b(um(t), wk) + (ρ(x, u

0
m(t)), wk)L2(Ω) = 0

um(0) = u0m
u
0
m(0) = u1m

with k = 1, · · · ,m, where b : V × V → R is a bilinear function given by
b(u, v) = (4u,4v)L2(Ω) and u0m and u1m are sequences in Vm such that
u0m → u0 strongly in V and u1m → u1 strong in H1

0 (Ω).
The system above is equivalent to an initial value problem for a sys-

tem of nonlinear ODE’s of second order for the functions gjm(t). From
Caratheodory’s Theorem (see [4]), it follows that the approximate problem
has a solution defined in the interval [0, tm).
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2.2 Global Solutions

Using the hypotheses on the function ρ(x, s) it is easy to show that there
exists a constant C > 0, independent of t ∈ [0, tm] and of m ∈ N such that

ku0m(t)kL2(Ω) ≤ C and k 4 um(t)kL2(Ω) ≤ C.

Using these estimates and Poincaré inequality, we obtain that um(t) can be
extended to an arbitrary interval [0, T ] and

u
0
m is bounded in L∞( 0, T ; L2(Ω))

um is bounded in L∞( 0 , T ; H2
0 (Ω)).

Furthermore, standard estimates show that

ku00m(0)k2L2(Ω) ≤ C

with C a positive constant independent of m. Therefore, we obtain the
existence of a function u = u(x, t) such that

um → u weak * in L∞(0, T ;H2
0 (Ω)) ⊂ L2(0, T ;H2

0 (Ω))

u
0
m → u

0
weak * in L∞(0, T ;L2(Ω)) ⊂ L2(0, T ;L2(Ω))

u
00
m → u

00
weak * in L∞(0, T ;L2(Ω)) ⊂ L2(0, T ;L2(Ω))

Using the convergences obtained above, Lions’ Lemma and the Com-
pactness Theorem of Aubin-Lions ( Lions [11]) we can pass to the limit,
with m→∞, in the approximate problem in order to obtain that the limit
u = u(x, t) is a solution of

(u
00
, v)L2(Ω) + b(u, v) + (ρ(x, u

0
), v)L2(Ω) = 0

for all v ∈ V in the sense of D0
(0, T )..

We also have that

u
00
+42u+ ρ(x, u

0
) = 0

in the sense of D0
(Ω) for each t ∈ [0, T ].

Using the regularity of the initial data and the Elliptic Regularity The-
orem we obtain that u is a solution of the equation in (1.1) such that

u ∈ L∞(0,∞;H2
0 (Ω) ∩H3(Ω)) and ut ∈ L∞(0,∞;H1

0 (Ω)).

The initial conditions are verified in a standard way. The uniqueness of
solutions is shown using the mean value theorem and the hypothesis that
∂ρ
∂s (x, s) ≥ 0, for all s ∈ R.
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3. Stabilization

We consider
Γ(x0) = {x ∈ Γ; (x− x0).η(x) ≥ 0}

where η = η(x) is the exterior unit normal vector at x ∈ Γ = ∂Ω and
x0 ∈ Rn is a fixed vector.

The energy of the system (1.1) is given by

E(t) =
1

2

Z
Ω

³
|ut|2 + | 4 u|2

´
dx.

We observe that E(t) satisfies the following identity:

E(t)−E(t+ T ) =

Z t+T

t

Z
Ω
ρ(x, ut)ut dxdt, t ≥ 0, T > 0.(3.1)

Thus, due to the hypothesis that ρ(x, ut)ut ≥ 0 for all t ≥ 0, it follows
that the energy is a function decreasing with time.

Theorem 3.1 (Stabilization). We suppose that the functions a(x) and
ρ(x, s) satisfy the hypotheses in the introduction. Then, the energy asso-
ciated with the solution u = u(x, t) of the problem (1.1) has the following
asymptotic behavior in time:

E(t) = E
³
u(x, t)

´
≤ CE(0)(1 + t)−γi , i = 1, 2,(3.2)

where C is a positive constant. The rates of decay γi are given according
to the following cases:

case 1: γ1 =
2
p if 0 < p ≤ 2 and N ≥ 3 (0 < p <∞ if N = 1 or 2)

case 2: γ2 =
2(p+1)
−p if −1 < p < 0.

If p = 0 the energy E(t) decays exponentially.

To prove the stabilization of the energy E(t), we show that E(t) satisfies
an inequality of the following form:

E(t)�i ≤ C[E(t)−E(t+ T )], t ≥ 0(3.3)

where C is a positive constant, T > 0 is fixed and �i > 0 is related with γi,
which are given in Theorem 3.1.

After showing an estimate of this form for the energy, the desired result
(3.2) of the Theorem of Stabilization follows from the next lemma:
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Lemma 3.1 (Nakao [13]). Let ϕ(t) be a non negative function in R+

which satisfies:

sup
t≤s≤t+T

ϕ(s)1+δ ≤ g(t)[ϕ(t)− ϕ(t+ T )]

for some T > 0, δ > 0 fixed and for all t ≥ 0, where g(t) is a continuous
non decreasing function. Then, ϕ(t) satisfies

ϕ(t) ≤
½
ϕ(0)−δ +

Z t

T
g(s)−1 ds

¾−1
δ

, t ≥ T.

If δ = 0 then ϕ(t) decays exponentially, that is

ϕ(t) ≤ C ϕ(0) e−λ t, t ≥ 0
for some λ > 0.

We also include the following lemma, which will be used to estimate an
integral involving the dissipative term ρ(x, ut).

Lemma 3.2 (Gagliardo-Niremberg). Let 1 ≤ r < p < ∞, 1 ≤ q ≤ p
and 0 ≤ m. Then, kvkWk,q ≤ C kvkθWm,p kvk1−θLr for v ∈Wm,p(Ω) ∩ Lr(Ω),
Ω ⊂ RN , where C is a positive constant and

θ =
³
k
N +

1
r − 1

q

´ ³
m
N +

1
r − 1

p

´−1
provided that 0 < θ ≤ 1.

In order to prove (3.3), we use the energy identities given in the following
lemma:

Lemma 3.3. Let h : Rn → Rn of class C2, m ∈ W 2,∞(Ω), u the solution
of (1.1) and T > 0 fixed. Then, the following identities are valid for all
t ≥ 0: ·Z

Ω
utu dx

¸t+T
t
−
Z t+T

t

Z
Ω
u2t dxds+

Z t+T

t

Z
Ω
| 4 u|2 dxds

+

Z t+T

t

Z
Ω
ρ(x, ut)udxds = 0.

