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1. 1. Introduction and Preliminaries

Since Chang [1] introduced fuzzy theory into topology, many authors
have discussed various aspects of fuzzy topology. In a Chang I-topology,
the open sets were fuzzy, but the topology comprising those open sets was
a crisp subset of the I-powerset IX . On the other hand, fuzzification of
openness was first initiated by Höhle [4] in 1980 and later developed to
L-subsets of LX independently by Kubiak [5] and Šostak [8] in 1985. In
1991, from a logical point of view, Ying [9] studied Höhle’s topology and
called it fuzzifying topology. In [3], Fang established fuzzy quasi-coincident
neighborhood systems in I-fuzzy topological spaces.

Connectivity is an essential part of fuzzy topology, on which a lot of
work has been done. In the framework of fuzzifying topologies, Ying [10]
introduced connectivity and Fang [2] proved K. Fan’s theorem. Considering
the completeness and usefulness of theory of L-fuzzy topologies, in this
paper, we will introduce connectivity in L-fuzzy topological spaces and
give K. Fan’s theorem.

Throughout this paper, X is a nonempty set and L is a completely
distributive lattice with an order-reversing involusion 0 on it, and with a
smallest element 0 and a largest element 1 (0 6= 1). Obviously, LX–all
mappings from X to L–is also a completely distributive lattice. suppA
is the support of A ∈ LX and 1U denotes the characteristic function of
U ∈ 2X , where 2X is the powerset of X. An element a ∈ L is said to be
coprime (resp., prime) if a ≤ b ∨ c (resp., a ≥ b ∧ c) implies that a ≤ b or
a ≤ c (resp., a ≥ b or a ≥ c). The set of all coprimes (resp., primes) of L
is denoted by M(L)(resp., P (L)).

Firstly, we display the ÃLukasiewicz logic and corresponding set-theoretical
notations used in this paper. For any formula φ, the symbol [φ] means the
truth value of φ and this truth value is in the unit interval [0, 1]. A formula
φ is valid, we write |= φ, if and only if [φ] = 1 for every interpretation.

(1) [φ ∧ ψ] := min{[φ], [ψ]}; [φ→ ψ] := min{1, 1− [φ] + [ψ]}.
(2) If X is the universe of discourse, then [∀x ∈ Xφ(x)] := infx∈X [φ(x)].

(3) [∃x ∈ Xφ(x)] := [¬(∀x ∈ X¬φ(x))] = supx∈X [φ(x)].
(4) [¬φ] := [φ→ 0] = 1− [φ].
(5) [φ↔ ψ] := [φ→ ψ] ∧ [ψ → φ].

Secondly, we give some definitions and results in L-fuzzy topological
spaces.
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Definition 1.1[5,8]. An L-fuzzy topology is a map η : LX → [0, 1] such
that

(FCT1) η(1) = η(0) = 1;
(FCT2) η(A ∧B) ≥ η(A) ∧ η(B) for all A,B ∈ LX ;
(FCT3) η(

W
j∈J Aj) ≥

V
j∈J η(Aj) for every family {Aj |j ∈ J} ⊆ LX .

If η is an L-fuzzy topology on X, then we say the pair (LX , η) is an
L-fuzzy topological space (L-Ftop, for short). The value η(A) can be in-
terpreted as the degree of openness of A ∈ LX . A continuous mapping
between two L-Ftops (LX , η) and (LY , δ) is a mapping f : X → Y such
that η(f←L (B)) ≥ δ(B) for all B ∈ LY , where f←L : LY → LX is defined by
f←L (B)(x) = B(f(x)). f : (LX , η)→ (LY , δ) is called a homeomorphism if
and only if f is bijective and both f and f−1 are continuous.

Suppose that η : LX → [0, 1] is an L-fuzzy topology. Let Qη
e : L

X →
[0, 1] be defined as follows:

Qη
e(A) =

( W
eqB≤A η(B), eqA,

0, e¬qA.

for e ∈M(LX) and A ∈ LX , where eqA denotes e 6≤ A0. When e ∈M(LX),
we know that there exist x ∈ X and λ ∈ M(L) such that e = xλ, where
xλ ∈ LX is defined by

xλ(y) =

(
λ, y = x,
0, others.

