ON SYMMETRIES OF PQ-HYPERELLIPTIC RIEMANN SURFACES *

EWA TYSZKOWSKA
UNIVERSITY OF GDANSK, POLAND

Received: May 2006. Accepted : June 2006

Abstract

A symmetry of a Riemann surface X is an antiholomorphic involution ϕ. The species of ϕ is the integer εk, where k is the number of connected components in the set $\operatorname{Fix}(\phi)$ of fixed points of ϕ and $\varepsilon=-1$ if $X \backslash \operatorname{Fix}(\phi)$ is connected and $\varepsilon=1$ otherwise. A compact Riemann surface X of genus $g>1$ is said to be p-hyperelliptic if it admits a conformal involution ρ, called a p-hyperelliptic involution, for which X / ρ is an orbifold of genus p. Symmetries of p-hyperelliptic Riemann surfaces has been studied by Klein for $p=0$ and by Bujalance and Costa for $p>0$. Here we study the species of symmetries of so called pq-hyperelliptic surface defined as a Riemann surface which is p - and q-hyperelliptic simultaneously.

keywords : p-hyperelliptic Riemann surface, automorphisms of Riemann surface, fixed points of automorphism, symmetry

[^0]
1. Introduction

A symmetry of a Riemann surface X is an antiholomorphic involution ϕ. It is known that projective complex algebraic curves bijectively and functorially correspond to compact Riemann surfaces. Under this correspondence the fact that a surface X is symmetric means that the corresponding curve can be defined over the reals numbers. Furthermore the non-conjugate, in the group of all automorphisms of X, symmetries correspond to nonisomorphic, over the reals numbers, real curves called real forms. Finally if X has genus g then the set $\operatorname{Fix}(\phi)$ of fixed points of ϕ consists of k disjoint Jordan curves called ovals, where by the classical Harnack Theorem [4], k varies between 0 and $g+1$. This set is homeomorphic to a smooth projective real model of the corresponding curve. Let ε be the separability character of ϕ defined as $\varepsilon=-1$ if $X \backslash \operatorname{Fix}(\phi)$ is connected and $\varepsilon=1$ otherwise. A conjugate in $\mathrm{Aut}^{ \pm} X$ of ϕ is also a symmetry with the same k and ε. We define the species $\operatorname{sp}(\phi)$ of the real form represented by ϕ to be the integer εk.

A compact Riemann surface X of genus $g \geq 2$ is said to be p-hyperelliptic if X admits a conformal involution ρ, called a p-hyperelliptic involution, such that X / ρ is an orbifold of genus p. This notion has been introduced by H. Farkas and I. Kra in [3] where they also proved that for $g>4 p+1$, p-hyperelliptic involution is unique and central in the full automorphism group of X. In particular cases $p=0$ and $p=1, X$ are called hyperelliptic and elliptic-hyperelliptic Rieman sufaces respectively. Let ϕ be a symmetry commuting with p-hyperelliptic involution ρ. F.Klein in [5] studied the species of the symmetries ϕ and $\phi \rho$ in the hyperelliptic case. E.Bujalance and A.Costa [2] found all possible species of such pair in the general case $p \geq$ 0 . In particular they determined the symmetry types of any p-hyperelliptic Riemann surface of genus $g>4 p+1$. We show that their results can be applied for g in range $3 p+1<g \leq 4 p+1$, since in this case any symmetry and p-hyperelliptic involution commute if g is even while for odd g, except $g=3 p+2$ and $p \equiv 1$ (4), X always admits some conformal involution commuting with any symmetry. Moreover, for any g in this range, there exists a Riemann surface of genus g admitting exactly two p-hyperelliptic involutions whose product is $(g-2 p)$-hyperelliptic involution. We present an argumentation providing more detailed results concerning symmetry types of such surface. In particular we obtain the symmetry types of any p-hyperelliptic surface of genus g in range $4 p-2 \leq g \leq 4 p+1$.