(3.4)

Z t+T

t

Z
Ω

h
m(x)| 4 u|2 −m(x)|ut|2

i
dxds =

−
·Z

Ω
m(x)uut dx

¸t+T
t
−
Z t+T

t

Z
Ω
m(x)uρ(x, ut) dxds

−
Z t+T

t

Z
Ω

h
u4 u4m+ 24 u∇u.∇m

i
dxds.

(3.5)



Uniform Stabilization of a Plate Equation 211

·Z
Ω
ut(h.∇u) dx

¸t+T
t

+
1

2

Z t+T

t

Z
Ω
(divh)|ut|2 dxds

+

Z t+T

t

Z
Ω
ρ(x, ut)(h.∇u) dxds− 1

2

Z t+T

t

Z
Ω
(divh)| 4 u|2 dxds

+2

Z t+T

t

Z
Ω

nX
j,k=1

Djh
k(DjDku)4 udxds+

Z t+T

t

Z
Ω
(4h.∇u)4 udxds

=
1

2

Z t+T

t

Z
Γ
(h.η)| 4 u|2 dΓds(3.6)

·Z
Ω
ut(x− x0).∇u dx

¸t+T
t

+
n

2

Z t+T

t

Z
Ω
|ut|2 dxds

+

Z t+T

t

Z
Ω
ρ(x, ut)((x− x0).∇u) dxds+

µ
2− n

2

¶Z t+T

t

Z
Ω
| 4 u|2 dxds

=
1

2

Z t+T

t

Z
Γ
(x− x0).η| 4 u|2 d.(3.7)

where hk indicates the k-th component of the field h, Dj =
∂

∂xj
, 4h =

(4h1, · · · ,4hn), η = η(x) is the normal at the point x ∈ Γ = ∂Ω and x0 is
a point in Rn, arbitrarily fixed.

These identities are proved using the multipliers M(u) = u, M(u) =
m(x)u, M(u) = h ·∇u and M(u) = (x− x0) ·∇u, respectively. Here, x · y
means the usual inner product in Rn.

4. Energy Estimates

In order to state the next results, we introduce a vector field
h = (h1, h2, ...., hn):Ω→ Rn of C2 class satisfying

h(x) = η(x)inΓ(x0)
h(x).η(x) ≥ 0inΓ
h(x) = 0inΩ\ω̂

(4.1)
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where ω̂ is an open set of Rn such that Γ(x0) ⊂ ω̂ ∩ Ω̄ ⊂ ω (regarding the
existence of such a field h, see Haraux [6] and Lions [10]).

We observe that in all the estimates that follow, the letter C may indi-
cate different positive constants.

The first estimate is given by the following lemma:

Lemma 4.1. Let T be a fixed positive number. Then, there exist γ > 0
and β > 0 such that the solution u(x, t) of (1.1) satisfies the following
inequality:

γ

Z t+T

t
E(s) ds ≤ C

h
E(t+ T ) +E(t)

i
+

+

Z t+T

t

Z
Ω
|ρ(x, ut)|

h
|u|+ βM |∇u|

i
dxds

+
β

2

Z t+T

t

Z
Γ(x0)

(x− x0).η| 4 u|2 dΓds

where M = sup
Ω̄

|x− x0| and E = E(t) is the energy of the solution u(x, t).

Proof. Let β be a fixed positive number satisfying
nβ

2
− 1 > 0. Multi-

plying (3.7) by β and then adding (3.7) and (3.4) hand by hand we obtainZ t+T

t

Z
Ω

"Ã
nβ

2
− 1

!
|ut|2 + (1 + 2n)|∆u|2

#
dxds

= −
Z
Ω
[(x− x0) ·∇u+ u]utdx

¯̄̄̄t+T
t

+
β

2

Z t+T

t

Z
Γ
(x− x0) · η|∆u|2dΓds

−β
2

Z t+T

t

Z
Ω
[β((x− x0) ·∇u) + u]ρ(x, ut)dxds.

Therefore, choosing γ = min

½
2
³
1 + β

4− n

2

´
, 2
³nβ
2
− 1

´o
, it follows

that

γ

Z t+T

t
E(s) ds ≤ −

·Z
Ω
ut[u+ β(x− x0).∇u] dx

¸t+T
t

−
Z t+T

t

Z
Ω
ρ(x, ut)[u+ β(x− x0).∇u] dxds

+
β

2

Z t+T

t

Z
Γ
(x− x0).η| 4 u|2 dΓds

≤
·Z

Ω
|ut|[|u|+ β|x− x0||∇u|] dx

¸t+T
t

+

Z t+T

tZ
Ω
|ρ(x, ut)|[|u|+ β|x− x0||∇u|] dxds

+
β

2

Z t+T

t

Z
Γ(x0)

(x− x0).η| 4 u|2 dΓds
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since (x− x0).η ≤ 0 in Γ\Γ(x0).
From the estimate above, the fact that u ∈ H2

0 (Ω) and Poincaré in-
equality

kukL2(Ω) ≤ Ck∇ukL2(Ω) ≤ Ck 4 ukL2(Ω)
valid for all t ≥ 0, it follows that

γ
R t+T
t E(s) ds ≤ C

·
kutkL2(Ω)k 4 ukL2(Ω)

¸t+T
t

+
R t+T
t

R
Ω |ρ(x, ut)|[|u|+ βM |∇u|] dxds

+
β

2

R t+T
t

R
Γ(x0)

(x− x0).η| 4 u|2 dΓds.
(4.2)

Here, we observe that·
kutkL2(Ω)k 4 ukL2(Ω)

¸t+T
t

≤ 1
2

Z
Ω

µ
|ut(t+ T )|2 + | 4 u(t+ T )|2

¶
dx+

1

2

Z
Ω

µ
|ut(t)|2 + | 4 u(t)|2

¶
dx

= E(t+ T ) +E(t)

follows from (4.2) the proof of the Lemma 4.1.

