Proyecciones Journal of Mathematics Vol. 25, N^o 2, pp. 191-203, August 2006. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172006000200005

GENERALIZED CONNECTIVITY *

YUELI YUE and JINMING FANG OCEAN UNIVERSITY OF CHINA, CHINA

Received : November 2005. Accepted : April 2006

Abstract

In this paper, we introduce generalized connectivity in L-fuzzy topological spaces by Lukasiewicz logic and prove K. Fan's theorem.

Key words: *Lukasiewicz logic; L-fuzzy topology; quasi-coincident neighborhood system.*

^{*}This work is supported by Natural Science Foundation of China

1. 1. Introduction and Preliminaries

Since Chang [1] introduced fuzzy theory into topology, many authors have discussed various aspects of fuzzy topology. In a Chang *I*-topology, the open sets were fuzzy, but the topology comprising those open sets was a crisp subset of the *I*-powerset I^X . On the other hand, fuzzification of openness was first initiated by Höhle [4] in 1980 and later developed to *L*-subsets of L^X independently by Kubiak [5] and Šostak [8] in 1985. In 1991, from a logical point of view, Ying [9] studied Höhle's topology and called it fuzzifying topology. In [3], Fang established fuzzy quasi-coincident neighborhood systems in *I*-fuzzy topological spaces.

Connectivity is an essential part of fuzzy topology, on which a lot of work has been done. In the framework of fuzzifying topologies, Ying [10] introduced connectivity and Fang [2] proved K. Fan's theorem. Considering the completeness and usefulness of theory of *L*-fuzzy topologies, in this paper, we will introduce connectivity in *L*-fuzzy topological spaces and give K. Fan's theorem.

Throughout this paper, X is a nonempty set and L is a completely distributive lattice with an order-reversing involusion ' on it, and with a smallest element 0 and a largest element 1 ($0 \neq 1$). Obviously, L^X —all mappings from X to L—is also a completely distributive lattice. suppA is the support of $A \in L^X$ and 1_U denotes the characteristic function of $U \in 2^X$, where 2^X is the powerset of X. An element $a \in L$ is said to be coprime (resp., prime) if $a \leq b \lor c$ (resp., $a \geq b \land c$) implies that $a \leq b$ or $a \leq c$ (resp., $a \geq b$ or $a \geq c$). The set of all coprimes (resp., primes) of L is denoted by M(L)(resp., P(L)).

Firstly, we display the Łukasiewicz logic and corresponding set-theoretical notations used in this paper. For any formula ϕ , the symbol $[\phi]$ means the truth value of ϕ and this truth value is in the unit interval [0, 1]. A formula ϕ is valid, we write $\models \phi$, if and only if $[\phi] = 1$ for every interpretation.

(1) $[\phi \land \psi] := \min\{[\phi], [\psi]\}; [\phi \to \psi] := \min\{1, 1 - [\phi] + [\psi]\}.$

(2) If X is the universe of discourse, then $[\forall x \in X\phi(x)] := \inf_{x \in X} [\phi(x)].$

(3) $[\exists x \in X\phi(x)] := [\neg(\forall x \in X\neg\phi(x))] = \sup_{x \in X} [\phi(x)].$

- (4) $[\neg \phi] := [\phi \to 0] = 1 [\phi].$
- (5) $[\phi \leftrightarrow \psi] := [\phi \to \psi] \land [\psi \to \phi].$

Secondly, we give some definitions and results in L-fuzzy topological spaces.

Definition 1.1^[5,8]. An *L*-fuzzy topology is a map $\eta : L^X \to [0,1]$ such that

(FCT1) $\eta(1) = \eta(0) = 1$; (FCT2) $\eta(A \wedge B) \ge \eta(A) \wedge \eta(B)$ for all $A, B \in L^X$; (FCT3) $\eta(\bigvee_{j \in J} A_j) \ge \bigwedge_{j \in J} \eta(A_j)$ for every family $\{A_j | j \in J\} \subseteq L^X$.