Furthermore, we study the species of symmetries of so called
$p q$-hyperelliptic Riemann surface defined as a Riemann surface which is p and q-hyerelliptic simultaneously. In [7] we proved that for $q>p$, the genus g of such surface is bounded by $2 q-1 \leq g \leq 2 p+2 q+1$ and for any g in this range, there exists a Riemann surface of genus g admitting commuting p - and q-hyperelliptic involutions δ and ρ whose product is t-hyperelliptic involution if and only if $t=(g-p-q+2 k)$ for some integer k in range $0 \leq k \leq(2 p+2 q+1-g) / 4$. Moreover, we justified that p - and q-hyperelliptic involutions of a Riemann surface of genus $g>3 q+1$ are central and unique in the full automorphism group and so they commute with any symmetry ϕ. We study the possible species of symmetries $\phi, \phi \rho, \phi \delta$ and $\phi \rho \delta$ in the case when the product $\delta \rho$ is $(g-p-q)$-hyperelliptic involution. In particular we determine the symmetry types of any $p q$-hyperelliptic Riemann surface of genus g in range $2 p+2 q-2 \leq g \leq 2 p+2 q+1$.

2. Preliminaries

We shall approach the problem using Riemann uniformization theorem by which each compact Riemann surface X of genus $g \geq 2$ can be represented as the orbit space of the hyperbolic plane \mathcal{H} under the action of some Fuchsian surface group Γ. Furthermore a group of automorphisms (including possibly anticonformal automorphisms) of a surface $X=\mathcal{H} / \Gamma$ can be represented as Λ / Γ for an NEC group Λ containing Γ as a normal subgroup. An NEC group is a discrete subgroup of the group of isometries \mathcal{G} of \mathcal{H} with compact quotient space, including those reversing orientation. Let \mathcal{G}^{+}denote a subgroup of \mathcal{G} consisting of orientation-preserving isometries. Then an NEC group is called a Fuchsian group if it is contained in \mathcal{G}^{+} and a proper NEC group otherwise. Macbeath and Wilkie associated to every NEC group a signature which determines its algebraic and geometric structure. It has the form

$$
\begin{equation*}
\left(g ; \pm ;\left[m_{1}, \ldots, m_{r}\right] ;\left\{\left(n_{11}, \ldots, n_{1 s_{1}}\right), \ldots,\left(n_{k 1}, \ldots, n_{k s_{k}}\right)\right\}\right) \tag{2.1}
\end{equation*}
$$

The numbers $m_{i} \geq 2$ are called the proper periods, the brackets $\left(n_{i 1}, \ldots, n_{i s_{i}}\right)$ the period cycles, the numbers $n_{i j} \geq 2$ the link periods and $g \geq 0$ is said to be the orbit genus of Λ. The orbit space \mathcal{H} / Λ is a surface having k boundary components, orientable or not according to the sign being + or - and having topological genus g.

NEC groups with the signatures $(g ; \pm ;[-] ;\{(-), \ldots,(-)\})$ are called surface NEC groups. A Fuchsian group can be regarded as an NEC group
with the signature

$$
\begin{equation*}
\left(g ;+;\left[m_{1}, \ldots, m_{r}\right] ;\{-\}\right) \tag{2.2}
\end{equation*}
$$

