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Abstract

In this work we consider the propagation of time—harmonic elas-
tic waves outside of a star—shaped domain with a “linear velocity at
the boundary”. We describe a new approach to investigate results of
existence and uniqueness for this exterior problem. To this end, we
used a method similar to the one discussed in [11, 12] which has its
genesis in [13] and relies on a stationary approach of resonances. The
fundamental step of our approach is to reduce the unbounded nature of
the problem to a bounded domain introducing an auxiliary boundary
condition of Dirichlet type. In particular, we find a large region in the
complex plane which is “free” of resonances.
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1. INTRODUCTION AND MOTIVATION

In this note, we use a recent technique to study existence and uniqueness of
outgoing solutions for elastic wave equations with boundary conditions that
involve the derivative in time of the dynamic. Additionally, we characterize
resonances (or scattering frequencies) for this problem. These complex
numbers play an important role when we try to obtain further properties
of the solutions of the evolution problem.

It is not rare finding in the literature studies of evolution equations with
boundary conditions that involve the time derivative of the dynamics, as
for example:

β
∂u

∂n
+ γu+ ut = 0.(1.1)

Such conditions arise in the applications and are of great importance in
diverse fields, such as control theory and boundary value problems of par-
tial differential equations (PDE’s). Significant mathematical results have
already been obtained in this topics, see [3, 4, 6, 25] and [16, 21]. These
references also include semigroup techniques and a extensive bibliographic
list.

In this context, boundary value problems for the system of elastic waves
or the acoustic wave equation with prescribed linear velocity at the bound-
ary play an important role when modelling several interesting physical phe-
nomena occurring in applied science, for instance, those modelling the dy-
namical vibrations of higher dimensional system of thermoelasticity with a
linear boundary feedback, those involving the stabilization of a linear hy-
perbolic equation with time dependent coefficients or those involving the
asymptotic behavior in linear viscoelastic plates (see, [32] and references
contained therein).

The study and analysis of equations with dynamical boundary con-
ditions, from a rigorous mathematical point of view, was started around
1960, with the work of J.L. Lions who explored some important models
and studied, among other things, the existence of weak solutions by means
of variational methods. Since then, these methods have been studied by sev-
eral authors, for instance [15, 17, 25, 29], and the references therein, where
different physical, mathematical and mechanical problems are treated.

In this context, we study in the exterior region Ω = R3\O, the system
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of elastic waves:⎧⎪⎨⎪⎩
utt − b2∆u− (a2 − b2)∇(∇ • u) = eiσth(x) in Ω×R,
u(x, 0) = f0(x) in Ω,
ut(x, 0) = f1(x) in Ω

(1.2)

subject to a linear condition on ∂Ω of the form:

Tηu(x, t) + d(x)(m • η) + (m • η)ut(x, t) = 0 on ∂Ω×R ,(1.3)

where Tη is the so-called stress-traction vector calculated on surface ele-
ment:

Tηu = 2b
2∂u

∂η
+ (a2 − 2b2)(∇ • u)η + b2η × (∇× u) on ∂Ω×R.

We assume that the boundary ∂Ω of O is smooth, say of class C2, O is
an open bounded and connected subset of R3 which is star-shaped with
respect to a point x0 = (x10, x

2
0, x

3
0) ∈ O. Let us denote by η = η(x) the

unit normal vector at x ∈ ∂Ω directed towards the interior of O. Also, the
dot • means the usual inner product in R3, × is the usual cross product in
R3, the constants “a” and “b” are given in terms of Lam constants μ and λ:
a2 = λ+2μ, b2 = μ with μ > 0 and λ+2μ > 0, σ is a complex number (the
frequency) and h(x) is a given field on Ω, i =

√
−1. Moreover, u(x, t) =

(u1(x, t), u2(x, t), u3(x, t)) is the displacement at the time t and location
x in R3 scattered by O, ut(x, t) = (u1t (x, t), u

2
t (x, t), u

3
t (x, t)), ∇ is the

gradient, utt(x, t) = (u
1
tt(x, t), u

2
tt(x, t), u

3
tt(x, t)), ∇•u denotes the (spatial)

divergence of the displacement vector u and∆u = (4u1,4u2,4u3), where
4 is the usual Laplacian operator. Finally, f = (f0, f1) is the initial value
for this exterior initial boundary value problem.

We will be interested in time-harmonic solutions and describe an ap-
proach to investigate existence and uniqueness of outgoing solutions. In
particular, we present an alternative approach to the problem of existence
of resonances for this model.

In the literature, resonances are sometime named scattering frequencies,
complex singularities, poles of the scattering matrix, etc. Such complex
numbers play an important role when we try to obtain further properties
of the solutions of the evolution problem or in the so-called inverse problem:
Suppose that we know the distribution of such resonances in the complex
plane, then the question is whether or not we can recover information about
the geometry of the obstacle O such as its volume, surface area of ∂Ω, etc
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(see for instance [24, 27, 34, 36] and references therein). Further contribu-
tions to the subject where given in [5, 7, 9, 26, 27, 30, 35, 37, 38, 39].

The essence of our method follows the framework developed in [11, 12],
which can be briefly described as follows. First, we reduce the unbounded
nature of the problem to a bounded domain introducing an auxiliary bound-
ary condition of Dirichlet type. Next, combining uniqueness and existence
of solution in the whole space and in a bounded domain, we reduce the
problem to a Fredholm type equation the which depends analytically of a
parameter. Finally, we use uniqueness theorem to obtain the invertibility
for this equation.