If η is an *L*-fuzzy topology on *X*, then we say the pair (L^X, η) is an *L*-fuzzy topological space (*L*-Ftop, for short). The value $\eta(A)$ can be interpreted as the degree of openness of $A \in L^X$. A continuous mapping between two *L*-Ftops (L^X, η) and (L^Y, δ) is a mapping $f : X \to Y$ such that $\eta(f_L^{\leftarrow}(B)) \geq \delta(B)$ for all $B \in L^Y$, where $f_L^{\leftarrow} : L^Y \to L^X$ is defined by $f_L^{\leftarrow}(B)(x) = B(f(x))$. $f : (L^X, \eta) \to (L^Y, \delta)$ is called a homeomorphism if and only if *f* is bijective and both *f* and f^{-1} are continuous.

Suppose that $\eta: L^X \to [0,1]$ is an *L*-fuzzy topology. Let $Q_e^{\eta}: L^X \to [0,1]$ be defined as follows:

$$Q_e^{\eta}(A) = \begin{cases} \bigvee_{eqB \le A} \eta(B), & eqA, \\ 0, & e\neg qA. \end{cases}$$

for $e \in M(L^X)$ and $A \in L^X$, where eqA denotes $e \not\leq A'$. When $e \in M(L^X)$, we know that there exist $x \in X$ and $\lambda \in M(L)$ such that $e = x_\lambda$, where $x_\lambda \in L^X$ is defined by

$$x_{\lambda}(y) = \begin{cases} \lambda, & y = x, \\ 0, & \text{others.} \end{cases}$$

Hence, $e \not\leq A'$ means $x_{\lambda} \not\leq A'$, this is to say $\lambda \not\leq A'(x) = (A(x))'$. The set $Q = \{Q_e^{\eta} | e \in M(L^X)\}$ is called the induced fuzzy quasi-coincident neighborhood system by η . The value $Q_e^{\eta}(A)$ can be interpreted as the degree to which A is a quasi-coincident neighborhood of e. If no confusion arise, we omit the superscript η of Q_e^{η} .

Lemma 1.2^[3] (L = [0, 1]). $Q = \{Q_e | e \in M(L^X)\}$ defined above satisfied the following results:

(1) $Q_e(1_X) = 1$ and $Q_e(0_X) = 0$; (2) $Q_e(A) > 0 \Rightarrow eqA$; (3) $Q_e(A \land B) = Q_e(A) \land Q_e(B)$; (4) $Q_e(A) = \bigvee_{eqB \le A} \bigwedge_{aqB} Q_a(B)$;

(5)
$$\eta(A) = \bigwedge_{eqA} Q_e(A).$$

Definition 1.3^[11] (L = [0, 1]). Let (L^X, η) be an *L*-fuzzy topological space . If $\eta(A) = \inf_{r \in P(L)} \eta(1_{\sigma_r(A)})$ for all $A \in L^X$, then (L^X, η) is called an induced *L*-fuzzy topological space, where $\sigma_r(A) = \{x | A(x) \leq r\}$. If $\eta(\bar{\lambda}) = 1$ for all $\lambda \in L$, where $\bar{\lambda}$ is the constant function from *X* to *L*, then (L^X, η) is called a stratified *L*-fuzzy topological space.

Definition 1.4^[11] (L = [0, 1]). Let (L^X, η) be an *L*-fuzzy topological space on *X*.

(1) Define $[\eta]: 2^X \to [0, 1]$ by $[\eta](U) = \eta(1_U)$. $[\eta]$ is called the fuzzifying background space of (L^X, η) .

(2) Define $\phi_{\eta} : 2^X \to [0,1]$ by $\phi_{\eta}(U) = \sup_{r \in P(L)} \sup\{\eta(B) | B \in L^X, \sigma_r(B) =$

U for $U \in P(X)$. Then ϕ_{η} is the subbase of one fuzzifying topology and denote this fuzzifying topology by $\iota(\eta)$.

Lemma 1.5^[11] (L = [0, 1]). Let (X, τ) be a fuzzifying topological spaces. Then $\omega(\tau) : L^X \to [0, 1]$ defined by $\omega(\tau)(A) = \inf_{r \in P(L)} \tau(\sigma_r(A))$ for $A \in L^X$ is an L-fuzzy topology on X.

