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Abstract

In this paper, we introduce generalized connectivity in L-fuzzy
topological spaces by Lukasiewicz logic and prove K. Fan’s theorem.
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1. 1. Introduction and Preliminaries

Since Chang [1] introduced fuzzy theory into topology, many authors
have discussed various aspects of fuzzy topology. In a Chang I-topology,
the open sets were fuzzy, but the topology comprising those open sets was
a crisp subset of the I-powerset IX. On the other hand, fuzzification of
openness was first initiated by Hohle [4] in 1980 and later developed to
L-subsets of L* independently by Kubiak [5] and Sostak [8] in 1985. In
1991, from a logical point of view, Ying [9] studied Hohle’s topology and
called it fuzzifying topology. In [3], Fang established fuzzy quasi-coincident
neighborhood systems in I-fuzzy topological spaces.

Connectivity is an essential part of fuzzy topology, on which a lot of
work has been done. In the framework of fuzzifying topologies, Ying [10]
introduced connectivity and Fang [2] proved K. Fan’s theorem. Considering
the completeness and usefulness of theory of L-fuzzy topologies, in this
paper, we will introduce connectivity in L-fuzzy topological spaces and
give K. Fan’s theorem.

Throughout this paper, X is a nonempty set and L is a completely
distributive lattice with an order-reversing involusion ’ on it, and with a
smallest element 0 and a largest element 1 (0 # 1). Obviously, LX—all
mappings from X to L—is also a completely distributive lattice. suppA
is the support of A € LX and 1y denotes the characteristic function of
U € 2%, where 2X is the powerset of X. An element a € L is said to be
coprime (resp., prime) if a < bV ¢ (resp., a > b A ¢) implies that a < b or
a < c (resp., a > bor a > c). The set of all coprimes (resp., primes) of L
is denoted by M (L)(resp., P(L)).

Firstly, we display the Lukasiewicz logic and corresponding set-theoretical
notations used in this paper. For any formula ¢, the symbol [¢] means the
truth value of ¢ and this truth value is in the unit interval [0,1]. A formula
¢ is valid, we write |= ¢, if and only if [¢] = 1 for every interpretation.

(1) [¢ A 9] :=min{[¢], [¥]}; [¢ — ] := min{1,1 — [¢] + [¢]}.

(2) If X is the universe of discourse, then [V € X ¢(z)] := inf e x[d(x)].
(3) [Fr € Xo(x)] := [~(Va € X~¢(x))] = sup,ex[o(z)].

(4) [~¢] :==[¢ — 0] =1—[g].

() [p=v]=[0—Y| Ay — ¢l

Secondly, we give some definitions and results in L-fuzzy topological
spaces.
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Definition 1.158, An L-fuzzy topology is a map 7 : LX — [0,1] such
that

(FCT1) n(1) = n(0) =

(FCT2) n(AANB) > 77( ) n(B) for all A, B € LX;

(FCT3) n(V es Aj) = Ajesn(A;) for every family {A;]j € J} C L*.

If  is an L-fuzzy topology on X, then we say the pair (L¥,7) is an
L-fuzzy topological space (L-Ftop, for short). The value n(A) can be in-
terpreted as the degree of openness of A € LX. A continuous mapping
between two L-Ftops (LX,n) and (LY,6) is a mapping f : X — Y such
that n(f; (B)) > §(B) for all B € LY, where f; : LY — LX is defined by
fi(B)(z) = B(f(z)). f:(LX,n) — (LY,6) is called a homeomorphism if
and only if f is bijective and both f and f~! are continuous.

Suppose that 7 : LX — [0,1] is an L-fuzzy topology. Let Q7 : LX —
[0, 1] be defined as follows:

B A
QI(A) = {Vqu<64777( ) ee—(.lq/’l.

for e € M(LX) and A € LX, where eqA denotes e £ A’. When e € M (LX),
we know that there exist + € X and A € M (L) such that e = z), where
x) € LX is defined by

others.