If Λ is a proper NEC group with the signature (2.1) then its canonical Fuchsian subgroup $\Lambda^{+}=\Lambda \cap \mathcal{G}^{+}$has the signature
$(2.3)\left(\gamma ;+;\left[m_{1}, m_{1}, \ldots, m_{r}, m_{r}, n_{11}, \ldots n_{1 s_{1}}, \ldots, n_{k 1}, \ldots, n_{k s_{k}}\right] ;\{-\}\right)$,
where $\gamma=\alpha g+k-1$ and $\alpha=2$ if the sign is + and $\alpha=1$ otherwise. The group with the signature (2.1) has a presentation given by generators:
(i) $\quad x_{i}, i=1, \ldots, r, \quad$ (elliptic generators)
(ii) $c_{i j}, i=1, \ldots, k ; j=0, \ldots s_{i}, \quad$ (reflection generators)
(iii) $e_{i}, i=1, \ldots, k, \quad$ (boundary generators)
(iv) $a_{i}, b_{i}, i=1, \ldots g$ if the sign is,$+ \quad$ (hyperbolic generators)
$d_{i}, i=1, \ldots g$ if the sign is,$- \quad$ (glide reflection generators)
and relations
(1) $x_{i}^{m_{i}}=1, i=1, \ldots, r$,
(2) $c_{i s_{i}}=e_{i}^{-1} c_{i 0} e_{i}, i=1, \ldots, k$,
(3) $c_{i j-1}^{2}=c_{i j}^{2}=\left(c_{i j-1} c_{i j}\right)^{n_{i j}}=1, i=1, \ldots, k ; j=1, \ldots, s_{i}$,
(4) $x_{1} \ldots x_{r} e_{1} \ldots e_{k} a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \ldots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}=1$, if the sign is + , $x_{1} \ldots x_{r} e_{1} \ldots e_{k} d_{i}^{2} \ldots d_{g}^{2}=1$, if the sign is - .

Any system of generators of an NEC group satisfying the above relations will be called a canonical system of generators.

Every NEC group has a fundamental region, whose hyperbolic area is given by
$(2.4) \mu(\Lambda)=2 \pi\left(\alpha g+k-2+\sum_{i=1}^{r}\left(1-1 / m_{i}\right)+1 / 2 \sum_{i=1}^{k} \sum_{i=1}^{s_{i}}\left(1-1 / n_{i j}\right)\right)$,
where α is defined as in (2.3). It is known that an abstract group with the presentation given by the generators $(i)-(i v)$ and the relations (1) - (4) can be realized as an NEC group with the signature (2.1) if and only if the right-hand side of (2.4) is positive. If Γ is a subgroup of finite index in an NEC group Λ then it is an NEC group itself and the Riemann-Hurwitz formula says that

$$
\begin{equation*}
[\Lambda: \Gamma]=\mu(\Gamma) / \mu(\Lambda) \tag{2.5}
\end{equation*}
$$

We shall use the following theorem of Macbetath [6] on the number of fixed points [6].

Theorem 2.1. Let $X=\mathcal{H} / \Gamma$ be a Riemann surface with the group of conformal automorphisms $G=\Lambda / \Gamma$ and let x_{1}, \ldots, x_{r} be elliptic canonical generators of the Fuchsian group Λ with periods m_{1}, \ldots, m_{r} respectively. Let $\theta: \Lambda \rightarrow G$ be the canonical epimorphism and for $1 \neq h \in G$ let $\varepsilon_{i}(h)$ be 1 or 0 according as h is or is not conjugate to a power of $\theta\left(x_{i}\right)$. Then the number $F(h)$ of points of X fixed by h is given by the formula

$$
\begin{equation*}
F(h)=\left|N_{G}(\langle h\rangle)\right| \sum_{i=1}^{r} \varepsilon_{i}(h) / m_{i} . \tag{2.6}
\end{equation*}
$$

3. Symmetry types of $p q$-hyperelliptic Riemann surfaces

Let $X=\mathcal{H} / \Gamma$ be a $p q$-hyperelliptic Riemann surface of genus $g>3 q+1$ for some $q>p$. By Theorem 3.7 in [7], p - and q-involutions of X are central and unique in the full automorphism group and so their product is t-hyperelliptic involution, where the possible values of t are given in the next

Lemma 3.1. For any integers g, p, q such that $0 \leq p \leq q, 2 q \leq g \leq$ $2 p+2 q+1$ and $g>1$, there exists a Riemann surface of genus g admitting commuting p - and q-involutions whose product is a t-involution if and only if $t=g-p-q+2 k$ for some integer k in range $0 \leq k \leq(2 p+2 q+1-g) / 4$.