Definition 1.6^[10]. Let Γ be the class of fuzzifying topological spaces. A fuzzy unary predicate $I \in \mathcal{F}(\Gamma)$, called fuzzy connection, is given as follows:

 $I(X,\tau) := \neg(\exists U)(\exists V)(S(U,V) \land (U \neq \emptyset) \land (C \neq \emptyset) \land (U \lor V = X)),$ i.e., $[I(X,\tau)] = 1 - \bigvee_{UV \neq \emptyset, \ U \lor V = X} S(U,V) = 1 - \bigvee_{U \in \mathcal{P}(X) - \{\emptyset,X\}} \tau(U) \land$

2. L-fuzzy connectivity

Definition 2.1. Let Σ denote all *L*-fuzzy topological spaces. A fuzzy unary predicate $Con \in \mathcal{F}(\Sigma)$, called *L*-fuzzy connection, is given as follows:

$$Con(L^X, \eta) :=$$

 $\tau(U^c),$

 $\neg(\exists B)(\exists C)((B \in \eta) \land (C \in \eta) \land (B \neq 0_X) \land (C \neq 0_X) \land (B \lor C = 1_X) \land (B \land C = 0_X)),$

Hence

$$[Con(L^X,\eta)] = 1 - \bigvee_{(B,C)\in\mathcal{D}} \eta(B) \land \eta(C),$$

where $\mathcal{D} = \{(B, C) \in L^X \times L^X | B \neq 0_X, C \neq 0_X, B \lor C = 1_X \text{ and } B \land C = 0_X \}.$

The true value of $Con(L^X, \eta)$ can be interpreted as the degree to which (L^X, η) is *L*-fuzzy connected.

Remark 2.2. It is easy to check that $[Con(L^X, \eta)] = 1 - \bigvee_{(B,C) \in \mathcal{D}} \eta(B') \land \eta(C')$. In Definition 2.1, if η is an Chang *L*-topology, then this definition is just the connectivity in [6]. When $L = \{0, 1\}$, Definition 2.1 will reduces to Definition 1.6.

Rodabaugh [7] introduced a kind of connectivity in *L*-topological spaces. Let (L^X, η) be an *L*-fuzzy topological space. If we generalized Rodabaugh's connectivity for the *L*-Ftop setting as follows:

 $\begin{aligned} RCon(L^X,\eta) &:= \\ \neg(\exists B)(\exists C)((B \in \eta) \land (C \in \eta) \land (B \neq 0_X) \land (C \neq 0_X) \land (B \lor C > 0_X) \land (B \land C = 0_X)), \end{aligned}$

i.e.,

$$[RCon(L^X,\eta)] = 1 - \bigvee_{(B,C)\in\mathcal{D}_{\mathcal{R}}} \eta(B) \wedge \eta(C),$$

where $\mathcal{D}_{\mathcal{R}} = \{(B, C) \in L^X \times L^X | B \neq 0_X, C \neq 0_X, B \lor C > 0_X \text{ and } B \land C = 0_X \}.$

From the generalization above, it is easy to check that $\models RCon(L^X, \eta) \rightarrow Con(L^X, \eta)$. We now see an example.

Example 2.3. Let $X = \{x, y\}$ and L = [0, 1]. Define B by $B(x) = \frac{1}{2}$ and B(y) = 0, and define C by $C(y) = \frac{1}{2}$ and C(x) = 0, respectively. Let

 $\eta: L^X \to [0,1]$ be defined as follows:

$$\eta(A) = \begin{cases} 1, & A \in \{0_X, \ 1_X, \ \frac{1}{2}\}, \\ \frac{1}{2}, & A \in \{B, \ C\}, \\ 0, & \text{others.} \end{cases}$$

Then η is an *L*-fuzzy topology on *X*. It is easy to verify that $[RCon(L^X, \eta)] = 1/2$ and $[Con(L^X, \eta)] = 1$.

Theorem 2.4. Let (L^X, η) be an *L*-fuzzy topological space. Then we have $\models Con(L^X, \eta) \rightarrow I(X, [\eta])$. Furthermore, if $1 \in M(L)$, then $\models Con(L^X, \eta) \leftrightarrow I(X, [\eta])$.