)\7 =<,

Hence, e £ A’ means x) £ A’, this is to say A\ £ A'(z) = (A(x))".
The set Q = {Q"7|e € M(L¥)} is called the induced fuzzy quasi-coincident
neighborhood system by 7. The value Q7(A) can be interpreted as the
degree to which A is a quasi-coincident neighborhood of e. If no confusion
arise, we omit the superscript n of Q7.

Lemma 1.28 (L = [0,1]). Q = {Q.|le € M(L¥)} defined above satisfied
the following results:
(1) Qe(lX) =1 and Qe(OX) =0;
(2) Qu(A) > 0 = eqA;
(3) Qu(AA B) = QulA) A Qu(B):
(4) Qe(A) =V A Qu(B);

eqB<A aqB

e



194 Yueli Yue and Jinming Fang
(5) U(A) - /\qu Qe(A)

Definition 1.3 (L = [0, 1]). Let (LX,n) be an L-fuzzy topological space
I n(A) = ig{L)n(lar(A)) for all A € LX, then (L%, n) is called an in-
re

duced L-fuzzy topological space, where o7.(A) = {z|A(z) £ r}. If n(A) =1
for all A € L, where A is the constant function from X to L, then (LX,n)
is called a stratified L-fuzzy topological space.

Definition 1.4 (L = [0, 1]). Let (LX,n) be an L-fuzzy topological space
on X.

(1) Define [] : 2% — [0,1] by [7](U) = n(1y). [n) is called the fuzzifying
background space of (L%, 7).

(2) Define ¢, : 2% — [0,1] by 6y (U) = sup sup{n(B)|B € LX,0(B) =
reP(L)
U} for U € P(X). Then ¢, is the subbase of one fuzzifying topology and
denote this fuzzifying topology by (7).

Lemma 1.5Y (L = [0,1]). Let (X,7) be a fuzzifying topological spaces.
Then w(7) : LX — [0,1] defined by w(7)(A) = iB(fL)T(O'T<A)) for A e LX
re

is an L-fuzzy topology on X.

Definition 1.6119. Let I' be the class of fuzzifying topological spaces. A
fuzzy unary predicate I € F(I"), called fuzzy connection, is given as follows:

I(X,7):==BU0)EV)(SU,V)ANU £0)AN(C#D)ANUVV =X)),
ie.,

( [I)(Xv T =1—=Vuvzs, vww=x SU. V) =1 = Vyepx)-10.x3 TU) A
T(U°),

2. L-fuzzy connectivity

Definition 2.1. Let X denote all L-fuzzy topological spaces. A fuzzy
unary predicate Con € F (), called L-fuzzy connection, is given as follows:

Con(LX,n) =
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~(3B)EC)((B € n) A (C €n) AN (B # 0x) A (C # 0x) AN (BVC =
1x) A (BAC = 0x)),

Hence
[Con(L* ] =1~ "\ a(B)Ay(C),
(B,C)eD
where D = {(B,C) € LXxLX| B # 0x, C # 0x, BVC = 1x and BAC =
Ox}.
The true value of Con(L*,n) can be interperted as the degree to which
(L, n) is L-fuzzy connected.

Remark 2.2. It is easy to check that [Con(LX,n)] = 1— V(B,cyep N(B) A
7(C"). In Definition 2.1, if 5 is an Chang L-topology , then this definition
is just the connectivity in [6]. When L = {0, 1}, Definition 2.1 will reduces
to Defintion 1.6.

Rodabaugh [7] introduced a kind of connectivity in L-topological spaces.
Let (L%, n) be an L-fuzzy topological space. If we generalized Rodabaugh’s
connectivity for the L-Ftop setting as follows:

RCon(L*,n) :=
~(3B)EC)(B € n) A(C € n) A(B # 0x) A (C #0x)A(BVC >
Ox) AN (BAC =0x)),

ie.,

[RCon(L*,n)]=1- \/ n(B)An(C),
(B,C)eDr

where Dg = {(B,C) € LX x LX| B#0x, C #0x, BV C > Oy and B A
C =0x}.