Lemma 4.2. Let T be a fixed positive number and u the solution of (1.1).
Then,

1

2

Z t+T

t

Z
Γ(x0)

|4u|2dΓds ≤
·Z

Ω
ut(h.∇u) dx

¸t+T
t
+
1

2

Z t+T

t

Z
Ω
(divh)|ut|2 dxds

+

Z t+T

t

Z
Ω
ρ(x, ut)(h.∇u) dxds− 1

2

Z t+T

t

Z
Ω
(divh)| 4 u|2 dxds

+2

Z t+T

t

Z
Ω

nX
j,k=1

(Djh
k)(DjDku)4 udxds

+

Z t+T

t

Z
Ω
(4h.∇u)4 udxds,

where h is the field given in (4.1), hk is the k-th component of h and

Dj =
∂

∂xj
.
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Proof : The properties (4.1) of the vector field h and the identity (3.6)
imply that

1

2

Z t+T

t

Z
Γ(x0)

| 4 u|2dΓds = 1

2

Z t+T

t

Z
Γ(x0)

(h.η)| 4 u|2dΓds

≤ 1
2

Z t+T

t

Z
Γ
(h.η)| 4 u|2dΓds =

·Z
Ω
ut(h.∇u) dx

¸t+T
t

+
1

2

Z t+T

t

Z
Ω
(divh)|ut|2 dxds+

Z t+T

t

Z
Ω
ρ(x, ut)(h.∇u) dxds

−1
2

Z t+T

t

Z
Ω
(divh)| 4 u|2 dxds+ 2

Z t+T

t

Z
Ω

nX
j,k=1

(Djh
k)(DjDku)4 udxds

+

Z t+T

t

Z
Ω
(4h.∇u)4 udxds.

Thus, the Lemma 4.2 is proved.

We need estimate each term from the inequality which appears in
Lemma 4.2.

Lemma 4.3. Let T be a fixed positive number, h : Rn → Rn a vector field
of class C2 with the properties (4.1) and u the solution of (1.1). Then,¯̄̄̄Z

Ω
ut(h.∇u) dx

¯̄̄̄t+T
t
≤ C

³
E(t+ T ) +E(t)

´
(4.3)

¯̄̄̄
1

2

Z t+T

t

Z
Ω
(divh)|ut|2 dxds

¯̄̄̄
≤ C

Z t+T

t

Z
Ω̄∩ω̂

|ut|2 dxds(4.4)

¯̄̄̄Z t+T

t

Z
Ω
ρ(x, ut)(h.∇u) dxds

¯̄̄̄
≤ C

Z t+T

t

Z
Ω
|ρ(x, ut)||∇u| dxds(4.5)

¯̄̄̄Z t+T

t

Z
Ω
(4h.∇u)4 udxds

¯̄̄̄
≤ C

Z t+T

t

Z
Ω̄∩ω̂

| 4 u|2 dxds(4.6)

¯̄̄̄
2

Z t+T

t

Z
Ω

nX
j,k=1

(Djh
k)(DjDku)4 udxds

¯̄̄̄

≤ C

Z t+T

t

Z
Ω̄∩ω̂

| 4 u|2 dxds(4.7)

¯̄̄̄
−1
2

Z t+T

t

Z
Ω
(divh)| 4 u|2 dxds

¯̄̄̄
≤ C

Z t+T

t

Z
Ω̄∩ω̂

| 4 u|2 dxds(4.8)

where ω̂ is mentioned in the properties (4.1) on the field h.



Uniform Stabilization of a Plate Equation 215

Proof :
Using the fact that the vector field h is C2 and the Poincaré inequality

we have:¯̄̄̄Z
Ω
ut(h.∇u) dx

¯̄̄̄t+T
t
≤ C

·Z
Ω
|ut||∇u|

¸t+T
t
≤ C

·
kutkL2(Ω)k∇ukL2(Ω)

¸t+T
t

≤
·
kutkL2(Ω)k 4 ukL2(Ω)

¸t+T
t
≤ C

³
E(t+ T ) +E(t)

´
,

Then, (4.3) is proved.
To prove the other estimates we use the fact that h = 0 in Ω̄\ω̂ and h

is C2 in Ω̄. So, ¯̄̄̄
1

2

Z t+T

t

Z
Ω
(divh)|ut|2 dxds

¯̄̄̄
≤ 1
2

Z t+T

t

Z
Ω̄∩ω̂

|divh||ut|2 dxds ≤ C

Z t+T

t

Z
Ω̄∩ω̂

|ut|20 dxds.

Thus (4.4) is proved, too.
Now, we note that ¯̄̄̄Z t+T

t

Z
Ω
ρ(x, ut)(h.∇u) dxds

¯̄̄̄

≤
Z t+T

t

Z
Ω
|ρ(x, ut)||h||∇u| dxds ≤ C

Z t+T

t

Z
Ω
|ρ(x, ut)||∇u| dxds.

Therefore, (4.5) holds.
To prove (4.6) we use Poincaré inequality. In fact¯̄̄̄Z t+T

t

Z
Ω
(4h.∇u)4 u dxds

¯̄̄̄
≤
Z t+T

t

Z
Ω̄∩ω̂

| 4 h||∇u|| 4 u| dxds

≤ C

Z t+T

t

Z
Ω̄∩ω̂

|∇u|| 4 u| dxds ≤ C

Z t+T

t

µZ
Ω̄∩ω̂

|∇u|2 dx
¶ 1
2

µZ
Ω̄∩ω̂

| 4 u|2 dx
¶ 1
2

ds

≤ C

Z t+T

t

µZ
Ω̄∩ω̂

| 4 u|2 dx
¶ 1
2
µZ

Ω̄∩ω̂
| 4 u|2 dx

¶ 1
2

ds
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= C

Z t+T

t

Z
Ω̄∩ω̂

| 4 u|2 dxds,

where the last inequality is due to Poincaré inequality applied in ∇u, since
∇u vanishes in a part of the boundary of Ω̄ ∩ ω̂ because Γ(x0) ⊂ Ω̄ ∩ ω̂.

Then, the estimate (4.6) is valid.

Here, we estimate¯̄̄̄
2

Z t+T

t

Z
Ω

nX
j,k=1

(Djh
k)(DjDku)4 udxds

¯̄̄̄

≤ 2
Z t+T

t

Z
Ω̄∩ω̂

nX
j,k=1

|Djh
k||DjDku|| 4 u| dxds

≤ C

Z t+T

t

Z
Ω̄∩ω̂

nX
j,k=1

|DjDku|| 4 u| dxds

≤ C

Z t+T

t

µZ
Ω̄∩ω̂

nX
j,k=1

|DjDku|2 dx
¶ 1
2
µZ

Ω̄∩ω̂
| 4 u|2 dx

¶ 1
2

 ds

≤ C

Z t+T

t

µZ
Ω̄∩ω̂

| 4 u|2 dx
¶ 1
2
µZ

Ω̄∩ω̂
| 4 u|2 dx

¶ 1
2

ds

= C

Z t+T

t

Z
Ω̄∩ω̂

| 4 u|2 dxds

due to Poincar’e’s inequality for Ω̄ ∩ ω̂ because ∇u = 0 in a part of the
boundary of Ω̄ ∩ ω̂, that is, on Γ ∩ (Ω̄ ∩ ω̂). Thus, (4.7) is valid, too.

The proof of (4.8) follows from the fact that h = 0 outside Ω̄ ∩ ω̂ and
divh is bounded in Ω̄.