Hence, e 6≤ A0 means xλ 6≤ A0, this is to say λ 6≤ A0(x) = (A(x))0.
The set Q = {Qη

e |e ∈M(LX)} is called the induced fuzzy quasi-coincident
neighborhood system by η. The value Qη

e(A) can be interpreted as the
degree to which A is a quasi-coincident neighborhood of e. If no confusion
arise, we omit the superscript η of Qη

e .

Lemma 1.2[3] (L = [0, 1]). Q = {Qe|e ∈ M(LX)} defined above satisfied
the following results:

(1) Qe(1X) = 1 and Qe(0X) = 0;
(2) Qe(A) > 0⇒ eqA;
(3) Qe(A ∧B) = Qe(A) ∧Qe(B);
(4) Qe(A) =

W
eqB≤A

V
aqB

Qa(B);
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(5) η(A) =
V
eqAQe(A).

Definition 1.3[11] (L = [0, 1]). Let (LX , η) be an L-fuzzy topological space
. If η(A) = inf

r∈P (L)
η(1σr(A)) for all A ∈ LX , then (LX , η) is called an in-

duced L-fuzzy topological space, where σr(A) = {x|A(x) 6≤ r}. If η(λ̄) = 1
for all λ ∈ L, where λ̄ is the constant function from X to L, then (LX , η)
is called a stratified L-fuzzy topological space.

Definition 1.4[11] (L = [0, 1]). Let (LX , η) be an L-fuzzy topological space
on X.

(1) Define [η] : 2X → [0, 1] by [η](U) = η(1U ). [η] is called the fuzzifying
background space of (LX , η).

(2) Define φη : 2
X → [0, 1] by φη(U) = sup

r∈P (L)
sup{η(B)|B ∈ LX , σr(B) =

U} for U ∈ P (X). Then φη is the subbase of one fuzzifying topology and
denote this fuzzifying topology by ι(η).

Lemma 1.5[11] (L = [0, 1]). Let (X, τ) be a fuzzifying topological spaces.
Then ω(τ) : LX → [0, 1] defined by ω(τ)(A) = inf

r∈P (L)
τ(σr(A)) for A ∈ LX

is an L-fuzzy topology on X.

Definition 1.6[10]. Let Γ be the class of fuzzifying topological spaces. A
fuzzy unary predicate I ∈ F(Γ), called fuzzy connection, is given as follows:

I(X, τ) := ¬(∃U)(∃V )(S(U, V ) ∧ (U 6= ∅) ∧ (C 6= ∅) ∧ (U ∨ V = X)),
i.e.,

[I(X, τ)] = 1 − WU,V 6=∅, U∨V=X S(U,V ) = 1 − WU∈P(X)−{∅,X} τ(U) ∧
τ(U c),

2. L-fuzzy connectivity

Definition 2.1. Let Σ denote all L-fuzzy topological spaces. A fuzzy
unary predicate Con ∈ F(Σ), called L-fuzzy connection, is given as follows:

Con(LX , η) :=
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¬(∃B)(∃C)((B ∈ η) ∧ (C ∈ η) ∧ (B 6= 0X) ∧ (C 6= 0X) ∧ (B ∨ C =
1X) ∧ (B ∧C = 0X)),

Hence

[Con(LX , η)] = 1−
_

(B,C)∈D
η(B) ∧ η(C),

where D = {(B,C) ∈ LX×LX | B 6= 0X , C 6= 0X , B∨C = 1X and B∧C =
0X}.
The true value of Con(LX , η) can be interperted as the degree to which
(LX , η) is L-fuzzy connected.

Remark 2.2. It is easy to check that [Con(LX , η)] = 1−W(B,C)∈D η(B0)∧
η(C0). In Definition 2.1, if η is an Chang L-topology , then this definition
is just the connectivity in [6]. When L = {0, 1}, Definition 2.1 will reduces
to Defintion 1.6.