From the generalization above, it is easy to check that = RCon(LX,n) —
Con(L¥,n). We now see an example.

Example 2.3. Let X = {z,y} and L = [0,1]. Define B by B(z) =
and B(y) = 0, and define C by C(y) = & and C(z) = 0, respectively. Let
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n: LX — [0,1] be defined as follows:

17 AG{OXa 1X7 %}a
’I’](A) = %7 A S {B7 C}?
0, others.

Then 7 is an L-fuzzy topology on X. It is easy to verify that
[RCon(LX,n)] = 1/2 and [Con(LX,n)] = 1.

Theorem 2.4. Let (L*,n) be an L-fuzzy topological space. Then we
have = Con(LX,n) — I(X,[n]). Furthermore, if 1 € M(L), then |
Con(L¥,n) < I(X, [n)).

Proof. It needs to prove [Con(LX,n)] < [[(X,[n])], i.e., V(B,cyep N(B) A
1(C) = Vyepx)—o.xyMU) Al(U). Let U € P(X) — {0, X}. Then
ly V1pe = 1x and 1y A 1ye = O0x. From the definition of [n], we have

M(U) Al(U°) =n(ly) An(lue) < \/  n(B) An(C).
(B,C)eD

Therefore, Vyepx)—qo,.x3 [M(U) A nl(U°) <V (p,cyep 1(B) An(C).

In order to prove [Con(L¥,n)] = [I(X,[n])], it suffices to show that
[Con(LX,n)] > [I(X,[n])]- This is to say
ViscreM(B) A1(0) < Vuepix)—oxy ) A B(U9). Let (B,C) € D.
Since 1 € M(L), we can get that B = lgupps and C' = lsuppc. Hence
suppB N suppC = @ and suppB U suppC = X. Therefore, n(B) An(C) =
n(1supps) An(Lsuppc) = [n](suppB)A[0](suppC) < Vyepx)—fo,x3 M (U)A
(U€), as desired.

Theorem 2.5. Let (L~,n) be an L-fuzzy topological space. If 1 € M(L),
then = I(X,(n)) — Con(L~,n).

Proof. This can be obtained by [n] < ¢(n) and Theorem 2.4.

Corollary 2.6. Let (X, 7) be a fuzzifying topological space. If 1 € M(L),
then = Con(LX,w(T)) « I(X,T).
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Remark 2.7. In particular, if L is the unit interval [0, 1], then we have
= Con([0,1]%,n) < I(X, [1));

Con ([0,1]%,w(7)) « I(X,7); I(X,1(n)) — Con([0,1]%,n).

If 1 ¢ M(L), Theorem 2.4, 2.5 and Corollary 2.6. are not necessary
valid. Now we see an example.

Example 2.8. Let L = {0,a,b,1} be the diamond lattice, i.e, a V b = 1,
aANb=0,ad =0band bV = a, and let X be any nonempty set. Define
7:2%X —10,1] by

_J L Ue{0,X},
T(U) = { 0, others.

It is easy to verify that

1, Aec{0x,1x,a,b},
w(r)(4) = { 0 {ofher)s(. }

where @ and b denote the constant mapping from X to L taking the value
a and b, respectively. We know that a Ab = 0x and a Vb = 1x. Hence
[Con(LX,w(7))] =0, but [[(X,7)] = 1.

Theorem 2.9. If f : (LX,n) — (LY,6) is a continuous mapping, then
= Con(LX,n) — Con(LY ).

Proof. It suffices to show [Con(L¥,n)] < [Con(LY,§)], i.e., Va,B)epr MAA
n(B) = V(c,pyep, 0(C) AS(D). Let (C,D) € Dy and define A* = f77(C)
and B* = f; (D). Then we have (A*, B*) € Dy. Since f : (L%,n) —
(LY, ) is continuous, §(C) < n(A*) and §(D) < n(B*). Therefore, 5(C) A
6(D) < n(A*) An(B*) < V(4 pyepy 1(A) An(B). Hence V(4 pyep, 1(A) A
n(B) = V(c.p)epy, 0(C) N S(D), as desired.