Lemma 4.4. Let T be a fixed positive number and u the solution of (1.1).
Then,

1

2

Z t+T

t

Z
Γ(x0)

| 4 u|2 dΓds ≤ C

·
E(t) +E(t+ T )

+

Z t+T

t

Z
Ω̄∩ω̂

|ut|2 dxds+
Z t+T

t

Z
Ω̄∩ω̂

| 4 u|2 dxds

+

Z t+T

t

Z
Ω
|ρ(x, ut)||∇u| dxds

¸
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Proof : It follows substituting the estimates (4.3) - (4.8) from Lemma 4.3
in the estimate given in the Lemma 4.2.

Lemma 4.5. Let T be a fixed positive number and u the solution of (1.1)
it is valid thatZ t+T

t

Z
Ω̄∩ω̂

| 4 u|2 dxds ≤ C

·
E(t) +E(t+ T )

+

Z t+T

t

Z
Ω
|ρ(x, ut)||u| dxds+

Z t+T

t

Z
ω
|∇u|2 dxds+

Z t+T

t

Z
ω
|u|2 dxds

¸
,

where ω is mentioned in the introduction and related is with the function
a(x) which localizes the dissipation.

Proof : We bound each term that appears in the identity (3.5) of Lemma

3.3 with m = m(x) ∈ W 2,∞(Ω) a function such that
|∇m|2
m

and
| 4m|2

m
are bounded functions and

0 ≤ m ≤ 1inΩ
m = 1inω̃

m = 0inΩ̄\ω
(4.9)

where ω̃ ⊂ Ω̄ is an open set in Ω̄ with Γ(x0) ⊂ ω̃ ⊂ ω ⊂ Ω̄. For the existence
of a such function m(x) see Lions [10], Haraux [6] and Tucsnak [14].

Using the fact that m(x) is bounded, we obtain that¯̄̄̄
¯
·Z

Ω
m(x)uut dx

¸t+T
t

¯̄̄̄
¯ ≤ C

·
E(t) +E(t+ T )

¸
(4.10)

due to Poincaré inequality, since u ∈ H2
0 (Ω).

Furthermore,¯̄̄̄
¯
Z t+T

t

Z
Ω
m(x)uρ(x, ut) dxds

¯̄̄̄
¯ ≤

Z t+T

t

Z
Ω
|u||ρ(x, ut)| dxds(4.11)

since 0 ≤ m(x) ≤ 1 on Ω.
Finally, using that m = 0 outside of ω and the fact that

|∇m|2
m

and

| 4m|2
m

are bounded, we obtain that there exists a positive constant C
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such that ¯̄̄̄
¯
Z t+T

t

Z
Ω

h
u4 u4m+ 24 u(∇u.∇m)

i
dxds

¯̄̄̄
¯

≤
Z t+T

t

C Z
ω
|u|2 dx+ 1

4

Z
ω
m(x)| 4 u|2 dx

 ds
+C

Z t+T

t

µZ
ω
|∇u|2 dx

¶ 1
2
µZ

ω
m(x)| 4 u|2 dx

¶ 1
2

ds.

(4.12)

Substituting the estimates (4.10)-(4.12) in (3.5), we obtain:Z t+T

t

Z
Ω
m(x)| 4 u|2 dxds

≤ C

E(t) +E(t+ T ) +

Z t+T

t

Z
Ω
|u||ρ(x, ut)| dxds+

Z t+T

t

Z
ω
|u|2 dxds


+
1

4

Z t+T

t

Z
Ω
m(x)| 4 u|2 dxds

+C

Z t+T

t

µZ
ω
|∇u|2 dx

¶ 1
2
µZ

ω
m(x)| 4 u|2 dx

¶ 1
2

ds.

Therefore Z t+T

t

Z
Ω
m(x)| 4 u|2 dxds

≤ C

E(t) +E(t+ T ) +

Z t+T

t

Z
Ω
|u||ρ(x, ut)| dxds

+

Z t+T

t

Z
ω
|u|2 dxds

+C

Z t+T

t

Z
ω
|∇u|2 dxds+ 1

2

Z t+T

t

Z
ω
m(x)|4u|2 dxds

that is,

Z t+T

t

Z
Ω
m(x)| 4 u|2 dxds ≤ C

E(t) +E(t+ T )

+

Z t+T

t

Z
Ω
|u||ρ(x, ut)| dxds+

Z t+T

t

Z
ω

µ
|u|2 + |∇u|2

¶
dxds

.
(4.13)

Using in (4.14) the fact that 0 ≤ m(x) ≤ 1 on Ω and that m(x) = 1 in
ω̂ ⊂ Ω̄ (see (4.9)) the conclusion of the Lemma 4.5 follows.
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Lemma 4.6. Let T > 0 and u the solution of (1.1). Then,

1

2

Z t+T

t

Z
Γ(x0)

| 4 u|2 dΓds ≤ C

E(t) +E(t+ T )+

+

Z t+T

t

Z
ω

·
|ut|2 + |∇u|2 + |u|2

¸
dxds+

Z t+T

t

Z
Ω
|ρ(x, ut)|

·
|u|+ |∇u|

¸
dxds


with C some positive constant.

Proof :
Combining the estimates from Lemmas 4.4 and 4.5 it follows that

1

2

Z t+T

t

Z
Γ(x0)

| 4 u|2 dΓds ≤ C

E(t) +E(t+ T ) +

Z t+T

t

Z
Ω̄∩ω̂

|ut|2 dxds

+

Z t+T

t

Z
Ω
|ρ(x, ut)||∇u| dxds


+C

E(t) +E(t+ T ) +

Z t+T

t

Z
Ω
|ρ(x, ut)||u| dxds

+

Z t+T

t

Z
ω
|∇u|2 dxds+

Z t+T

t

Z
ω
|u|2 dxds

.
Thus,

1

2

Z t+T

t

Z
Γ(x0)

| 4 u|2 dΓds ≤ C

E(t) +E(t+ T ) +

Z t+T

t

Z
ω
|ut|2 dxds

+

Z t+T

t

Z
Ω
|ρ(x, ut)|

³
|∇u|+ |u|

´
dxds+

Z t+T

t

Z
ω
|∇u|2 dxds

+

Z t+T

t

Z
ω
|u|2 dxds


= C

E(t) +E(t+ T ) +

Z t+T

t

Z
ω

µ
|ut|2 + |∇u|2 + |u|2

¶
dxds
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+

Z t+T

t

Z
Ω
|ρ(x, ut)|

³
|∇u|+ |u|

´
dxds


due to Ω̄ ∩ ω̂ ⊂ ω (see (4.1)).