In our opinion, the most important qualitative feature from this method
is that it combines both simplicity and flexibility. Indeed, as it is observed
in [11, 12], the method may be used in a variety of problems, for example,
elastic resonators [18] and crack plane problems [2], among others.

The results of this note are in the spirit of those in [11, 12], which have
its genesis in [13] and reliy on a stationary approach of resonances.

We present our main results using the strategy described in this in-
troduction. For this purpose, consider time-harmonic waves u(x, t) of the
system (1.2—1.3) which are outgoing:

u(x, t) = eiσt v(x), (x, t) ∈ Ω×R(1.4)

Then, we see that the vector field v(x) in (1.4) must obey the following
model: ⎧⎪⎨⎪⎩

b2∆v + (a2 − b2)∇(∇ • v) + σ2v = − h in Ω,
Tηv + (d(x) + iσ) (m • η)v = 0 on ∂Ω
v(x;σ) is outgoing.

(1.5)

Remark 1. The outgoing condition for the elastic wave means that
v(x;σ) in (1.5) is the

£
L2(Ω)

¤3
—solution if =(σ) > 0 and the analytic con-

tinuation of an
£
L2(Ω)

¤3
—solution in the region =(σ) > 0 if =(σ) ≤ 0, where

=(σ) denote the imaginary part of σ.
Hencenfort, we will refer to (1.5) as the system of time-harmonic elas-

tic waves with prescribed linear type velocity at the boundary. Generally
speaking a resonance is a complex number σ for which the system (1.5)
with h ≡ 0 has a nontrivial solution v. For a general review about system
of elastic wave equations we refer to [19, 20, 22, 23]. We shall use standard
notation: For any vector v = (v1, v2, v3) with vj ∈ C, v means the conju-
gate of v, that is v(x) = (v1(x), v3(x), v3(x)), the norm of a vector v(x) is
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given by

kv(x)k =

⎛⎝ 3X
j=1

¯̄̄
vj(x)

¯̄̄2⎞⎠1/2 .
Given a vector function f :R3 → C3, f(x) = (f1(x), f2(x), f3(x)), the
support of f is given by supp f = ∩3j=1supp f j where supp f j denotes the

support of the function f j . Also, the function χD denotes the characteristic
function of D. Moreover, C∞0 (Ω) denote the space of all C

∞ functions
defined on Ω, with compact support in Ω. On the other hand, Hs(Ω) and
Hr(∂Ω) denote the usual Sobolev spaces of order s and r on Ω and ∂Ω
respectively, and H−s(Ω) and H−r(∂Ω) their corresponding dual spaces. If
E is a vector space then we write [E]3 = ⊕3i=1E and the norm of a vector v
belonging to [E]3 will be denoted by k·k[E]3 . Given a positive number R, BR

denotes the ball centered at zero and radius R. Also, we denote by ∂BR =©
x ∈ R3 : kxk = R

ª
, where kxk2 =

3P
j=1

¡
xj
¢2
whenever x = (x1, x2, x3) and

by [L2R(R
3)]3 the space [L2R(R

3)]3 =
©
v ∈ [L2(R3)]3 : v = 0, if kxk ≥ R

ª
.

Without loss of generality we can assume that x0 = (x10, x
2
0, x

3
0) ∈ O.

Finally, η = η(x) will always denote the unit normal vector pointing the
exterior of the set where we are considering the equations.

The remaining part of this work is organized as follows. In Section 2 we
state and prove our main result concerning the existence and uniqueness
of outgoing solutions of (1.2) and (1.3). In Section 3 we consider a second
problem, which concerns the existence of resonances associated to the sys-
tem (1.2) and (1.3 ). Finally, in the last section, we given an Appendix
with some technical results.

2. THE MAIN RESULT

In this section we shall establish the existence and uniqueness of outgoing
solutions to system of the elastic waves with prescribed linear velocity on
the boundary( 1.5).

We recall some lemmas (see for instance [12, 22]) in the whole space
R3:

Lemma 2.1. Let σ ∈ C with =(σ) > 0 and take v ∈ [H2(R3)]3 an
outgoing solution of the system

b2∆v(x) + (a2 − b2)∇ (∇ • v(x)) + σ2 v(x) = 0, x ∈ R3(2.1)
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for a2 > 4
3b
2 > 0. Then, we have that:

lim
R→∞

Z
kxk=R

v • TηvdΓ = 0,

where v means the conjugate of v, that is v = (v1, v2, v3).

Lemma 2.2. Let σ ∈ C with =(σ) > 0. Then, for any g ∈ [L2R(R3)]3,
the system

b2∆v(x) + (a2 − b2)∇ (∇ • v(x)) + σ2 v(x) = g(x), x ∈ R3(2.2)

admits an outgoing solution v ∈ [H2(R3)]3 which depend analytically on
σ and v = A(σ)g, where

A(σ) : [L2R(R
3)]3 → [H2(R3)]3

is a linear continuous operator. In particular, if v1 and v2 are two outgoing
solutions of (2.2), then v1(x) = v2(x) for any x ∈ R3.