Corollary 2.10. If f : (LX,n) — (LY,§) is a homeomorphism, then
= Con(LX,n) « Con(LY,6).
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Corollary 2.11. Let {(LXt,n;)}ter be a family of L-fuzzy topological
spaces and (L%, 7) be the product space of {(LXt,1;)}+er. Then

= Con(LX,n) — (Vt € T)(Con(LXt,n,)).

Example 2.12. We consider the I-fuzzy unit interval I(I) in I-topological
spaces. For details about I(I), please refer to [6]. It can be also regarded
as I-fuzzy topology according to the characteristic function, i.e.,

o -{ 3 451

The readers can easily check [Con (I, I(I))] = 1.

3. K. Fan’s theorem

As is well know, in L-topology, there is a theorem, named K. Fan’s
theorem, which describes connectivity in a geometric manner. According
to K. Fan’s theorem, a Chang L-topological space (L~ ) is connected if
and only if Vf : M(L¥X) — L with the property that f(e) is a quasi-
coincident neighborhood of e for all e € M (LX), there is a finite subset
{e1,€2,....,en} € M(LX) such that

e1 =a, e, =band f(e;) A f(ei41) #0x, i =1,2,...n—1

whenever a,b € M (LX) are fixed. In this section, we will generalize K.
Fan’s theorem to L-fuzzy topology. At first, we introduce some definitions.

Definition 3.1. Let (LX,n) be an L-fuzzy topological space and let =
denote all mappings from M(L¥X) to LX. A unary predicate M € F(E),
called fuzzy quasi-coincident neighborhood map, is defined as follows:

VfeE, M(f):= (Ve e M(L¥))(f(e) € Qo).

Intuitively, the degree to which f is a fuzzy quasi-coincident neighborhood
map is

M= N\ Qelf(e)).

eeM (LX)
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Definition 3.2. (1) Let (LX,n) be an L-fuzzy topological space. A unary
predicate P € F(M (LX) x M(LX)), called L-fuzzy point-connection, is
defined as follows:

P(a,b) := (Vf)(M(f) — ,
)33{61,62, v ent © M(LY)((e1 = a)A(en = )ANZT T (fled) Af(eipr) #
Ox)).

This is to say the degree to which a and b are connective is

i=n—1

. e1=a,en=b
[P(a,b)] = A\ min{1,1 = [M(f)]+"sup A [f(e) A fleirr) # 0x]},
feg {27 =1
where {e;}:=7 = {e1, ez, ...,en} C M(LY).
(2) A unary predicate K € F(X), called K. Fan connection, is defined
as follows:
K(L*,n) := (Y(a,b) € M(L¥) x M(L¥))(P(a,b)),
i.e., the degree to which (LX,n) is K. Fan connection is

[K(L¥,n)] = A [P(a,b)].
(a,b)EM (LX) x M (LX)

Theorem 3.3 (K. Fan’s theorem). For any (L~ 7)) € &, = K(L*,n) <
Con(LX,n).

Proof. According to Lukasiewicz logic, we need to show the truth value
equality: [K(LX,n)] = [Con(L*X,n)]. At first, we want to show [K (LX,n)]
[Con(LX,n)]. Let a > [Con(LX,n)]. By the definition of [Con(L¥,n)],
there exists (B,C) € D such that 1 —n(B) An(C) < a, e, n(B) >1—«
and 7(C) > 1 — a. Define fo: M (LX) — L¥ as follows:

B, e<C(,
fo(e) = { 07 e S B/‘

IN

Then we have

Qc(fole)) =

v
= —N—
I 3
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Hence [M(fo)] = /\eeM(LX)Qe(fO(G)) >1—a,ie, 1—[M(fo)] < a.
Since B’ # 0x and C' # Oy, we can take a € M (LX) and b € M(L¥X)
such that ¢ < B’ and b < (. Since Sup‘{af}‘f’:@f:b Agi?_l[fo(ei) A foleis1) #

ifi=1
0x] € {0,1}, we can assert that

i=n—1
e1=a,en=b

sup A [fole) A foleira) # 0x) =0.