Therefore, the Lemma 4.6 is proved.

Now, we need the following lemma.

Lemma 4.7. Let u be the solution of (1.1). Then, there exists T > 0 such
that

E(t) ≤ C

E(t)−E(t+ T ) +

Z t+T

t

Z
Ω
|ρ(x, ut)|

³
|∇u|+ |u|

´
dxds

+

Z t+T

t

Z
ω

µ
|ut|2 + |∇u|2 + |u|2

¶
dxds


for some positive constant C and for all t ≥ 0.

Notice that in this lemma, an energy difference appears.

Proof : From the estimate in Lemma 4.1, there exists γ > 0 such that

γ

Z t+T

t
E(s) ds ≤ C

E(t)+E(t+T )+

Z t+T

t

Z
Ω
|ρ(x, ut)|

³
|∇u|+ |u|

´
dxds

+

Z t+T

t

Z
Γ(x0)

| 4 u|2 dΓds


where C > 0 is constant.

Using the estimate given in Lemma 4.6 it follows that

γ
R t+T
t E(s) ds ≤ C

E(t) +E(t+ T ) +
R t+T
t

R
Ω |ρ(x, ut)|

³
|∇u|+ |u|

´
dxds

+
R t+T
t

R
ω

µ
|ut|2 + |∇u|2 + |u|2

¶
dxds


(4.14)

with T > 0 arbitrarily fixed, C a positive constant and for t ≥ 0.
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Now, we fix T >
2C

γ
+ 1. The fact that TE(t + T ) ≤

Z t+T

t
E(s) ds,

because E(t) is decrease, and the above estimate (??) implies that

E(t) ≤
µ
1+

C

γ

¶·
E(t)−E(t+T )

¸
+
C

γ

Z t+T

t

Z
Ω
|ρ(x, ut)|

³
|∇u|+ |u|

´
dxds

+

Z t+T

t

Z
ω

µ
|ut|2 + |∇u|2 + |u|2

¶
dxds

.
So, the lemma 4.7 is proved.

It is necessary to estimate the following integral:

I =

Z t+T

t

Z
Ω
|ρ(x, ut)|

³
|∇u|+ |u|

´
dxds

with T > 0 fixed by Lemma 4.7.

Lemma 4.8. Let T > 0 be given by Lemma 4.7 and u = u(x, t) be the
solution of (1.1). If 0 ≤ p ≤ 2, then

I ≤ C
h
E(t)−E(t+ T )

i 1
p+2
q
E(t) + C

h
E(t)−E(t+ T )

ip+1
p+2
q
E(t).

If −1 < p < 0 então,

I ≤ C
h
E(t)−E(t+ T )

ip+1
p+2
q
E(t) + C

h
E(t)−E(t+ T )

i 2
4−p
q
E(t).

Proof :
We set I = I1 + I2 with

I1 =

Z t+T

t

Z
Ω1
|ρ(x, ut)|

³
|∇u|+ |u|

´
dxds

and

I2 =

Z t+T

t

Z
Ω2
|ρ(x, ut)|

³
|∇u|+ |u|

´
dxds ,

where Ω1 = Ω1(t) = {x ∈ Ω; |ut(x, t)| ≤ 1} and Ω2 = Ω\Ω1.
We need estimate the integrals I1 and I2 in according the two following

cases for de number p related with the growth of the dissipative function
ρ(x, s).
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Case 1: 0 ≤ p ≤ 2 if N = 3 or 0 ≤ p <∞ if N = 1 or N = 2.
Then, because p ≥ 0 we obtain (using the fact that E(t) is a nonin-

creasing function of t and the hypothesis (iii) on function ρ(x, s)): I1 ≤R t+T
t

R
Ω1

K2a(x)
h
|ut|p+1 + |ut|

ih
|∇u|+ |u|

i
dxds

≤ 2K2
R t+T
t

R
Ω1

a(x)|ut|
³
|∇u|+ |u|

´
dxds

≤ 2K2kak
1
2∞
R t+T
t

R
Ω1

p
a(x)|ut|

³
|∇u|+ |u|

´
dxds

≤ C

µR t+T
t

R
Ω1

a(x)|ut|2 dxds
¶ 1
2
µ
1

2

R t+T
t

R
Ω1
[ |∇u|2 + |u|2]dxds

¶ 1
2

≤ C

R t+T
t

R
Ω1

a(x)|ut|2 dxds
 1

2
R t+T

t E(s) ds

 1
2

≤ C

R t+T
t

R
Ω1

a(x)|ut|2 dxds
 1

2 √
T
p
E(t)

= C

R t+T
t

R
Ω1

a(x)|ut|2 dxds
 1

2 p
E(t)

In the above estimate we have used that k∇ukL2(Ω) and kukL2(Ω) is
dominated by k 4 ukL2(Ω) due to Poincaré inequality and the fact that
u ∈ H2

0 (Ω).

Since
1

p+2
2

+
1

p+2
p

= 1, Hölder’s inequality implies that

I1 ≤ C

Z t+T

t

Z
Ω1

µ
a(x)|ut|2

¶p+2
2

dxds

 1
p+2

Z t+T

t

Z
Ω
dxds


p

2(p+2)q
E(t)

≤ C

Z t+T

t

Z
Ω1

a(x)|ut|p+2 dxds
 1

p+2 q
E(t)

with C a positive constant which depends on kak∞, T and |Ω|, the measure
of Ω.

In this point we use the hypotheses (i) and (iii) on the function ρ(x, s)
to obtain

I1 ≤ C

µZ t+T

t

Z
Ω1

ρ(x, ut)ut dxds

¶ 1
p+2
q
E(t) = C

h
E(t)−E(t+T )

i 1
p+2
q
E(t)

due to the energy identity (3.1).
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Now we estimate I2. Since |ut| ≥ 1 in Ω2, from hypothesis (iii) on
ρ(x, s) we get

I2 ≤
Z t+T

t

Z
Ω2

K2a(x)
h
|ut|p+1 + |ut|

i h
|∇u|+ |u|

i
dxds

≤ 2K2

Z t+T

t

Z
Ω2

a(x)|ut|p+1
h
|∇u|+ |u|

i
dxds

≤ 2K2

µZ t+T

t

Z
Ω2

a(x)
p+2
p+1 |ut|p+2 dxds

¶ p+1
p+2

µZ t+T

t

Z
Ω

³
|∇u|+ |u|

´p+2
dxds

¶ 1
p+2

because p+1
p+2 +

1
p+2 = 1 e p+2

p+1 , > 1 for p ≥ 0.
Thus,

I2 ≤ C

µR t+T
t

R
Ω2

a(x)|ut|p+2 dxds
¶p+1

p+2
µR t+T

t

R
Ω

h
|∇u|p+2 + |u|p+2

i
dxds

¶ 1
p+2

≤ C

µR t+T
t

R
Ω2

a(x)|ut|p+2 dxds
¶p+1

p+2
µR t+T

t

R
Ω |∇u|p+2 dxds

¶ 1
p+2

(4.15)

due to Poincaré inequality in W 1,p+2
0 (Ω). The constant C > 0 depends on

kak∞ and the Poincaré constant for Ω.