Let Ω be as in Section 1 and d = d(x) be a nonnegative real-valued
function on ∂Ω such that d ∈ C(∂Ω), with M = maxx∈∂Ω d(x) and ε an
arbitrary positive real number. Let P (M ; ε) ⊂ C the set defined by

P (M ; ε) = {σ ∈ C : =(σ) > M + ε} .(2.3)

We fix R > 0 and let ΩR the domain given by ΩR = {x ∈ Ω : kxk ≤ R}∪
∂Ω.

The following theorem is the main result of this work.

Theorem 2.3. Let σ ∈ P (M ; ε). Then, for any h ∈ [L2(Ω)]3 with
support contained in ΩR, the system of elastic waves with prescribed linear
boundary velocity ( 1.5) has a unique solution v ∈ [H2(Ω)]3 . Furthermore,
v = v(x, σ) can be extended in a meromorphic way to the whole complex
plane except for a countable number of poles (resonances) in C\P (M ; ε).

Proof. We first prove uniqueness: Suppose we have two outgoing
solutions v1 and v2. Let w be the difference w = v1−v2. Thus, w satisfies
( 1.5) with h = 0. Let R be a positive real number such that ∂BR is
contained in Ω. Now, we use the Betti-Green formula (see for instance [14]
or [22, 23] ) to obtainZ

ΩR

w •f∆ w dx+

Z
ΩR

e(w,w) dx =

Z
∂ΩR

w •Tηw dΓ,(2.4)
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where f∆ w =b2∆w+ (a2 − b2)∇(∇ •w) and

e(w,w) =
3a2 − 4b2

3
|∇•w|2+b2

2

X
p6=q

¯̄̄̄
¯∂wp

∂xq
+

∂wq

∂xp

¯̄̄̄
¯
2

+
b2

3

3X
p,q=1

¯̄̄̄
¯∂wp

∂xp
− ∂wq

∂xq

¯̄̄̄
¯
2

.

Since f∆ w = −σ2 w in ΩR ⊆ Ω and ∂ΩR = ∂BR ∪ ∂Ω then it follows from
( 2.4) that

−σ2
Z
ΩR

||w||2dx+
Z
ΩR

e(w,w) dx =

Z
kxk=R

w•Tηw dΓ+

Z
∂Ω
w•Tηw dΓ.

(2.5)
In addition, using (2.5) together with Lemma 2.1, the boundary condition,
and passing to the limit as R→∞. We have

− σ2
Z
Ω
||w||2dx+

Z
Ω
e(w,w) dx = −

Z
∂Ω
(d(x) + i σ) (m • η) ||w||2dΓ.

(2.6)

Consequently,Z
Ω
e(w,w)dx = σ2

Z
Ω
||w||2dx−

Z
∂Ω

d(x)(m • η)||w||2dΓ−iσ
Z
∂Ω
(m • η)||w||2dΓ

=I1 + I2,

(2.7)

with

I1 = [ <2(σ)− =2(σ) + 2i<(σ)=(σ) ]
Z
Ω
||w||2dx

and

I2 = −
Z
∂Ω

d(x)(m • η) ||w||2dΓ+ [=(σ)− i<(σ)]
Z
∂Ω

(m • η) ||w||2dΓ,

where <(σ) denote the real part of σ.
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Now, by taking the imaginary part in (2.7), it follows that

0 = 2<(σ)=(σ)
Z
Ω
||w||2dx− <(σ)

Z
∂Ω
(m • η) ||w||2dΓ .(2.8)

Also, the real part of (2.7) gives us thatZ
Ω
e(w,w)dx =

(<2(σ)− =2(σ))
Z
Ω
||w||2dx+

Z
∂Ω
[=(σ)− d(x)](m • η) ||w||2dΓ .(2.9)

There are two possibilities:
(a) If <(σ) = 0, then from (2) we obtain thatZ

Ω
e(w,w)dx =

−=2(σ)
Z
Ω
||w||2dx+

Z
∂Ω
[=(σ)− d(x)](m • η)||w||2dΓ.(2.10)

Taking into account that m • η <0 on ∂Ω and M = maxx∈∂Ω d(x) ≥
d(x) with M < ε+M < =(σ), =(σ)− d(x) ≥ 0 on ∂Ω, it follows thatZ

∂Ω
[=(σ)− d(x)](m • η)||w||2dΓ ≤ 0.

On the other hand, we know that
R
Ω e(w,w)dx ≥ 0 then (2) yields tow = 0

a.e. on Ω.
(b) If <(σ) 6= 0, then from (2.8) we obtain that

0 = 2=(σ)
Z
Ω
||w||2dx−

Z
∂Ω
(m • η) ||w||2dΓ.

Thus

2=(σ)
Z
Ω
||w||2dx =

Z
∂Ω
(m • η) ||w||2dΓ.

Now, σ ∈ P (M ; ε) and m • η <0 on ∂Ω, which implies w = 0 a.e. on
Ω.

Next, we prove existence: To do this we introduce the following spaceh
H1
∂Ω(ΩR)

i3
=

½
u ∈

h
H1(ΩR)

i3
: u = 0 on ∂BR

¾
.



System of time-harmonic elastic wave 213

Due to technical reasons we prefer to divide the proof into several lem-
mas.