Rodabaugh [7] introduced a kind of connectivity in L-topological spaces.
Let (LX , η) be an L-fuzzy topological space. If we generalized Rodabaugh’s
connectivity for the L-Ftop setting as follows:

RCon(LX , η) :=

¬(∃B)(∃C)((B ∈ η) ∧ (C ∈ η) ∧ (B 6= 0X) ∧ (C 6= 0X) ∧ (B ∨ C >
0X) ∧ (B ∧C = 0X)),

i.e.,

[RCon(LX , η)] = 1−
_

(B,C)∈DR
η(B) ∧ η(C),

where DR = {(B,C) ∈ LX × LX | B 6= 0X , C 6= 0X , B ∨ C > 0X and B ∧
C = 0X}.

From the generalization above, it is easy to check that |= RCon(LX , η)→
Con(LX , η). We now see an example.

Example 2.3. Let X = {x, y} and L = [0, 1]. Define B by B(x) = 1
2

and B(y) = 0, and define C by C(y) = 1
2 and C(x) = 0, respectively. Let
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η : LX → [0, 1] be defined as follows:

η(A) =

⎧⎪⎨⎪⎩
1, A ∈ {0X , 1X , 1̄

2},
1
2 , A ∈ {B, C},
0, others.

Then η is an L-fuzzy topology on X. It is easy to verify that
[RCon(LX , η)] = 1/2 and [Con(LX , η)] = 1.

Theorem 2.4. Let (LX , η) be an L-fuzzy topological space. Then we
have |= Con(LX , η) → I(X, [η]). Furthermore, if 1 ∈ M(L), then |=
Con(LX , η)↔ I(X, [η]).

Proof. It needs to prove [Con(LX , η)] ≤ [I(X, [η])], i.e.,
W
(B,C)∈D η(B) ∧

η(C) ≥ W
U∈P(X)−{∅,X}[η](U) ∧ [η](U c). Let U ∈ P(X) − {∅,X}. Then

1U ∨ 1Uc = 1X and 1U ∧ 1Uc = 0X . From the definition of [η], we have

[η](U) ∧ [η](U c) = η(1U ) ∧ η(1Uc) ≤
_

(B,C)∈D
η(B) ∧ η(C).

Therefore,
W
U∈P(X)−{∅,X}[η](U) ∧ [η](U c) ≤ W(B,C)∈D η(B) ∧ η(C).

In order to prove [Con(LX , η)] = [I(X, [η])], it suffices to show that
[Con(LX , η)] ≥ [I(X, [η])]. This is to sayW
(B,C)∈D η(B) ∧ η(C) ≤ W

U∈P(X)−{∅,X}[η](U) ∧ [η](U c). Let (B,C) ∈ D.
Since 1 ∈ M(L), we can get that B = 1suppB and C = 1suppC . Hence
suppB ∩ suppC = ∅ and suppB ∪ suppC = X. Therefore, η(B) ∧ η(C) =
η(1suppB)∧η(1suppC) = [η](suppB)∧[η](suppC) ≤

W
U∈P(X)−{∅,X}[η](U)∧

[η](Uc), as desired.

Theorem 2.5. Let (LX , η) be an L-fuzzy topological space. If 1 ∈M(L),
then |= I(X, ι(η))→ Con(LX , η).

Proof. This can be obtained by [η] ≤ ι(η) and Theorem 2.4.

Corollary 2.6. Let (X, τ) be a fuzzifying topological space. If 1 ∈M(L),
then |= Con(LX , ω(τ))↔ I(X, τ).
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Remark 2.7. In particular, if L is the unit interval [0, 1], then we have

|= Con([0, 1]X , η)↔ I(X, [η]);

Con ([0,1]X , ω(τ))↔ I(X, τ); I(X, ι(η))→ Con([0, 1]X , η).

If 1 6∈ M(L), Theorem 2.4, 2.5 and Corollary 2.6. are not necessary
valid. Now we see an example.

Example 2.8. Let L = {0, a, b, 1} be the diamond lattice, i.e, a ∨ b = 1,
a ∧ b = 0, a0 = b and b0 = a, and let X be any nonempty set. Define
τ : 2X → [0, 1] by

τ(U) =

(
1, U ∈ {∅,X},
0, others.