Using Gagliardo-Niremberg Lemma and Poincaré inequality we obtain
k∇ukLp+2(Ω) ≤ C k∇ukθH1(Ω) k∇uk1−θL2(Ω) ≤ C kukθH2(Ω)∩H1

o (Ω)
k∇uk1−θL2(Ω)

≤ C k∆ukθL2(Ω) k∇uk1−θL2(Ω) ≤ C||∆u||L2 ≤ CE(t)
1
2 with θ = N p

2(p+2) .

Of course, because the solution u, for each t, is in H2
0 (Ω) then u ∈

W 1,p+2
0 (Ω), 0 ≤ p ≤ 2 (if N = 3 or 0 ≤ p <∞ for N = 1, 2) .

From the last estimate, we have

µR t+T
t

R
Ω |∇u|p+2 dxds

¶ 1
p+2 ≤ C

µR t+T
t E(s)

p+2
2 ds

¶ 1
p+2

≤ CT
1

p+2E(t)
1
2

(4.16)

because E(t) is decreasing.

Substituting (4.16) in (4.15) we obtain that

I2 ≤ C

µZ t+T

t

Z
Ω2

a(x)|ut|p+2 dxds
¶p+1

p+2

E(t)
1
2 .



224 Ademir F. Pazoto, Lucicléia Coelho and Ruy Coimbra Charão

Using the hypotheses (i) and (iii) on the function ρ(x, s) it follows that

I2 ≤ C

µZ t+T

t

Z
Ω2

ρ(x, ut)ut dxds

¶p+1
p+2

E(t)
1
2

= C

·
E(t)−E(t+ T )

ip+1
p+2E(t)

1
2

where the last equality is due to energy identity (3.1).

Combining the estimates for I1 and I2 the conclusion of Lemma 4.8
follows, for this first case.

Case 2:−1 < p < 0.

We write again I = I1+ I2. Then, using the hypotheses (i) and (iii) on
ρ(x, s), Hölder inequality and Poincaré inequality in W 1,p+2

0 (Ω), we have

from the fact that 0 < p+1 < 1: I1 =
R t+T
t

R
Ω1
|ρ(x, ut)|

³
|∇u|+ |u|

´
dxds

≤ K2
R t+T
t

R
Ω1

a(x)
³
|ut|p+1 + |ut|

´³
|u|+ |∇u|

´
dxds

≤ 2K2
R t+T
t

R
Ω1

a(x)|ut|p+1
³
|u|+ |∇u|

´
dxds

≤ C

µR t+T
t

R
Ω1

a(x)|ut|p+2 dxds
¶p+1

p+2
µR t+T

t

R
Ω |∇u|p+2 dxds

¶ 1
p+2

≤ C

µR t+T
t

R
Ω1
|ρ(x, ut)| |ut| dxds

¶p+1
p+2
µR t+T

t

R
Ω |∇u|2 dxds

¶ 1
2

ÃµR t+T
t

R
Ω dxds

¶−p
2

! 1
p+2

≤ C

µR t+T
t

R
Ω ρ(x, ut)ut dxds

¶ p+1
p+2
µR t+T

t

R
Ω |∇u|2 dxds

¶ 1
2³
T |Ω|

´ −p
2(p+2) .

Thus, using again Poincaré inequality, we conclude that

I1 ≤ C

"R t+T
t

R
Ω ρ(x, ut)ut dxds

# p+1
p+2p

E(t). The final constant C, in the

above estimate, depends on Poincaré constant for Ω, measure of Ω, T ,
kak∞ and p.

Now,we estimate I2. To do this, we use the Hölder and Poincaré in-
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equalities. Then, because 0 < p+ 1 < 1 we have

I2 =

Z t+T

t

Z
Ω2
|ρ(x, ut)|

³
|∇u|+ |u|

´
dxds

≤ K2

Z t+T

t

Z
Ω2

a(x)
³
|ut|p+1 + |ut|

´³
|u|+ |∇u|

´
dxds

≤ 2K2

Z t+T

t

Z
Ω2

a(x)|ut|
³
|u|+ |∇u|

´
dxds

≤ C

µZ t+T

t

Z
Ω2

a(x)|ut|2 dxds
¶ 1
2
µZ t+T

t

Z
Ω
|∇u|2 dxds

¶ 1
2

≤ C

µZ t+T

t

Z
Ω2

a(x)|ut|2 dxds
¶ 1
2
q
E(t)

= C

ÃZ t+T

t

Z
Ω2

a(x)|ut|2−α|ut|α
! 1

2q
E(t)

where α is a positive constant to be chosen.
Then, Hölder inequality implies that

I2 ≤ C

"µZ t+T

t

Z
Ω2

µ
a(x)|ut|2−α

¶ 4−p
4

dxds

¶ 4
4−p
# 1
2

"µR t+T
t

R
Ω2

µ
|ut|α

¶ 4−p
−p

dxds

¶ −p
4−p
# 1
2p

E(t)because
−p
4− p

+
4

4− p
= 1 and

−p
4− p

,
4

4− p
> 1 since −1 < p < 0 .

We chose α =
−6p
4− p

> 0. Then, the condition −1 < p < 0, implies that

I2 ≤ C

µZ t+T

t

Z
Ω2

a(x)|ut|2+p dxds
¶ 2
4−p
µZ t+T

t

Z
Ω2
|ut|6 dxds

¶ −p
8−2pq

E(t)

≤ C

µZ t+T

t

Z
Ω2

a(x)|ut|2+p dxds
¶ 2
4−pq

E(t)

due to ut ∈ L∞(0,∞;H1
0 (Ω)) and the Sobolev imbedding which says that

ut ∈ L∞((0,∞, L6(Ω)) for 1 ≤ n ≤ 3 (Ω is bounded).
Thus, using the hypothesis (iii)on ρ(x, s), we obtain

I2 ≤ C

ÃR t+T
t

R
Ω2

ρ(x, ut)ut dxds

! 2
4−pp

E(t).