{27 i=1

In fact, let {e1, ez, ...,e,} € M (LX) be any finite set with the property
e1 = a and e, = b, and let 79 = max{i < n|e; < B'}.

Then we have ig < n—1 and e;,+1 < C’. By the definition of fj, we have
fo(eio) = (C and f0(6i0+1) = B. Hence fo(eio) A f()(ez'o_;,_l) =CAB = 0.
Thus [fo(ei,) A fo(€ig+1) # 0x] = 0. Therefore,

i=n—1
e1=a,en=b

sup A\ [folei) A foleirr) # 0x] =0,

{e}iZ0 =1

as desired. So

KLY, )] = A [P(c,d)] < [P(a,b)]
(e,d)eM (LX)x M (LX)
—aey— i=n—1
= A min{l,1— [M(F)]+ "S5 A [fle) A flesn) # 0x]}

fe= {ea}iZy =1

i=n—1
e;=a,en=b

< min{1,1—[M(fo)]+ sup A [foles) A fo(eir1) # 0x]}

{e}iZ0 =1
= 1-[M(fo)] <o

We complete the proof of [K (L~,n)] < [Con(L¥,n)] from the arbitrari-
ness of a.

Secondly, we prove that [K(L*X,n)] > [Con(LX,n)]. If [K(LX,n)] =1,
then [K(L¥X,n)] > [Con(LX,n)] is obvious. We assume that [K(LX,n)] <
1. Let [K(L¥,n)] < a < 1. Then there exist (a,b) € M (LX) x M(L*) and
fo: M(L¥X) — L such that

1=n—1
min{1,1— [M(f)] + "5 A [foler) A folessr) # 0x]} < a

{e}iZr =1
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This is to say that

1=n—1
=a, n:b
1—[M(fo)] + el{ 56{;% /\ [fo(es) A foleir1) # 0x] < a
eiZT =1
Hence we have
i=n—1

GIZS%%:b N olei) A foleirr) # 0x] =0

{}iZ7 =1

and 1 — [M(fo)] < a. In the following, we will call ¢,d € M(LX) jointed
by fo if

i=n—1
e1=c,en=d

sup A [fo(e:) A foleiy1) # 0x] = 1.

{e}iZ0 =1

Obviously, a and b are not jointed by fo. Now we set

B = {e € M(L¥)| a and e can be jointed by fo}

and
C = {e € M(L¥)| a and e can not be jointed by fo}.

Let B =\, peand C =\/ cce. It is obvious that a < B, b < C and
BV C =1x. We can also assert that B A C = 0x. In fact, if BAC # 0x,
take z € M(LX) such that z < BAC. Clearly, z < B and z < C. Since
1= [M(fo)] < «, ie, [M(fo)l = Acenm(rx)Qe(fole)) > 1 — a, we have
Q:(fo(z)) > 1 —a > 0. Therefore, from Lemma 1.2 (2), we have zqfo(z),
e, 2 Z (fol2))

Hence B £ (fo(z))’. Then there exists d € B such that d £ (fo(z))".
By d £ (fo(d))’, we obtain d £ (fo(2))" V (fo(d))". Hence fo(d) A fo(z) #
Ox. Thus, we can get a and z can be jointed by fp since d and a can
be jointed by fo. Similarly, since z < C, there exists m € C such that
m £ (fo(2)) V (fo(m)). Then fo(z) A fo(m) # 0x. Therefore, m and z
can be jointed by fy. Thus m and a can be jointed by fy since z and a can
be jointed by fo. Therefore, m € B. This is a contradiction to m € C. So
B AC =0y, as desired.