Proof. It needs to prove $[Con(L^X, \eta)] \leq [I(X, [\eta])]$, i.e., $\bigvee_{(B,C)\in\mathcal{D}} \eta(B) \wedge \eta(C) \geq \bigvee_{U\in\mathcal{P}(X)-\{\emptyset,X\}}[\eta](U) \wedge [\eta](U^c)$. Let $U \in \mathcal{P}(X) - \{\emptyset,X\}$. Then $1_U \vee 1_{U^c} = 1_X$ and $1_U \wedge 1_{U^c} = 0_X$. From the definition of $[\eta]$, we have

$$[\eta](U) \land [\eta](U^c) = \eta(1_U) \land \eta(1_{U^c}) \le \bigvee_{(B,C) \in \mathcal{D}} \eta(B) \land \eta(C).$$

Therefore, $\bigvee_{U \in \mathcal{P}(X) - \{\emptyset, X\}} [\eta](U) \land [\eta](U^c) \leq \bigvee_{(B,C) \in \mathcal{D}} \eta(B) \land \eta(C).$

In order to prove $[Con(L^X, \eta)] = [I(X, [\eta])]$, it suffices to show that $[Con(L^X, \eta)] \ge [I(X, [\eta])]$. This is to say

 $\bigvee_{(B,C)\in\mathcal{D}}\eta(B)\wedge\eta(C)\leq\bigvee_{U\in\mathcal{P}(X)-\{\emptyset,X\}}[\eta](U)\wedge[\eta](U^c). \text{ Let } (B,C)\in\mathcal{D}.$ Since $1\in M(L)$, we can get that $B=1_{\mathrm{supp}B}$ and $C=1_{\mathrm{supp}C}.$ Hence $\mathrm{supp}B\cap\mathrm{supp}C=\emptyset$ and $\mathrm{supp}B\cup\mathrm{supp}C=X.$ Therefore, $\eta(B)\wedge\eta(C)=\eta(1_{\mathrm{supp}B})\wedge\eta(1_{\mathrm{supp}C})=[\eta](\mathrm{supp}B)\wedge[\eta](\mathrm{supp}C)\leq\bigvee_{U\in\mathcal{P}(X)-\{\emptyset,X\}}[\eta](U)\wedge[\eta](U^c)$, as desired.

Theorem 2.5. Let (L^X, η) be an *L*-fuzzy topological space. If $1 \in M(L)$, then $\models I(X, \iota(\eta)) \to Con(L^X, \eta)$.

Proof. This can be obtained by $[\eta] \leq \iota(\eta)$ and Theorem 2.4.

Corollary 2.6. Let (X, τ) be a fuzzifying topological space. If $1 \in M(L)$, then $\models Con(L^X, \omega(\tau)) \leftrightarrow I(X, \tau)$.

Remark 2.7. In particular, if L is the unit interval [0, 1], then we have

$$\models Con([0,1]^X,\eta) \leftrightarrow I(X,[\eta]);$$

n ([0,1]^X, $\omega(\tau)$) $\leftrightarrow I(X,\tau); I(X,\iota(\eta)) \rightarrow Con([0,1]^X,\eta).$

If $1 \notin M(L)$, Theorem 2.4, 2.5 and Corollary 2.6. are not necessary valid. Now we see an example.

Example 2.8. Let $L = \{0, a, b, 1\}$ be the diamond lattice, i.e, $a \lor b = 1$, $a \land b = 0$, a' = b and b' = a, and let X be any nonempty set. Define $\tau : 2^X \to [0, 1]$ by

$$\tau(U) = \begin{cases} 1, & U \in \{\emptyset, X\}, \\ 0, & \text{others.} \end{cases}$$

It is easy to verify that

Co

$$\omega(\tau)(A) = \begin{cases} 1, & A \in \{0_X, 1_X, \bar{a}, \bar{b}\}, \\ 0, & \text{others.} \end{cases}$$

where \bar{a} and \bar{b} denote the constant mapping from X to L taking the value a and b, respectively. We know that $\bar{a} \wedge \bar{b} = 0_X$ and $\bar{a} \vee \bar{b} = 1_X$. Hence $[Con(L^X, \omega(\tau))] = 0$, but $[I(X, \tau)] = 1$.

Theorem 2.9. If $f : (L^X, \eta) \to (L^Y, \delta)$ is a continuous mapping, then $\models Con(L^X, \eta) \to Con(L^Y, \delta).$