Proof. By Theorem 3.4 in [7], such surface exists if and only if t is a nonnegative integer with $(g+1) / 2-(p+1) \leq t \leq(g+1) / 2$ for which $p+q+t-g$ is even and nonnegative. Thus $t=g-p-q+2 k$ for some integer k. If l denotes an integer such that $(2 p+2 q+1)-4(l+1)<g \leq(2 p+2 q+1)-4 l$ then $k \leq l$ and so $0 \leq k \leq(2 p+2 q+1-g) / 4$.

In particular for any p, q, g such that $2 \leq p<q<2 p$ and $g>3 q+1$, there exists a $p q$-hyperelliptic Riemann surface of genus g with central p and q-involutions whose product is a $(g-p-q)$-involution. The next theorem determines the symmetry types of such surface.

Theorem 3.2. Let X be a symmetric Riemann surface of genus g admitting p - and q-hyperelliptic involutions δ and ρ such that $\rho \delta$ is a $(g-p-q)$ hyperelliptic involution for some integers p, q, g such that $p<q<2 p$, $3 q+1<g \leq 2 p+2 q+1$, and let ϕ be a symmetry of X. Then ρ, δ and ϕ pairwise commute and the possible species of symmetries $\phi, \phi \rho, \phi \delta$ and $\phi \rho \delta$ are:
(i) If $g \equiv 0$ (2):
$(0,-1,-1,-1),(-1,0,-1,-1),(-1,-1,0,-1),(-1,-1,-1,0)$.
(ii) If $g \equiv 1$ (2) and $g \neq 2 p+2 q+1$:
$(0,0,0,0),(-1,-1,-1,-1)$,
$(0,-2,-2,-2),(-2,0,-2,-2),(-2,-2,0,-2),(-2,-2,-2,0)$,
$(-2 a,-2 a, 0,0),(0,0,-2 a,-2 a), \quad 1 \leq a \leq(g+1-2 q) / 2$,
$(-2 b, 0,-2 b, 0),(0,-2 b, 0,-2 b), \quad 1 \leq b \leq(g+1-2 p) / 2$,
$(-2 c, 0,0,-2 c),(0,-2 c,-2 c, 0) \quad 1 \leq c \leq(2 p+2 q+1-g) / 2$,
$(+d, 0,0,0),(0,+d, 0,0),(0,0,+d, 0),(0,0,0,+d)$,
where $d=2$ or $d=4$ according to $p q \equiv 0$ (2) or $p q \equiv 1$ (2).
(iii) If $g=2 p+2 q+1$:
$(+(2 q+2), 0,+(2 q+2), 0),(0,+(2 q+2), 0,+(2 q+2))$,
$(+(2 p+2),+(2 p+2), 0,0),(0,0,+(2 p+2),+(2 p+2))$ and those listed in
(ii) except $(-2 c, 0,0,-2 c),(0,-2 c,-2 c, 0)$.

In particular this theorem determines the symmetry types of any $p q$-hyperelliptic Riemann surface of genus $g \geq 2 p+2 q-2$.
Proof. Let $X=\mathcal{H} / \Gamma$ be a Riemann surface defined in the theorem and let $t=g-p-q$. Then there exist Fuchsian groups Γ_{p}, Γ_{q} and Γ_{t} admitting Γ as a subgroup of index 2 such that $\langle\delta\rangle \simeq \Gamma_{p} / \Gamma,\langle\rho\rangle \simeq \Gamma_{q} / \Gamma$ and $\langle\rho \delta\rangle \simeq$ Γ_{t} / Γ. By the Hurwitz Riemann formula, $\sigma\left(\Gamma_{j}\right)=\left(j ;+;\left[2,{ }^{2 g+2-4 j}, 2\right]\right)$ for $j=p, q, t$ and so j-hyperelliptic involution admits $2 g+2-4 j$ fixed points. By Theorem $3.7[7], p$ - and q-hyperelliptic involutions of X are unique and central in the full automorphism group. Thus ρ, δ and ϕ generate the group $G=Z_{2} \oplus Z_{2} \oplus Z_{2}$ which is isomorphic to Λ / Γ for an NEC group Λ with a signature