Lemma 2.4. Let eg ∈ [H1/2(∂Ω)]3 and σ ∈ P (M ; ε) (given by (2.3)).
Then, the problem⎧⎪⎨⎪⎩

b2∆w+ (a2 − b2)∇(∇ •w) = 0 in ΩR,
Tηw+ (d(x) + iσ) (m • η)w = eg on ∂Ω,
w = 0 on ∂BR

(2.11)

has a unique solution w ∈[H2(ΩR)]
3 ∩

£
H1
∂Ω(ΩR)

¤3
. The existence and

uniqueness of solution to (2.11) can be established by an standard argu-
ment. For the sake of completeness we present a proof in the Appendix.

Let R > 0, R0 > 0 be such that BR0 ⊆ O and ∂Ω ⊆ BR. We choose
ζ = ζ(x) ∈ C∞0 (R

3) satisfying the following conditions
(A) ∂Ω ⊂ supp ζ ⊂ BR/BR0 ,
(B) ζ ≡ 1 in a neighborhood of ∂Ω.
Let us introduce the following function

v(x) = v0(x) + ζ(x) eu(x), x ∈ R3,(2.12)

where eu is the Caldern extension (see [31], theorem 5.3.1) to R3 of the

solution w ∈ [H2(ΩR)]
3 ∩

£
H1
∂Ω(ΩR)

¤3
of system (2.11) with

eg = −Tηv0 − (d(x) + iσ) (m • η)v0 ∈ [H1/2(∂Ω)]3,(2.13)

where v0 = v0(x) satisfies (see Lemma 2.2) the system

b2∆v0(x) + (a
2 − b2)∇(∇ • v0(x)) + σ2 v0(x) = g(x), x ∈ R3

with g = f0 = χΩRf for a given element f ∈[L2(Ω)]3. Additionally, we
require that v0 be outgoing.

Clearly from (2.12) we obtain

Tηv + (d(x) + iσ) (m • n)v = 0 on ∂Ω.

Furthermore, the property (A) implies that v = v0 onR
3/BR. Since v0

is outgoing, so is v. Consequently, for any h ∈ [L2(Ω)]3 with supp h ⊆ ΩR
and σ ∈ P (M ; ε), we deduce that v, given by (2.12), will solve the system
(1.5) if and only if,

−h = b2∆v + (a2 − b2)∇(∇ • v) + σ2 v

= f0 + b2∆(ζ(x)eu) + (a2 − b2)∇[∇ • (ζ(x)eu) ] + σ2 ζ(x)eu.(2.14)
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Observe that due to the choice (A) and the fact that f0 = χΩRf , we
have that (2.14) holds in the region R3\BR. In fact, the supp h ⊆ ΩR. So,
we deduce that v given by (2.12) will be solution of (1.5) if and only if, the
identity

− h = f + b2∆(ζ(x)w) + (a2 − b2) ∇ (∇ •w ζ(x)) + σ2ζ(x)w.(2.15)

holds for any x ∈ ΩR, because eu = w on ΩR.
Now we use the well known vector identity

∇× (∇× F) = −∆ F+ ∇ (∇ •F),(2.16)

where F = (F1, F2, F3) is a field, together with the fact that w solves

b2∆ w(x) + (a2 − b2)∇(∇ •w(x)) = 0, x ∈ ΩR

to rewrite (2.15) in the form

− h = f +Gζ(σ)w,(2.17)

where Gζ(σ) : [H
2(ΩR)]

3 ∩
£
H1
∂Ω(ΩR)

¤3 → [H1(ΩR)]
3 is given by

Gζ(σ)w = (a
2 + b2)[(∇ ζ •∇) w] + [b24ζ + σ2ζ] w+

+ (a2 − b2)[(w •∇) ∇ ζ +∇ζ × (∇× w) +∇ ζ( ∇ •w)].
(2.18)

Finally, we want to rewrite the operator relation (2.17) as a composition
of operators L(σ), Λη, QR(σ) and AM(σ). Consider the operators in the
diagram:

£
L2 (ΩR)

¤3
AM (σ)−−−−→

£
H2

¡
R3
¢¤3

QR−→
£
H2 (Ω)

¤3
↑ Bς (σ)

←0

⏐yΛη£
H1 (ΩR)

¤3
Gς (σ)←−−−

£
H2 (ΩR)

¤3 ∩ £H1
∂Ω (ΩR)

¤3
L (σ)
←−−−

h
H

1
2 (∂Ω)

i3
(2.19)

Where L(σ) is the solution operator associated to the system (2.11) witheg as in (2.13), that is, L(σ)eg = w, Λη (the trace) is defined as Ληv0 = eg,
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QR is the restriction operator, QR(v0) = v0|ΩR and AM(σ) = A(σ)M ,

where the operator M :
£
L2(R3)

¤3 7→ £
L2(ΩR)

¤3
is given by

(M k)(x) = χΩRk(x) for k ∈
h
L2(R3)

i3
and A(σ) is the solution operator of the system

b2∆v0 + (a
2 − b2)∇(∇ • v0) + σ2v0 = f0 in R

3,

that is, A(σ)f0 = v0. Clearly all the above operators are linear and con-
tinuous.

Remark 2. One can easily check that the operators L(σ) and Λη
depend analytically on σ. In fact, the function v0 has this property and eg
depends intrinsically of v0 (v0 is the solution of the system given above).