Proof. It suffices to show $[Con(L^X, \eta)] \leq [Con(L^Y, \delta)]$, i.e., $\bigvee_{(A,B)\in\mathcal{D}_X} \eta(A) \wedge \eta(B) \geq \bigvee_{(C,D)\in\mathcal{D}_Y} \delta(C) \wedge \delta(D)$. Let $(C,D)\in\mathcal{D}_Y$ and define $A^* = f_L^{\leftarrow}(C)$ and $B^* = f_L^{\leftarrow}(D)$. Then we have $(A^*, B^*) \in \mathcal{D}_X$. Since $f : (L^X, \eta) \to (L^Y, \delta)$ is continuous, $\delta(C) \leq \eta(A^*)$ and $\delta(D) \leq \eta(B^*)$. Therefore, $\delta(C) \wedge \delta(D) \leq \eta(A^*) \wedge \eta(B^*) \leq \bigvee_{(A,B)\in\mathcal{D}_X} \eta(A) \wedge \eta(B)$. Hence $\bigvee_{(A,B)\in\mathcal{D}_X} \eta(A) \wedge \eta(B) \geq \bigvee_{(C,D)\in\mathcal{D}_Y} \delta(C) \wedge \delta(D)$, as desired.

Corollary 2.10. If $f : (L^X, \eta) \to (L^Y, \delta)$ is a homeomorphism, then $\models Con(L^X, \eta) \leftrightarrow Con(L^Y, \delta).$

Corollary 2.11. Let $\{(L^{X_t}, \eta_t)\}_{t \in T}$ be a family of *L*-fuzzy topological spaces and (L^X, η) be the product space of $\{(L^{X_t}, \eta_t)\}_{t \in T}$. Then

$$\models Con(L^X, \eta) \to (\forall t \in T)(Con(L^{X_t}, \eta_t)).$$

Example 2.12. We consider the *I*-fuzzy unit interval I(I) in *I*-topological spaces. For details about I(I), please refer to [6]. It can be also regarded as *I*-fuzzy topology according to the characteristic function, i.e.,

$$I(I)(A) = \begin{cases} 1 & A \in I(I), \\ 0 & A \notin I(I). \end{cases}$$

The readers can easily check $[Con(I^X, I(I))] = 1.$

3. K. Fan's theorem

As is well know, in *L*-topology, there is a theorem, named K. Fan's theorem, which describes connectivity in a geometric manner. According to K. Fan's theorem, a Chang *L*-topological space (L^X, δ) is connected if and only if $\forall f : M(L^X) \to L^X$ with the property that f(e) is a quasi-coincident neighborhood of e for all $e \in M(L^X)$, there is a finite subset $\{e_1, e_2, ..., e_n\} \subseteq M(L^X)$ such that

$$e_1 = a, \ e_n = b \text{ and } f(e_i) \land f(e_{i+1}) \neq 0_X, \ i = 1, 2, ..., n-1$$

whenever $a, b \in M(L^X)$ are fixed. In this section, we will generalize K. Fan's theorem to L-fuzzy topology. At first, we introduce some definitions.

Definition 3.1. Let (L^X, η) be an *L*-fuzzy topological space and let Ξ denote all mappings from $M(L^X)$ to L^X . A unary predicate $M \in \mathcal{F}(\Xi)$, called fuzzy quasi-coincident neighborhood map, is defined as follows:

$$\forall f \in \Xi, \ M(f) := (\forall e \in M(L^X))(f(e) \in Q_e).$$

Intuitively, the degree to which f is a fuzzy quasi-coincident neighborhood map is

$$[M(f)] = \bigwedge_{e \in M(L^X)} Q_e(f(e)).$$

Definition 3.2. (1) Let (L^X, η) be an *L*-fuzzy topological space. A unary predicate $P \in \mathcal{F}(M(L^X) \times M(L^X))$, called *L*-fuzzy point-connection, is defined as follows:

$$P(a,b) := (\forall f)(M(f) \to (\exists \{e_1, e_2, ..., e_n\} \subseteq M(L^X)((e_1 = a) \land (e_n = b) \land \bigwedge_{i=1}^{i=n-1} (f(e_i) \land f(e_{i+1}) \neq 0_X)).$$

This is to say the degree to which a and b are connective is

$$[P(a,b)] = \bigwedge_{f \in \Xi} \min\{1, 1 - [M(f)] + \sup_{\substack{e_1 = a, e_n = b \\ \{e_i\}_{i=1}^{i=n}}} \bigwedge_{i=1}^{i=n-1} [f(e_i) \wedge f(e_{i+1}) \neq 0_X]\},$$

where $\{e_i\}_{i=1}^{i=n} = \{e_1, e_2, ..., e_n\} \subseteq M(L^X).$

(2) A unary predicate $K \in \mathcal{F}(\Sigma)$, called K. Fan connection, is defined as follows:

$$K(L^X,\eta) := (\forall (a,b) \in M(L^X) \times M(L^X))(P(a,b)),$$

i.e., the degree to which (L^X, η) is K. Fan connection is

$$K(L^X,\eta)] = \bigwedge_{(a,b)\in M(L^X)\times M(L^X)} [P(a,b)].$$

Theorem 3.3 (K. Fan's theorem). For any $(L^X, \eta) \in \Sigma$, $\models K(L^X, \eta) \leftrightarrow Con(L^X, \eta)$.