$$
\left(g^{\prime} ; \pm ;[2, \ldots . r, 2] ;\left\{\left(2, \cdot r_{1} ., 2\right), \ldots,\left(2, r_{s}, 2\right)\right\}\right),
$$

where g^{\prime}, r, r_{i} are nonnegative integers for which $\mu(\Lambda)$ given by (2.4) is positive. Let Λ^{+}be the canonical Fuchsian subgroup of Λ. Then $G^{+}=$ Λ^{+} / Γ is a subgroup of G generated by ρ and δ. By Theorem 2.1 and the Hutwitz-Riemann formula, Λ^{+}has the signature ($0 ;+;[2, g+\underset{g+3}{2}, 2]$). Thus by (2.3), $g+3=2 r+\sum_{i=1}^{s} r_{i}$ and $0=\alpha g^{\prime}+s-1$, where $\alpha=2$ or 1 according to the sign in $\sigma(\Lambda)$ being + or - . So there are only two possible signatures of Λ :

$$
\tau_{1}=\left(1 ;-;\left[2,{ }^{(g+3) / 2}, 2\right] ;\{-\}\right) \text { or } \tau_{2}=\left(0 ;+;\left[2,{ }^{\left(g+3-r_{1}\right) / 2}, 2\right] ;\left\{\left(2, r^{r_{1}}, 2\right)\right\}\right) .
$$

Let $\phi_{1}, \phi_{2}, \phi_{3}$ and ϕ_{4} denote the symmetries $\phi, \phi \rho, \phi \delta$ and $\phi \rho \delta$ respectively and let S be the sequence of species $\left(s p\left(\phi_{1}\right), s p\left(\phi_{2}\right), s p\left(\phi_{3}\right), s p\left(\phi_{4}\right)\right)$. For
$i=1,2,3,4$, let Λ_{i} denote an NEC group such that $\phi_{i} \cong \Lambda_{i} / \Gamma$. By the Hurwitz-Riemann formula, Λ_{i} has one of the following signatures
$\left(\left(g+1-k_{i}\right) / 2 ;+;[-] ;\left\{(-) . ._{i} .,(-)\right\}\right)$ or $\left(g+1-k_{i} ;-;[-] ;\left\{(-) . ._{i} .,(-)\right\}\right)$.
The number k_{i} of empty period cycles and the sign in $\sigma\left(\Lambda_{i}\right)$ determine the species of ϕ_{i}. We shall find them using theorems of section 2 in [1]. If $\sigma(\Lambda)=\tau_{1}$ then g is odd and $S=(0,0,0,0)$. So assume that $\sigma(\Lambda)=\tau_{2}$. Let $\theta: \Lambda \rightarrow G$ be the canonical epimorphism and let $x_{1}, \ldots, x_{r}, e, c_{0}, \ldots, c_{r_{1}}$ denote the canonical generators of Λ. First suppose that $r_{1}=0$. Then $r=(g+3) / 2$ and so g is odd. Let $l \in\{1,2,3,4\}$ be an integer such that $\theta\left(c_{0}\right)=\phi_{l}$. Then $\operatorname{sp}\left(\phi_{i}\right)=0$ for $i \neq l$ and $k_{l}=4$ or 2 according to $\theta(e)$ is or is not the identity. By Theorem 2.1, θ maps $(g+1) / 2-j$ of elliptic generators onto j-hyperelliptic involution for $j=p, q, t$ and so $\theta(e)=\theta\left(x_{r}\right) . \stackrel{r}{.} \theta\left(x_{1}\right)$ is identity only if both integers p and q are odd. Since any nonorientable word does not belong to Λ_{l}, it follows that $\operatorname{sp}\left(\phi_{l}\right)=+4$ or +2 according to $p q$ being odd or even.