Now, we can rewrite (2.17) in the form

− h = f +Bζ(σ)f(2.20)

where

Bζ(σ) = Gζ(σ)L(σ)ΛηQRAM(σ)(2.21)

Lemma 2.5. With the above considerations (and the assumptions of The-
orem 2.3) we have

1) The set {Bζ(σ)} is a family of compact operators from
£
L2(ΩR)

¤3
into

itself.

2) The homogeneous equation f +Bζ(σ)f = 0 has only the trivial solu-
tion.

Proof.

1) Taking eg as in (2.13), we have that each Bζ(σ) is a compact operator.

This follows from the fact that the embedding
£
H1(ΩR)

¤3 → £
L2(ΩR)

¤3
is

compact.

2) Let f ∈
£
L2(ΩR)

¤3
be such that f + Bζ(σ)f = 0. Then, the function

v is a solution of the system
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⎧⎪⎨⎪⎩
b2∆v+ (a2 − b2)∇(∇ • v) + σ2 v = 0 in Ω,
Tηv + (d(x) + iσ) (m • η)v = 0 on ∂Ω
v(x, σ) is outgoing.

(2.22)

Due to the uniqueness result we have already proven, we obtain that
v = 0 on Ω. In particular, from (2.12) it follows that −ζ(x)eu = v0 on Ω.
In particular v0 = 0 in R

3\BR. Since supp ζ ⊆ BR\BR0 then we get that
v0 = 0 in ∂BR. Let us consider the auxiliary function

z(x) = ψ(x)v0(x) + (1− ψ(x))eu(x)(2.23)

where

ψ(x) =

(
1 if x ∈ O
0 if x ∈ ΩR ∪ ∂BR.

Note that z ∈
£
H2(BR)

¤3
. Furthermore,

b2∆ z+ (a2 − b2)∇(∇ • z) = −σ2ψ(x)v0 on BR.

Note also that z = 0 on ∂BR, because v0 = eu = 0 on ∂BR. Now, the
Betti-Green formula on BR yields toZ

BR

z • e∆z dx+ Z
BR

e(z, z)dx = −
Z
∂BR

z •Tηz dΓ = 0

which implies thatZ
BR

e(z, z) dx = σ2
Z
BR

ψ(x)||v0||2 dx.(2.24)

From (2.24) we deduce thatZ
BR

e(z, z)dx =
h
(<2(σ)−=2(σ)

i Z
BR

ψ(x)||v0||2 dx(2.25)

and

0 = 2<(σ)=(σ)
Z
BR

ψ(x)||v0||2 dx.(2.26)

Since σ ∈ P (M ; ε), if <(σ) 6= 0, then we conclude from (2.26) that
v0 = 0 a.e. in O. Now if <(σ) = 0, then (2.25), together with the fact
that

R
BR

e(z, z)dx ≥ 0 imply that v0 = 0 a.e. in O.
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In conclusion, for any σ ∈ P (M ; ε), the function z = z(x) given by (2.23)

belongs to
£
H2(BR)

¤3
and solves( e∆z = b2∆z+ (a2 − b2)∇(∇ • z) = 0 in BR,

z = 0 on ∂BR.
(2.27)

A well known result from elliptic theory (see for instance [33]) implies
that the solution of (2.27) is identically zero in BR, that is eu = 0 in ΩR.
This, together with −ζ(x)eu(x) = v0(x) for x ∈ ΩR allow us to deduce that

0 = b2∆v0 + (a
2 − b2)∇(∇ • v0) + σ2v0 = f(x), x ∈ ΩR

i.e. f = 0 in ΩR . Using Lemmas 2.4 and 2.5 we conclude the proof of
existence of Theorem 2.3. In fact, using the Fredholm Theory, it follows
that the equation

f +Bζ(σ)f = −h

is uniquely solvable. The remaining part of Theorem 2.3 (that is, the
meromorphic extension) will be proven in the next section.

3. MEROMORPHIC EXTENSION

This section is devoted to study the extension of the solution of the bound-
ary problem (1.5) to all complex numbers σ except for some countable
number of complex singularities called resonances. Our approach borrows
some ideas on the subject presented in [11], [12] and [9]. We follow the
same notations as in the previous sections.

The following theorem is classic and is given to Steinberg’s; for a more
general versions, see [40].

Theorem 3.1 (Steinberg’s theorem)

If {T (σ)} is an analytic family of compact operators for σ, then either
I + T (σ) is nowhere invertible or else [I + T (σ)]−1 is meromorphic in σ.

Now, we emphasize that the solution v0 of the system

b2∆v0 + (a
2 − b2)∇(∇ • v0) + σ2v0 = f(3.1)

depends analytically of σ ∈ P (M ; ε). So, evidently all the operators con-
sidered in (2.19), have this property. By Lemma 2.5 the family {Bξ(σ)}
consist of compact operators from

£
L2(ΩR)

¤3
into itself.
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Theorem 3.2. The inverse operators [I +Bξ(σ)]
−1 have an analytic

extension from the set P (M ; ε) given by (2.3) to all the complex plane ex-
cept for a countable set of poles, called resonant frequencies. Furthermore,
σ is a resonant frequency of the operator [I +Bξ(σ)]

−1 if and only if, the
operator equation f +Bξ(σ)f = 0 has nonzero solutions.