Finally, combining the estimates (4) and (4) for I1 and I2, respectively,
and the energy identity (3.1) we conclude the proof of Lemma 4.8.
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5. Main Estimates

By combining the results from Lemma 4.8 with the estimate from Lemma
4.7 and using the Young’s inequality we obtain:

Proposition 5.1. Let u be the solution of (1.1) and T > 0 fixed and
given by Lemma 4.7. Then, the energy of the solution u satisfies for t ≥ 0:

E(t) ≤ C

(
Di(t)

2 +

Z t+T

t

Z
ω

·
|ut|2 + |u|2 + |∇u|2

¸
dxds

)

for i = 1, 2, where C is a positive constant which is independent of u and

D1(t)
2 = E(t)−E(t+T )+

h
E(t)−E(t+T )

i 2
p+2 +

h
E(t)−E(t+T )

i 2(p+1)
p+2

for the case 0 ≤ p ≤ 2 (if N=3 and 0 ≤ p <∞ if N = 1, 2)

D2(t)
2 = E(t)−E(t+T )+

h
E(t)−E(t+T )

i 2(p+1)
p+2 +

h
E(t)−E(t+T )

i 4
4−p ,

for the case −1 < p < 0.

At this point, using the estimate from proposition 5.1, we show the
following result.

Proposition 5.2. Let R > 0 fixed and u the solution of (1.1) with initial
data u0 and u1 such that E(0) ≤ R. Let T > 0 be given by Lemma 4.7.
Then, there exists C > 0 such thatZ t+T

t

Z
Ω

h
|u|2 + |∇u|2

i
dxds ≤ C

½
D̃i(t)

2 +

Z t+T

t

Z
ω
|ut|2 dxds

¾
with i = 1 or 2 according to the cases 0 ≤ p ≤ 2 and −1 < p < 0,
respectively. The constant C depends on R.

Proof : We prove this proposition by contradiction. We follow Zuazua [16]
and Nakao [13] to combine appropriate estimates and the unique continu-
ation property (see Kim [9] and Tucsnak [14]) for the plate equation.

We observe that, in our case, the proof of proposition 5.2 is a little more

delicate because the integral
R
ω

Ã
|u|2+|∇u|2

!
dx is estimated instead of the
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integral
R
ω |u|2 dx, which appear in the references mentioned above. This

difficulty appears since here we deal with a equation with a term involving
42u instead of 4u as in previous works already cited.

We suppose that the estimate in Proposition (5.2) is false. Then, there
exist a sequence of solutions {un}n∈N associated to initial data un0 and un1
and a sequence of points {tn}n∈N such that

lim
n→∞

R tn+T
tn

R
Ω

h
|un|2 + |∇un|2

i
dxds

Di(tn)2 +
R tn+T
tn

R
ω |(un)t|2 dxds

=∞.(5.1)

Now, we denote

λ2n =

Z tn+T

tn

Z
Ω

h
|un|2 + |∇un|2

i
dxds(5.2)

and

In(tn)
2 =

1

λ2n

"
Di(tn)

2 +

Z tn+T

tn

Z
ω
|(un)t|2 dxds

#
.(5.3)

Thus, from (5.1) we have

In(tn)
2 → 0, as n→∞.(5.4)

We set vn(x, t) =
un(x, t+ tn)

λn
, 0 ≤ t ≤ T . Then, from (5.2) we obtain

that 1 =
1

λ2n

Z tn+T

tn

Z
Ω

h
|un(x, s)|2 + |∇un(x, s)|2

i
dxds

=
1

λ2n

Z T

0

Z
Ω

h
|un(x, t+ tn)|2 + |∇un(x, t+ tn)|2

i
dxdt

=

Z T

0

Z
Ω

h
|vn(x, t)|2 + |∇vn(x, t)|2

i
dxdt.

That is, Z T

0

Z
Ω

h
|vn(x, t)|2 + |∇vn(x, t)|2

i
dxdt = 1,(5.5)

for all n ∈ N.
From the estimate given by Proposition (5.1) and (5.5) it follows that

E(vn(t)) = E(un(t+tn)λn
) =

1

λ2n
E(un(t+ tn)) ≤ 1

λ2n
E(un(tn))

≤ C

λ2n

(
Di(tn)

2 +
R tn+T
tn

R
ω |(un)t|2 dxds+

R tn+T
tn

R
Ω

h
|un|2 + |∇un|2

i
dxds

)
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= CIn(tn)
2 +

C

λ2n

R tn+T
tn

R
Ω

h
|un(x, s)|2 + |∇un(x, s)|2

i
dxds

= CIn(tn)
2 + C

R T
0

R
Ω

h
|vn(x, t)|2 + |∇vn(x, t)|2

i
dxdt = C

h
In(tn)

2 + 1
i
.

But, In(tn)
2 is a bounded sequence due to (5.4). Thus, we have that

E(vn(t)) ≤ C

for all 0 ≤ t ≤ T and for all n ∈ N, where C > 0 is independent of t and n.
Therefore,

k(vn)t(t)kL2(Ω) ≤ C e k 4 vn(t)kL2(Ω) ≤ C(5.6)

for all 0 ≤ t ≤ T and for all n ∈ N.
In this point, we use Poincaré inequality and estimate (5.6) to obtain

that

kvn(t)k2L2(Ω) =
Z
Ω
|vn(x, t)|2 dx =

Z
Ω

1

λ2n
|un(x, t+ tn)|2 dx

≤ C1

Z
Ω

1

λ2n
|∇un(x, t+ tn)|2 dx = C1

Z
Ω
|∇vn(x, t)|2 dx

≤ C2
R
Ω | 4 vn(x, t)|2 dx ≤ Cfor0 ≤ t ≤ T and n ∈ N.

That is, there exists a constant C > 0 such thatZ
Ω
|vn(x, t)|2 dx ≤ C(5.7)

for 0 ≤ t ≤ T and n ∈ N.
Now, from (5.6) and (5.7) we conclude that the sequence (vn) is such

that

( vn)n∈N is bounded in W 1,∞(0, T ;L2(Ω)) ∩ L∞(0, T ;H2
0 (Ω))(5.8)

Now, we claim that

lim
n→∞

1

λn
ρ(x, unt(t+ tn)) = 0 em L1([0, T ]×Ω).(5.9)

where we have used the notation that unt = (un)t.
In order to prove (5.9) we observe thatZ T

0

Z
Ω
|ρ(x, unt(x, t+ tn))| dxds =

Z t+T

t

Z
Ω
|ρ(x, unt)| dxds

≤
Z t+T

t

Z
Ω1

K2a(x)[ |unt |r+1 + |unt | ] dxds+
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Z t+T

t

Z
Ω2

K4a(x)[ |unt |p+1 + |unt | ] dxds

due to hypothesis (iii) on the function ρ(x, s) , where Ω1 and Ω2 were
defined in the proof of Lemma 4.8.