For B and C defined above, we want to prove n(B’) > 1 — « and
n(C’") > 1—a. If not, then n(B’) < 1—a or n(C’) < 1—a. For convenience,
we assume that n(B’) < 1 — a. From Lemma 1.2 (5), we have n(B’) =
Aegpr @e(B') < 1 — . Then there exists e € M(L™) such that eqB’ and
Q.(B') < 1— . Since Q¢(fo(e)) > 1 — a, we know that fo(e) £ B, i.e.,
B £ (fole))"
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Hence there exists z € B such that z £ (fo(e)). Moreover z £
(fo(e))" Vv (fo(2)). Thus e and a can be jointed by fy. Therefore, e < B.
This is contradict to egB’. So n(B’) > 1 — «a and n(C’) > 1 — «, ie.,
n(B") An(C") > 1 — a. Hence [Con(LX,n)] < a. From the arbitrariness of
a, we have [K(LX,n)] > [Con(LX,n)]. Thus the conclusion.

Question 3.4. In Theorem 2.4-Remark 2.7, we study some relation-
ships on between Con(LX,7n) and I(X,7). We do not know whether there
are some relationships between K (L~ ,7) defined in this paper and K (X, 7)
defined in [2] and we leave it as an open question.

4. Conclusions

In this paper, we offer an application of Lukasiewicz logic to L-fuzzy
topology. We introduce generalized connectivity in L-fuzzy topological
spaces and prove K.Fan’s theorem. One thing we want to point out that L-
fuzzy connectivity defined in this paper is for the whole L-fuzzy topological
space not for an arbitray fuzzy subsets. The K. Fan theorem gives us one
approach to difine generalized connectivity for an arbitray fuzzy subsets in
L-fuzzy topological space.

Acknowledgements

The authors would like to thank the anonymous referees for their useful
comments and valuable suggestions.

References
[1] C. L. Chang, Fuzzy topological spaces, J.Math.Anal.Appl. 24, pp. 182—
193, (1968).

[2] J. Fang, Y. Yue, K. Fan’s theorem in fuzzifying topology, Information
Sciences, 162, pp. 139-146, (2004).

[3] J. Fang, I-FTOP is isomorphic to I-FQN and I-AITOP, Fuzzy Sets
and Systems 147, pp. 317-325, (2004).



Generalized connectivity 203

[4] U. Hohle, Uppersemicontinuous fuzzy sets and applications, J. Math.
Anal. Appl. 78, pp. 659-673, (1980).

[5] T. Kubiak, On fuzzy topologies (PhD Thesis, Adam Mickiewicz, Poz-
nan (Poland), (1985).

[6] Y. M. Liu, M. K. Luo, Fuzzy Topology, World Scientific Publishing
Co.Pte.Ltd, Singapore, (1997).

[7] S.E. Rodabaugh, Connectivity and the L-fuzzy unit interval, Rocky
Mount. J. Math 12(1), pp. 113-121, (1982).

8] A. P. Sostak, on a fuzzy topological structure, Rendiconti Circolo
Matematico Palermo (Suppl. Ser. II) 11, pp. 89-103, (1985).

[9] M. Ying, A new approach to fuzzy topology (I), Fuzzy Sets and Systems
39, pp. 303-321, (1991).

[10] M. Ying, A new approach to fuzzy topology (II), Fuzzy Sets and Sys-
tems 47, pp. 221-232, (1992).

[11] Y. Yue, J. Fang, Generated I-fuzzy topological spaces, Fuzzy Sets and
Systems, 154, pp. 103-117, (2005).

Yueli Yue

Department of Mathematics
Ocean University of China
Qingdao, 266071,

P. R. China

e-mail : yueliyue@163.com

and

Jinming Fang

Department of Mathematics
Ocean University of China
Qingdao, 266071,

P. R. China

e-mail : jinming-fang@163.com