Proof. We use the theorem 3.1 to conclude that either (a) The oper-
ators [I +Bξ(σ)]

−1 are never invertible for σ ∈ C or (b) There is σ0 ∈ C
such that the operator [I +Bξ(σ0)]

−1 is invertible. From Theorem 2.3 we
have the existence and uniqueness of the solution for system (1.5) for all
σ ∈ C such that σ ∈ P (M ; ε). The equivalence between problem (2.20)
discussed in the previous section with our original system says that we are
in case (b). In this case, Steinberg’s theorem also establishes that the op-
erator [I +Bξ(σ)]

−1 is defined analytically in the whole complex plane C,
except for a countable number of poles.

4. APPENDIX

Before beginning the proof of Lemma 2.4, we remark that the regularity
of the solution of the system (2.11) is related to the regularity of the solution
of a auxiliary boundary value problem.

In fact, we began by recalling that£
H1
∂Ω(ΩR)

¤3
=
n
u ∈

£
H1(ΩR)

¤3
: u = 0 on ∂BR

o
. In what follows, we fix

q ∈ (0, 1], and set s ∈ (0, q
2
).

Lemma A1.

Suppose f ∈
£
L2(ΩR)

¤3
, h ∈ [Hs(∂Ω)]3and u a weak solution of the

following elliptic problem:⎧⎪⎪⎨⎪⎪⎩
−b2∆u− (a2 − b2)∇(∇ · u) = f in ΩR,

2b2
∂u

∂η
+ (a2 − b2)η(∇ · u) + d(x)(m · η)u = h on ∂Ω,

u = 0 on ∂BR.

(3.2)

Then u ∈ [Hp(ΩR)]
3 ∩

£
H1
∂Ω(ΩR)

¤3
with p = 3

2 + s > 3
2 .

Remark 3. In this part we repeated and we adapted, only for con-
venience of the reader, a proof given in ([29], p.p., 292-295). In this work
they also prove the existence of weak solutions.
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Proof: Let η = (η1, η2, η3) denote the unit normal on ∂ΩR = ∂Ω∪∂BR

directed to exterior of ΩR and consider the following system

3X
j=1

[(a2 − b2)ηiηj + 2δijb
2]ζj = hi, i = 1, 2, 3,(3.3)

where δij denote the Kronecker symbol, i.e;

δij =

(
1, i = j,
0, i 6= j.

It is easy to see that the system has a solution ζ = (ζ1, ζ2, ζ3) ∈£
H1(∂ΩR)

¤3
for h ∈ [Hs(∂ΩR)]

3 . By a trace theorem (see, for instance
[28], p. 39, Theorem 8.3), there exists ϕ = (ϕ1, ϕ2, ϕ3) ∈ [Hp(ΩR)]

3 ∩£
H1
∂Ω(ΩR)

¤3
with

∂ϕ

∂n
= ζ, ϕ = 0 on ∂ΩR.

Let
©
τ1(x), τ2(x)

ª
be a tangential vector field such that

©
n(x), τ1(x), τ2(x)

ª
forms an orthonormal basis in R3 for almost all x ∈ ∂ΩR. Hence, there
exist γk,j (j = 1, 2, 3; k = 1, 2) depending on

©
η(x), τ1(x), τ2(x)

ª
such that

∂ϕj
∂xj

= ηj
∂ϕj
∂η

+ γ1,j
∂ϕj
∂τ1

+ γ2,j
∂ϕj
∂τ2

= ηj
∂ϕj
∂η

= ηjζj on ∂ΩR, j = 1, 2, 3.

Therefore, it follows from (3.3) that

2b2
∂ϕ

∂η
+ (a2 − b2)η(∇ · ϕ) + d(x)(m · η)ϕ = h on ∂Ω.

Put ψ = u− ϕ, then ψ satisfies⎧⎪⎪⎨⎪⎪⎩
−b2∆ψ − (a2 − b2)∇(∇ · ψ) = F in ΩR,

2b2
∂ψ

∂η
+ (a2 − b2)η(∇ · ψ) + d(x)(m · η)ψ = 0 on ∂Ω,

ψ = 0 on ∂BR,

(3.4)

where F = f − b2∆ϕ − (a2 − b2)∇(∇ · ϕ) ∈
£
Hp−2(ΩR)

¤3
. Thus, problem

(3.2) is equivalent to (3.4). By classical varational methods (see, e.g.,[28]),
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for every F ∈
£
(H1(ΩR))

0¤3, the problem (3.4) has a unique weak solution

ψ ∈
£
H1
∂Ω(ΩR)

¤3
in the sense of distribution

Z
ΩR

(b2∇ψ·∇φ+ (a2 − b2)(∇ · ψ)(∇ · φ)dx+
Z
∂Ω

d(x)(m · η)ψ · φdΓ

=
R
ΩR
F · φ dx,

(3.5)

for all φ ∈
£
H1
∂Ω(ΩR)

¤3
. Moreover, by the classical Nirenberg’s traslation

method (see, eg., [1], p.107, Lemma 9.2) or ([28], p. 124), we prove that,

if F ∈
£
L2(ΩR)

¤3
, then ψ∈

£
H2(ΩR)

¤3 ∩ £H1
∂Ω(ΩR)

¤3
. Since the regularity

is local property, it suffices to prove that, for any x ∈ ΩR, there exists
a neighborhood O(x) such that ψ ∈

£
H2(O(x) ∩ΩR)