Proof. According to Łukasiewicz logic, we need to show the truth value equality: $[K(L^X, \eta)] = [Con(L^X, \eta)]$. At first, we want to show $[K(L^X, \eta)] \leq [Con(L^X, \eta)]$. Let $\alpha > [Con(L^X, \eta)]$. By the definition of $[Con(L^X, \eta)]$, there exists $(B, C) \in \mathcal{D}$ such that $1 - \eta(B) \land \eta(C) < \alpha$, i.e., $\eta(B) > 1 - \alpha$ and $\eta(C) > 1 - \alpha$. Define $f_0 : M(L^X) \to L^X$ as follows:

$$f_0(e) = \begin{cases} B, & e \le C', \\ C, & e \le B'. \end{cases}$$

Then we have

$$Q_e(f_0(e)) = \begin{cases} Q_e(B), & e \le C', \\ Q_e(C), & e \le B'. \end{cases}$$
$$\geq \begin{cases} \eta(B), & e \le C', \\ \eta(C), & e \le B'. \end{cases}$$
$$> 1 - \alpha$$

Hence $[M(f_0)] = \bigwedge_{e \in M(L^X)} Q_e(f_0(e)) \ge 1 - \alpha$, i.e., $1 - [M(f_0)] \le \alpha$. Since $B' \ne 0_X$ and $C' \ne 0_X$, we can take $a \in M(L^X)$ and $b \in M(L^X)$ such that $a \le B'$ and $b \le C'$. Since $\sup_{\substack{e_i \neq i=n \\ e_i \neq i=1}}^{e_1 = a, e_n = b} \bigwedge_{i=1}^{i=n-1} [f_0(e_i) \land f_0(e_{i+1}) \ne 0_X] \in \{0, 1\}$, we can assert that

$$\sum_{\substack{e_1=a,e_n=b\\ \sup\\ \{e_i\}_{i=1}^{i=n}}}^{e_1=a,e_n=b} \bigwedge_{i=1}^{i=n-1} [f_0(e_i) \wedge f_0(e_{i+1}) \neq 0_X] = 0.$$

In fact, let $\{e_1, e_2, ..., e_n\} \subseteq M(L^X)$ be any finite set with the property $e_1 = a$ and $e_n = b$, and let $i_0 = \max\{i \leq n | e_i \leq B'\}$.

Then we have $i_0 \leq n-1$ and $e_{i_0+1} \leq C'$. By the definition of f_0 , we have $f_0(e_{i_0}) = C$ and $f_0(e_{i_0+1}) = B$. Hence $f_0(e_{i_0}) \wedge f_0(e_{i_0+1}) = C \wedge B = 0_X$. Thus $[f_0(e_{i_0}) \wedge f_0(e_{i_0+1}) \neq 0_X] = 0$. Therefore,

$$\sum_{\substack{e_1=a,e_n=b\\ \sup\\\{e_i\}_{i=1}^{i=n}}}^{e_1=a,e_n=b} \bigwedge_{i=1}^{i=n-1} [f_0(e_i) \wedge f_0(e_{i+1}) \neq 0_X] = 0$$

as desired. So

$$\begin{split} [K(L^X,\eta)] &= \bigwedge_{(c,d)\in M(L^X)\times M(L^X)} [P(c,d)] \leq [P(a,b)] \\ &= \bigwedge_{f\in\Xi} \min\{1,1-[M(f)] + \underset{\{e_i\}_{i=1}^{i=n}}{\overset{e_1=a,e_n=b}{\underset{i=1}{\overset{i=n-1}{\overset{i=n-1}{\overset{i=n}{\overset{i}{\atopi}{\overset{i=n}{\overset{i}{\overset{i=n}{\overset{i}{n}}\overset{i=n}{\overset{i}n}}\overset{i=n}{\overset{i}n}\overset{i=n}{\overset{i}n}}\overset{i=n}{\overset{i}n}}\overset{i=n}{\overset{i}n}\overset{i=n}{\overset{i}n}\overset{i=n}{\overset{i}n}}\overset{i=n}{\overset{i}n}\overset{i=n}{\overset{i}n}}}\overset{i=n$$

We complete the proof of $[K(L^X, \eta)] \leq [Con(L^X, \eta)]$ from the arbitrariness of α .