It is easy to verify that

ω(τ)(A) =

(
1, A ∈ {0X , 1X , ā, b̄},
0, others.

where ā and b̄ denote the constant mapping from X to L taking the value
a and b, respectively. We know that ā ∧ b̄ = 0X and ā ∨ b̄ = 1X . Hence
[Con(LX , ω(τ))] = 0, but [I(X, τ)] = 1.

Theorem 2.9. If f : (LX , η) → (LY , δ) is a continuous mapping, then
|= Con(LX , η)→ Con(LY , δ).

Proof. It suffices to show [Con(LX , η)] ≤ [Con(LY , δ)], i.e.,
W
(A,B)∈DX η(A)∧

η(B) ≥ W(C,D)∈DY δ(C) ∧ δ(D). Let (C,D) ∈ DY and define A∗ = f←L (C)

and B∗ = f←L (D). Then we have (A
∗, B∗) ∈ DX . Since f : (LX , η) →

(LY , δ) is continuous, δ(C) ≤ η(A∗) and δ(D) ≤ η(B∗). Therefore, δ(C) ∧
δ(D) ≤ η(A∗) ∧ η(B∗) ≤ W(A,B)∈DX η(A) ∧ η(B). Hence W(A,B)∈DX η(A) ∧
η(B) ≥ W(C,D)∈DY δ(C) ∧ δ(D), as desired.
Corollary 2.10. If f : (LX , η) → (LY , δ) is a homeomorphism, then
|= Con(LX , η)↔ Con(LY , δ).
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Corollary 2.11. Let {(LXt , ηt)}t∈T be a family of L-fuzzy topological
spaces and (LX , η) be the product space of {(LXt , ηt)}t∈T . Then

|= Con(LX , η)→ (∀t ∈ T )(Con(LXt , ηt)).

Example 2.12. We consider the I-fuzzy unit interval I(I) in I-topological
spaces. For details about I(I), please refer to [6]. It can be also regarded
as I-fuzzy topology according to the characteristic function, i.e.,

I(I)(A) =

(
1 A ∈ I(I),
0 A 6∈ I(I).

The readers can easily check [Con(IX , I(I))] = 1.

3. K. Fan’s theorem

As is well know, in L-topology, there is a theorem, named K. Fan’s
theorem, which describes connectivity in a geometric manner. According
to K. Fan’s theorem, a Chang L-topological space (LX , δ) is connected if
and only if ∀f : M(LX) → LX with the property that f(e) is a quasi-
coincident neighborhood of e for all e ∈ M(LX), there is a finite subset
{e1, e2, ..., en} ⊆M(LX) such that

e1 = a, en = b and f(ei) ∧ f(ei+1) 6= 0X , i = 1, 2, ..., n− 1

whenever a, b ∈ M(LX) are fixed. In this section, we will generalize K.
Fan’s theorem to L-fuzzy topology. At first, we introduce some definitions.

Definition 3.1. Let (LX , η) be an L-fuzzy topological space and let Ξ
denote all mappings from M(LX) to LX . A unary predicate M ∈ F(Ξ),
called fuzzy quasi-coincident neighborhood map, is defined as follows:

∀f ∈ Ξ, M(f) := (∀e ∈M(LX))(f(e) ∈ Qe).

Intuitively, the degree to which f is a fuzzy quasi-coincident neighborhood
map is

[M(f)] =
^

e∈M(LX)

Qe(f(e)).
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Definition 3.2. (1) Let (LX , η) be an L-fuzzy topological space. A unary
predicate P ∈ F(M(LX) ×M(LX)), called L-fuzzy point-connection, is
defined as follows:

P (a, b) := (∀f)(M(f)→
(∃{e1, e2, ..., en} ⊆M(LX)((e1 = a)∧(en = b)∧Vi=n−1

i=1 (f(ei)∧f(ei+1) 6=
0X)).