¤3
. We only consider

the case x ∈ ∂Ω since the case x ∈ Ω is easier (see, Lemma 9.2 of [1],
p.107). In fact, for simplicity, we may as well assume that x = 0 ∈ ∂Ω
and the boundary is flat with the normal oriented in the direction x3 since
the general case can be transformed into the special case by a mapping of
class C2. Therefore, there exists a hemisphere O� = {x : |x| < �, x3 > 0}
such that O� ⊂ ΩR and ∂Ω2O =

n
x ∈ O� : x3 = 0

o
⊂ ∂Ω. Let 0 < �0 < �

and �” = 1
2(�

0 + �) and let ξ denote a real function which is infinitely
differentiable on R3 and ξ = 1 on O�0 and ξ = 0 outside O�” . Note that ξ
need not vanish on the flat part ∂Ω2O of the boundary of O�. By (3), we
have for any φ ∈ [C∞0 (O� ∪ ∂Ω2O)]3

Z
O�
(b2∇ψ·∇φ+ (a2 − b2)(∇ · ψ)(∇ · φ)dx+

Z
∂Ω2O

d(x)(m · η)ψ · φdΓ

=

Z
O�

F · φ dx.(3.6)

define the bilinear form B(ψ, φ) by

B(ψ, φ) =

Z
O�
(b2∇ψ·∇φ+(a2−b2)(∇·ψ)(∇·φ)dx+

Z
∂Ω2O

d(x)(m · η)ψ · φdΓ.
(3.7)
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Then we have

|B(ψ, φ)| ≤ ||F|| · ||φ||, for all φ ∈ [C∞0 (O� ∪ ∂Ω2O)]3 .(3.8)

For a real number, we define the difference quotients δi(, i = 1, 2, 3 by
(a) δ1(u = (−1[u(x1 + (, x2, x3)− u(x1, x2, x3)],
(b) δ2(u = (−1[u(x1, x2 + (, x3)− u(x1, x2, x3)],
(c) δ3(u = (−1[u(x1, x2, x3 + ()− u(x1, x2, x3)].

We now want to estimate the difference quotients δi((ξψ) for i = 1, 2.
Since

B(δi((ξψ), φ) =

Z
O�

(b2∇δi((ξψ)·∇φ+ (a2 − b2)(∇ · δi((ξψ))(∇ · φ)dx

+

Z
∂Ω2O

d(x)(m · η)δi((ξψ) · φdΓ

=

Z
O�

(b2δi((∇(ξψ))·∇φ+ (a2 − b2)δi((∇ · (ξψ))(∇ · φ))dx

+

Z
∂Ω2O

d(x)(m · η)δi((ξψ) · φdΓ

=

Z
O�
(b2δi((ψj∇ξ + ξ∇ψj)·∇φ+ (a2 − b2)δi((∇ · (ξψ))(∇ · φ))dx

+

Z
∂Ω2O

d(x)(m · η)δi((ξψ) · φdΓ

= b2
Z
O�

(δi((ψj∇ξ)·∇φj + ξ∇ψj ·δi−((∇φj))dx

+(a2 − b2)

Z
O∈
(δi((∇ξ · ψ)(∇ · φ) + ξ∇ · ψ)δi−((∇ · φ)dx

+

Z
∂Ω2O

d(x)(m · η)ξψ·δi−((φ)dΓ

So,

B(δi((ξψ), φ) = b2
Z
O∈
(δi((ψj∇ξ)·∇φj +∇ψj ·∇(ξδi−(φj)−∇ψj ·∇(ξδi−(φj))dx

+(a2 − b2)

Z
O∈
(δi((∇ξ · ψ)(∇ · φ) +∇ · ψ∇·(ξδi−(φ)) dx

−(a2 − b2)

Z
O�
∇ · ψ∇ξ · δi−(φ dx

+

Z
∂Ω2O

d(x)(m · η)ψ · (ξδi−(φ)dΓ.
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That is,

B(δi((ξψ), φ) = B(ψ, ξδi−(φ) + b2
Z
O�

(δi((ψj∇ξ)·∇φj −∇ψj ·∇(ξδi−(φj))dx

+(a2 − b2)

Z
O�

(δi((∇ξ · ψ)(∇ · φ)−∇ · ψ∇ξ · δi−(φ)dx(3.9)

It therefore follows from (3.9) that

|B(δi((ξψ), φ)| ≤ ||F|| ||ξδi−(φ||+ C||φ||[H1(O�)]
3 ||ψ||[H1(O�)]

3

≤ C(||F|| + ||ψ||[H1(O�)]
3)||φ||[H1(O�)]

3 .(3.10)

Let
h
H1
∂Ω2O

(O�)
i3
be the completation of [C∞0 (O� ∪ ∂Ω2O)]3 in

£
H1(O�)

¤3
.

Then by a density argument, we obtain for any φ ∈
h
H1
∂Ω2O

(O�)
i3
the esti-

mated
|B(δi((ξψ), φ)| ≤ C(||F|| + ||ψ||[H1(O�)]

3)||φ||[H1(O�)]
3 .

Since δi((ξψ) ∈
h
H1
∂Ω2O

(O�)
i3
if � is small enough, we deduce that

|B(δi((ξψ),δi((ξψ))| ≤ C(||F|| + ||ψ||[H1(O�)]
3)||δi((ξψ)||[H1(O�)]

3 .(3.11)

On the other hand, it is clear that

|B(δi((ξψ),δi((ξψ))| ≥ C||δi((ξψ)||[H1(O�)]3 .