Secondly, we prove that $[K(L^X, \eta)] \ge [Con(L^X, \eta)]$. If $[K(L^X, \eta)] = 1$, then $[K(L^X, \eta)] \ge [Con(L^X, \eta)]$ is obvious. We assume that $[K(L^X, \eta)] < 1$. Let $[K(L^X, \eta)] < \alpha < 1$. Then there exist $(a, b) \in M(L^X) \times M(L^X)$ and $f_0 : M(L^X) \to L^X$ such that

$$\min\{1, 1 - [M(f)] + \sup_{\substack{e_1 = a, e_n = b \\ e_i\}_{i=1}^{i=n}}}^{e_1 = a, e_n = b} \bigwedge_{i=1}^{i=n-1} [f_0(e_i) \wedge f_0(e_{i+1}) \neq 0_X]\} < \alpha$$

This is to say that

$$1 - [M(f_0)] + \sum_{\substack{e_1 = a, e_n = b \\ i = 1}}^{e_1 = a, e_n = b} \bigwedge_{i=1}^{i=n-1} [f_0(e_i) \land f_0(e_{i+1}) \neq 0_X] < \alpha.$$

Hence we have

$$\sum_{\substack{e_1=a,e_n=b\\ \sup\\\{e_i\}_{i=1}^{i=n}}}^{i=n-1} [f_0(e_i) \wedge f_0(e_{i+1}) \neq 0_X] = 0$$

and $1 - [M(f_0)] < \alpha$. In the following, we will call $c, d \in M(L^X)$ jointed by f_0 if

$$\sum_{\substack{e_1=c,e_n=d\\ \sup\\ \{e_i\}_{i=1}^{i=n}}}^{i=n-1} [f_0(e_i) \wedge f_0(e_{i+1}) \neq 0_X] = 1.$$

Obviously, a and b are not jointed by f_0 . Now we set

$$\mathcal{B} = \{e \in M(L^X) | a \text{ and } e \text{ can be jointed by } f_0\}$$

and

 $C = \{e \in M(L^X) | a \text{ and } e \text{ can not be jointed by } f_0\}.$

Let $B = \bigvee_{e \in \mathcal{B}} e$ and $C = \bigvee_{e \in \mathcal{C}} e$. It is obvious that $a \leq B$, $b \leq C$ and $B \vee C = 1_X$. We can also assert that $B \wedge C = 0_X$. In fact, if $B \wedge C \neq 0_X$, take $z \in M(L^X)$ such that $z \leq B \wedge C$. Clearly, $z \leq B$ and $z \leq C$. Since $1 - [M(f_0)] < \alpha$, i.e., $[M(f_0)] = \bigwedge_{e \in M(L^X)} Q_e(f_0(e)) > 1 - \alpha$, we have $Q_z(f_0(z)) > 1 - \alpha > 0$. Therefore, from Lemma 1.2 (2), we have $zqf_0(z)$, i.e., $z \not\leq (f_0(z))'$.

Hence $B \not\leq (f_0(z))'$. Then there exists $d \in \mathcal{B}$ such that $d \not\leq (f_0(z))'$. By $d \not\leq (f_0(d))'$, we obtain $d \not\leq (f_0(z))' \vee (f_0(d))'$. Hence $f_0(d) \wedge f_0(z) \neq 0_X$. Thus, we can get a and z can be jointed by f_0 since d and a can be jointed by f_0 . Similarly, since $z \leq C$, there exists $m \in \mathcal{C}$ such that $m \not\leq (f_0(z))' \vee (f_0(m))'$. Then $f_0(z) \wedge f_0(m) \neq 0_X$. Therefore, m and z can be jointed by f_0 . Thus m and a can be jointed by f_0 since z and a can be jointed by f_0 . Thus m and a can be jointed by f_0 . Since $f_0(z) = 0_X$. Therefore, $m \in \mathcal{B}$. This is a contradiction to $m \in \mathcal{C}$. So $B \wedge C = 0_X$, as desired.