We need estimate the last two integrals in according each case for the
number p.

Case 1: 0 ≤ p ≤ 2 ifN=3 or 0 ≤ p <∞ if N = 1 or N = 2.
Proceeding as in Lemma 4.8 we obtain that any solution u of (1.1)

satisfiesZ t+T

t

Z
Ω
|ρ(x, ut)| dxds ≤ C

(·
E(t)−E(t+T )

¸ 1
p+2

+

·
E(t)−E(t+T )

¸ p+1
p+2

)
.

In the above estimate we used the fact that a(x) ∈ L∞(Ω) and the
energy identity (3.1).

Using the definition of D1(t) given in the Proposition 5.1 we obtain thatZ tn+T

tn

Z
Ω
|ρ(x, unt)| dxds ≤ C

·
D1(tn) +D1(tn)

¸
.

for N > 1. If N = 1 the estimate is the same that for N = 2.
Thus, using the definition of In(tn) given in (5.3), we conclude that

1

λn

Z tn+T

tn

Z
Ω
|ρ(x, unt)| dxds ≤ C

·
1

λn
D1(tn)

¸
≤ C In(tn).(5.10)

for N > 1. If N = 1 the estimate is the same that for N = 2.
Hence, combining (5.4) and (5.10) we obtain that

1

λn

Z tn+T

tn

Z
Ω
|ρ(x, unt)| dxds→ 0

as n→∞.
That is,

1

λn

Z T

0

Z
Ω
|ρ(x, unt(x, t+ tn))| dxds→ 0

as n→∞ .
Therefore, for this case, (5.9) holds.

Case 2: −1 < p < 0 .
In this case, we work in a similar way like in the proof of Lemma 4.8.

But, here is more easy because we have only ρ(x, ut) in the term under the
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integral sign, instead of ρ(x, ut)[|u|+ |∇u|] like in the estimates for I1 and
I2 in the proof of Lemma 4.8. Then, using the definition of D2(t) given in
the Proposition 5.1, we have thatZ t+T

t

Z
Ω
|ρ(x, ut)| dxds ≤ C

nh
E(t)−E(t+ T )

ip+1
p+2+

h
E(t)−E(t+ T )

io
≤ C

h
D2(t) +D2(t)

2
¸

for each solution u of (1.1).
Therefore, using again the definition of In(t) it follows that

1

λn

Z tn+T

tn

Z
Ω
|ρ(x, unt)| dxds

≤ C
h 1

λn
D2(tn) +

1

λn
D2(tn)

2
i
≤ C

h
In(tn) + λnIn(tn)

i
.

In this point we observe that the sequence (λn) is bounded. In fact,
Poincaré inequality implies that

λn =

ÃR tn+T
tn

kun(s)k2L2(Ω) + k∇un(s)k2L2(Ω) ds
! 1

2

≤ C

ÃR tn+T
tn

k∇un(s)k2L2(Ω) ds
! 1

2

≤ C

ÃR tn+T
tn

k 4 un(s)k2L2(Ω) ds
! 1

2

≤ CE(un(0)) ≤ CR,

because the initial data for all solutions we are considering belong to the
ball B(0, R) for some R > 0 fixed, that is, E(0) ≤ R.

Then, the property (5.4) for In(tn) implies that the claimed property
(5.9) is valid for this case, too.

Now, finely, we can pass the limit of (vn(t))n∈N. We note that from
(5.8) and Aubin-Lions Theorem we conclude that there exist a function
v(t) and a subsequence vn of vn such that

vn(t)- v(t) weak star in W 1,∞(0, T ;L2(Ω)) ∩ L∞(0, T ;H2
0 (Ω))

and

vn(t)→ v(t) strong in H1
0 ((0, T )×Ω).(5.11)

Thus, the function v(t) satisfies:

i) v ∈W 1,∞(0, T ;L2(Ω)) ∩ L∞(0, T ;H2
0 (Ω)) ;
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ii) vtt +42v − b(
R
Ω |∇v|2dx)4 u = 0 em (0, T )×Ω (due to (5.9)) ;

iii)

Z T

0

Z
ω
|vt|2 dxds = 0 (due to (5.3), (5.4) and (5.11) ;

iv)

Z T

0

h
kvk2L2(Ω) + k∇vk2L2(Ω)

i
ds = 1 (due to (5.5) and (5.11).

From items (ii), (iii) and the Unique Continuation Property (see Kim
[9]) it follows that v ≡ 0 in (0, T )×Ω.

This fact contradicts the above item (iv). Then, the Proposition 5.2 is
valid.

6. Proof of the Theorem of Stabilization

From the propositions above, it follows that

E(t) ≤ C

(
D̃i(t)

2 +

Z t+T

t

Z
ω
|ut|2 dxds

)

for all t ≥ 0 with i = 1 if 0 ≤ p ≤ 2 and i = 2 if −1 < p < 0. The constant
C is independent of the solution u and of t, but it depends of the radius of
the ball where the initial data is located.

Using the hypothesis that a(x) ≥ a0 > 0 on ω, we obtain thatZ t+T

t

Z
ω
|ut|2dxds ≤ 1

a0

Z t+T

t

Z
ω
a(x)|ut|2dxds.

Now, using the same technique used to prove Lemma 4.8(ver [2]), we prove
that

R t+T
t

R
ω |ut|2dxds is also bounded by the same kind of differences of

energy.

Thus, we obtain that the energy E(t) satisfies

E(t) ≤ C

½
[E(t)−E(t+T )]+[E(t)−E(t+T )]

2
p+2 +[E(t)−E(t+T )]

2(p+1)
p+2

¾
if 0 ≤ p ≤ 2 and

E(t) ≤ C

½
[E(t)−E(t+T )]+[E(t)−E(t+T )]

2(p+1)
p+2 +[E(t)−E(t+T )]

4
4−p
¾

if −1 < p < 0.
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Then,

sup
t≤s≤t+T

E(s)
1
K ≤ C[E(t)−E(t+ T )]

where 
K = min

½
2

p+2 ,
2(p+1)
p+2

¾
= 2

p+2 if0 ≤ p ≤ 2 and
N > 2 ( 0 ≤ p <∞ if N = 1 or 2)

K = min

½
2(p+1)
p+2 , 4

4−p

¾
= 2(p+1)

p+2 if− 1 < p < 0

Therefore, we obtained that E(t) satisfies an inequality similar to (3.3).

Then, Nakao’s Lemma implies the conclusion of the Theorem of Stabi-
lization.
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