Hence it follows from (3.11) that

||δi((ξψ)||[H1(O�)]
3 ≤ C(||F|| + ||ψ||[H1(O�)]

3).

Since ξ = 1 on O�, , by Theorem 3.16 of ([1], p.45), we deduce that
∂ψi
∂xj

∈
£
H1(O�,)

¤3
for all i = 1, 2, 3, j = 1, 2. It remains to show that

∂ψi
∂x3

∈
£
H1(O�,)

¤3
. To do this we have to distinguish the components ψi

for i = 1, 2 and for i = 3. In what concerns i = 1, 2, we have

−b2∂
2ψi
∂x23

= b2∆0ψi + (a
2 − b2)

∂

∂xi
(∇ · ψ) + Fi ∈

h
L2(O�0)

i3
,

while
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−a2∂
2ψ3
∂x23

= b2∆0ψ3 + (a
2 − b2)

∂

∂x3
(
∂ψ1
∂x1

+
∂ψ2
∂x2

) + F3 ∈
h
L2(O�0)

i3
,

where ∆0 =
∂2ψ1
∂x21

+
∂2ψ2
∂x22

. By interpolation (see, e.g., [28], p.29, Theorem

6.2), for F ∈
£
Hp−2(ΩR)

¤3
we have ψ ∈ [Hp(ΩR)]

3 ∩
£
H1
∂Ω(ΩR)

¤3
, and then

u ∈ [Hp(ΩR)]
3∩
£
H1
∂Ω(ΩR)

¤3
. This complete the proof. Now, with the above

information we have

Proof of Lemma 2.4: Let eg ∈ [H1/2(∂Ω)]3 and σ ∈ P (M ; ε) (given
by (2.3)). Then, the problem⎧⎪⎨⎪⎩

b2∆w(x) + (a2 − b2)∇(∇ • w(x)) = 0 in ΩR,
Tηw+ (d(x) + iσ) (m • η)w = eg on ∂Ω,
w(x) = 0 on ∂BR

(3.12)

has a unique solution w ∈ [H2(ΩR)]
3 ∩

£
H1
∂Ω(ΩR)

¤3
.

Proof: Let w = w(h) a solution of (3.2) with f = 0 and h ∈ [Hη(∂Ω)]3

arbitrary. Then by Lemma A1 we have w ∈ [H2(ΩR)]
3 ∩

£
H1
∂Ω(ΩR)

¤3
with

η = 1
2 . Now, if in particular the data eg in (3.2) is the form

eg=iσ (m • η) w+ b2 η × (∇×w) + h ∈ [H1/2(∂Ω)]3,(3.13)

then the existence of one solution to (3.12) follows of the existence of the
solution of the problem (3.2). Let us consider the operator

C(σ) : [H1/2(∂Ω)]3−→[H1/2(∂Ω)]3

given by

C(σ)w = iσ (m • η) w+ b2 η × (∇×w) + h

By Lemma A1, we have

||C(σ)w||
[H1/2(∂Ω)]

3 ≤ C||w||[H2(Ω)R]
3 ≤ C1||h||[L2(∂Ω)]3 .

Hence

C(σ) : [H1/2(∂Ω)]3−→
h
L2(∂Ω)

i3
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is continuous. By compactness of the Sobolev inmersion of L2 in H1/2, the
operator

C(σ) : [H1/2(∂Ω)]3−→[H1/2(∂Ω)]3

is compact. By the analytic Fredholm theorem, except for an at most
countable set of σ’s, the operator C(σ) + I is invertible. Thus, given eg ∈
[H1/2(∂Ω)]3, there exist h ∈ [H1/2(∂Ω)]3 such that (3.13) is holds.

Now, uniqueness is obtained by taking the difference of two solutions
w1 and w2 of (3.12). In fact, w = w1 − w2 satisfies (3.12) with eg = 0.
Now, thanks to Betti-Green’s formula over ΩR we have, in particular,Z

ΩR

e(w,w) dx =

Z
∂ΩR

w •Tηw dΓ.(3.14)

Taking the real part of (3.14) give us thatZ
ΩR

e(w,w)dx =

Z
∂Ω
[=(σ)− d(x)](m • η) ||w||2dΓ.(3.15)

SoZ
ΩR

e(w,w)dx =

Z
∂Ω
[(=(σ)− d(x))(m • η)− εδ] kwk2 dΓ+ εδ

Z
∂Ω
||w||2dΓ,

(3.16)

where δ =max{m(x) • η(x) : x ∈ ∂Ω} < 0. Moreover, we know that
σ ∈ P (M ; ε), this implies that (=(σ)− d(x))m • η − εδ ≤ 0 in ∂Ω. As,Z

ΩR

e(w,w)dx ≥ 0

then, (3.5) yields to w = 0 a.e. on ∂Ω. Now, w = 0 a.e. on ∂BR. Then,

w = 0 a.e. on ∂ΩR.

Thus, we see that w solves(
b2∆w(x) + (a2 − b2)∇(∇ • w(x)) = 0 in ΩR,
w(x) = 0 on ∂ΩR.

Which finally implies w = 0 a.e. on ΩR. This completes the proof of
Lemma 2.4.
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