For *B* and *C* defined above, we want to prove $\eta(B') \geq 1 - \alpha$ and $\eta(C') \geq 1 - \alpha$. If not, then $\eta(B') < 1 - \alpha$ or $\eta(C') < 1 - \alpha$. For convenience, we assume that $\eta(B') < 1 - \alpha$. From Lemma 1.2 (5), we have $\eta(B') = \bigwedge_{eqB'} Q_e(B') < 1 - \alpha$. Then there exists $e \in M(L^X)$ such that eqB' and $Q_e(B') < 1 - \alpha$. Since $Q_e(f_0(e)) > 1 - \alpha$, we know that $f_0(e) \not\leq B'$, i.e., $B \not\leq (f_0(e))'$.

Hence there exists $z \in \mathcal{B}$ such that $z \not\leq (f_0(e))'$. Moreover $z \not\leq (f_0(e))' \vee (f_0(z))'$. Thus e and a can be jointed by f_0 . Therefore, $e \leq B$. This is contradict to eqB'. So $\eta(B') \geq 1 - \alpha$ and $\eta(C') \geq 1 - \alpha$, i.e., $\eta(B') \wedge \eta(C') \geq 1 - \alpha$. Hence $[Con(L^X, \eta)] \leq \alpha$. From the arbitrariness of α , we have $[K(L^X, \eta)] \geq [Con(L^X, \eta)]$. Thus the conclusion.

Question 3.4. In Theorem 2.4–Remark 2.7, we study some relationships on between $Con(L^X, \eta)$ and $I(X, \tau)$. We do not know whether there are some relationships between $K(L^X, \eta)$ defined in this paper and $K(X, \tau)$ defined in [2] and we leave it as an open question.

4. Conclusions

In this paper, we offer an application of Łukasiewicz logic to L-fuzzy topology. We introduce generalized connectivity in L-fuzzy topological spaces and prove K.Fan's theorem. One thing we want to point out that L-fuzzy connectivity defined in this paper is for the whole L-fuzzy topological space not for an arbitray fuzzy subsets. The K. Fan theorem gives us one approach to difine generalized connectivity for an arbitray fuzzy subsets in L-fuzzy topological space.

Acknowledgements

The authors would like to thank the anonymous referees for their useful comments and valuable suggestions.

References

- C. L. Chang, Fuzzy topological spaces, J.Math.Anal.Appl. 24, pp. 182– 193, (1968).
- [2] J. Fang, Y. Yue, K. Fan's theorem in fuzzifying topology, Information Sciences, 162, pp. 139-146, (2004).
- [3] J. Fang, *I*-FTOP is isomorphic to *I*-FQN and *I*-AITOP, Fuzzy Sets and Systems 147, pp. 317–325, (2004).

- [4] U. Höhle, Uppersemicontinuous fuzzy sets and applications, J. Math. Anal. Appl. 78, pp. 659–673, (1980).
- [5] T. Kubiak, On fuzzy topologies (PhD Thesis, Adam Mickiewicz, Poznan (Poland), (1985).
- [6] Y. M. Liu, M. K. Luo, Fuzzy Topology, World Scientific Publishing Co.Pte.Ltd, Singapore, (1997).
- [7] S.E. Rodabaugh, Connectivity and the *L*-fuzzy unit interval, Rocky Mount. J. Math 12(1), pp. 113-121, (1982).
- [8] A. P. Šostak, on a fuzzy topological structure, Rendiconti Circolo Matematico Palermo (Suppl. Ser. II) 11, pp. 89–103, (1985).
- [9] M. Ying, A new approach to fuzzy topology (I), Fuzzy Sets and Systems 39, pp. 303–321, (1991).
- [10] M. Ying, A new approach to fuzzy topology (II), Fuzzy Sets and Systems 47, pp. 221–232, (1992).
- [11] Y. Yue, J. Fang, Generated *I*-fuzzy topological spaces, Fuzzy Sets and Systems, 154, pp. 103-117, (2005).

Yueli Yue

Department of Mathematics Ocean University of China Qingdao, 266071, P. R. China e-mail : yueliyue@163.com

and

Jinming Fang

Department of Mathematics Ocean University of China Qingdao, 266071, P. R. China e-mail : jinming-fang@163.com