This is to say the degree to which a and b are connective is

[P (a, b)] =
^
f∈Ξ

min{1, 1− [M(f)] +
e1=a,en=b
sup

{ei}i=ni=1

i=n−1^
i=1

[f(ei) ∧ f(ei+1) 6= 0X ]},

where {ei}i=ni=1 = {e1, e2, ..., en} ⊆M(LX).
(2) A unary predicate K ∈ F(Σ), called K. Fan connection, is defined

as follows:

K(LX , η) := (∀(a, b) ∈M(LX)×M(LX))(P (a, b)),

i.e., the degree to which (LX , η) is K. Fan connection is

[K(LX , η)] =
^

(a,b)∈M(LX)×M(LX)

[P (a, b)].

Theorem 3.3 (K. Fan’s theorem). For any (LX , η) ∈ Σ, |= K(LX , η)↔
Con(LX , η).

Proof. According to ÃLukasiewicz logic, we need to show the truth value
equality: [K(LX , η)] = [Con(LX , η)]. At first, we want to show [K(LX , η)] ≤
[Con(LX , η)]. Let α > [Con(LX , η)]. By the definition of [Con(LX , η)],
there exists (B,C) ∈ D such that 1− η(B) ∧ η(C) < α, i.e., η(B) > 1− α
and η(C) > 1− α. Define f0 :M(L

X)→ LX as follows:

f0(e) =

(
B, e ≤ C 0,
C, e ≤ B0.

Then we have

Qe(f0(e)) =

(
Qe(B), e ≤ C 0,
Qe(C), e ≤ B0.

≥
(

η(B), e ≤ C 0,
η(C), e ≤ B0.

> 1− α
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Hence [M(f0)] =
V
e∈M(LX)Qe(f0(e)) ≥ 1 − α, i.e., 1 − [M(f0)] ≤ α.

Since B0 6= 0X and C 0 6= 0X , we can take a ∈ M(LX) and b ∈ M(LX)

such that a ≤ B0 and b ≤ C 0. Since supe1=a,en=b{ei}i=ni=1

Vi=n−1
i=1 [f0(ei)∧ f0(ei+1) 6=

0X ] ∈ {0, 1}, we can assert that

e1=a,en=b
sup

{ei}i=ni=1

i=n−1^
i=1

[f0(ei) ∧ f0(ei+1) 6= 0X ] = 0.

In fact, let {e1, e2, ..., en} ⊆M(LX) be any finite set with the property
e1 = a and en = b, and let i0 = max{i ≤ n|ei ≤ B0}.

Then we have i0 ≤ n−1 and ei0+1 ≤ C 0. By the definition of f0, we have
f0(ei0) = C and f0(ei0+1) = B. Hence f0(ei0) ∧ f0(ei0+1) = C ∧ B = 0X .
Thus [f0(ei0) ∧ f0(ei0+1) 6= 0X ] = 0. Therefore,

e1=a,en=b
sup

{ei}i=ni=1

i=n−1^
i=1

[f0(ei) ∧ f0(ei+1) 6= 0X ] = 0,

as desired. So

[K(LX , η)] =
^

(c,d)∈M(LX)×M(LX)

[P (c, d)] ≤ [P (a, b)]

=
^
f∈Ξ

min{1, 1− [M(f)] + e1=a,en=b
sup

{ei}i=ni=1

i=n−1^
i=1

[f(ei) ∧ f(ei+1) 6= 0X ]}

≤ min{1, 1− [M(f0)] +
e1=a,en=b
sup

{ei}i=ni=1

i=n−1^
i=1

[f0(ei) ∧ f0(ei+1) 6= 0X ]}

= 1− [M(f0)] ≤ α.

We complete the proof of [K(LX , η)] ≤ [Con(LX , η)] from the arbitrari-
ness of α.

Secondly, we prove that [K(LX , η)] ≥ [Con(LX , η)]. If [K(LX , η)] = 1,
then [K(LX , η)] ≥ [Con(LX , η)] is obvious. We assume that [K(LX , η)] <
1. Let [K(LX , η)] < α < 1. Then there exist (a, b) ∈M(LX)×M(LX) and
f0 :M(LX)→ LX such that

min{1, 1− [M(f)] + e1=a,en=b
sup

{ei}i=ni=1

i=n−1^
i=1

[f0(ei) ∧ f0(ei+1) 6= 0X ]} < α
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This is to say that

1− [M(f0)] +
e1=a,en=b
sup

{ei}i=ni=1

i=n−1^
i=1

[f0(ei) ∧ f0(ei+1) 6= 0X ] < α.

Hence we have

e1=a,en=b
sup

{ei}i=ni=1

i=n−1^
i=1

[f0(ei) ∧ f0(ei+1) 6= 0X ] = 0

and 1 − [M(f0)] < α. In the following, we will call c, d ∈ M(LX) jointed
by f0 if

e1=c,en=d
sup

{ei}i=ni=1

i=n−1^
i=1

[f0(ei) ∧ f0(ei+1) 6= 0X ] = 1.

Obviously, a and b are not jointed by f0. Now we set

B = {e ∈M(LX)| a and e can be jointed by f0}
and

C = {e ∈M(LX)| a and e can not be jointed by f0}.
Let B =

W
e∈B e and C =

W
e∈C e. It is obvious that a ≤ B, b ≤ C and

B ∨C = 1X . We can also assert that B ∧C = 0X . In fact, if B ∧C 6= 0X ,
take z ∈ M(LX) such that z ≤ B ∧ C. Clearly, z ≤ B and z ≤ C. Since
1 − [M(f0)] < α, i.e., [M(f0)] =

V
e∈M(LX)Qe(f0(e)) > 1 − α, we have

Qz(f0(z)) > 1− α > 0. Therefore, from Lemma 1.2 (2), we have zqf0(z),
i.e., z 6≤ (f0(z))0.

Hence B 6≤ (f0(z))0. Then there exists d ∈ B such that d 6≤ (f0(z))0.
By d 6≤ (f0(d))0, we obtain d 6≤ (f0(z))0 ∨ (f0(d))0. Hence f0(d) ∧ f0(z) 6=
0X . Thus, we can get a and z can be jointed by f0 since d and a can
be jointed by f0. Similarly, since z ≤ C, there exists m ∈ C such that
m 6≤ (f0(z))0 ∨ (f0(m))0. Then f0(z) ∧ f0(m) 6= 0X . Therefore, m and z
can be jointed by f0. Thus m and a can be jointed by f0 since z and a can
be jointed by f0. Therefore, m ∈ B. This is a contradiction to m ∈ C. So
B ∧ C = 0X , as desired.

For B and C defined above, we want to prove η(B0) ≥ 1 − α and
η(C0) ≥ 1−α. If not, then η(B0) < 1−α or η(C 0) < 1−α. For convenience,
we assume that η(B0) < 1 − α. From Lemma 1.2 (5), we have η(B0) =V
eqB0 Qe(B

0) < 1 − α. Then there exists e ∈ M(LX) such that eqB0 and
Qe(B

0) < 1 − α. Since Qe(f0(e)) > 1 − α, we know that f0(e) 6≤ B0, i.e.,
B 6≤ (f0(e))0.
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Hence there exists z ∈ B such that z 6≤ (f0(e))
0. Moreover z 6≤

(f0(e))
0 ∨ (f0(z))0. Thus e and a can be jointed by f0. Therefore, e ≤ B.

This is contradict to eqB0. So η(B0) ≥ 1 − α and η(C 0) ≥ 1 − α, i.e.,
η(B0) ∧ η(C 0) ≥ 1− α. Hence [Con(LX , η)] ≤ α. From the arbitrariness of
α, we have [K(LX , η)] ≥ [Con(LX , η)]. Thus the conclusion.

Question 3.4. In Theorem 2.4—Remark 2.7, we study some relation-
ships on between Con(LX , η) and I(X, τ). We do not know whether there
are some relationships between K(LX , η) defined in this paper and K(X, τ)
defined in [2] and we leave it as an open question.

4. Conclusions

In this paper, we offer an application of ÃLukasiewicz logic to L-fuzzy
topology. We introduce generalized connectivity in L-fuzzy topological
spaces and prove K.Fan’s theorem. One thing we want to point out that L-
fuzzy connectivity defined in this paper is for the whole L-fuzzy topological
space not for an arbitray fuzzy subsets. The K. Fan theorem gives us one
approach to difine generalized connectivity for an arbitray fuzzy subsets in
L-fuzzy topological space.
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