Next assume that $r_{1} \neq 0$. For any pair (l, m) of indices from the set $\{1,2,3,4\}$, let $\Lambda_{l, m}$ denote $\theta^{-1}\left(\left\langle\phi_{l}, \phi_{m}\right\rangle\right)$ and suppose that $\phi_{l} \phi_{m}$ is $j(l, m)$ hyperelliptic involution for some $j(l, m) \in\{p, q, t\}$. The epimorphism θ cannot transform all the canonical reflections of Λ onto the same symmetry ϕ_{l} since otherwise $\sigma\left(\Lambda_{l}\right)$ would have nonempty period-cycle. First suppose that every canonical reflection belongs to $\Lambda_{l, m}$ for some fixed pair (l,m). Since Γ is a surface group, it follows that $\theta\left(c_{0}\right)=\theta\left(c_{2 i}\right)$ and $\theta\left(c_{2 i-1}\right)=$ $\theta\left(c_{0}\right) \phi_{l} \phi_{m}$ for $i=1, \ldots,\left[r_{1} / 2\right]$. Thus the relation $\theta\left(c_{r_{1}}\right)=\theta(e)^{-1} \theta\left(c_{0}\right) \theta(e)$ implies that r_{1} is even, which needs odd g ones again. By Theorem 2.3.3 in [1], $k_{l}=k_{m}=r_{1}$ and $k_{i}=0$ for $i \neq l, m$. Since every period of the period-cycle in $\sigma(\Lambda)$ provides two proper periods in the signature of $\Gamma_{j(l, m)}$, it follows that r_{1} does not exceed $F_{j(l, m)} / 2$. If $r_{1}<F_{j(l, m)} / 2$ then there exists an elliptic generator $x_{k} \in \Lambda$ such that $\theta\left(x_{k}\right)=\phi_{l} \phi_{m}$. So $x_{k} c_{0}$ and $x_{k} c_{1}$ are nonorientable words such that one of them belongs to Λ_{l} while the other one to Λ_{m} and consequently $\operatorname{sp}\left(\phi_{l}\right)=\operatorname{sp}\left(\phi_{m}\right)=-r_{1}$. Now assume that $r_{1}=F_{j(l, m)} / 2$. If $g \neq 2 p+2 q+1$ then the sets F_{p}, F_{q} and F_{t} are nonempty and so there exist two elliptic generators of Λ, say x_{k} and x_{n}, such that $\theta\left(x_{k}\right)$ and $\theta\left(x_{n}\right)$ are two different involutions from the set $\{\rho, \delta, \rho \delta\} \backslash\left\{\phi_{l} \phi_{m}\right\}$. Since $\theta\left(x_{k}\right) \theta\left(x_{n}\right)=\phi_{l} \phi_{m}$, it follows that $x_{k} x_{n} c_{0}$ and $x_{k} x_{n} c_{1}$ are two nonorientable words such that one of them belongs to Λ_{l} and the other one to Λ_{m}. Consequently we obtain the same sequence S of species as before. If $g=2 p+2 q+1$ then $F_{t}=0$ and so neither Λ_{l} nor Λ_{m} does not admit any nonorientable word and consequently $\operatorname{sp}\left(\phi_{l}\right)=\operatorname{sp}\left(\phi_{m}\right)=+r_{1}$.

Now suppose that for every pair (l, m) of indices from $\{1,2,3,4\}$, there exists a canonical reflection not belonging to $\Lambda_{l, m}$. Since the periods in a period-cycle can be cyclically reordered we can assume that there exist α, β in range $0 \leq \alpha<\beta<r_{1}$ such that $c_{\alpha+1}, \ldots, c_{\beta} \notin \Lambda_{l, m}$ and $c_{0}, \ldots, c_{\alpha}, c_{\beta+1}, \ldots, c_{r_{1}} \in \Lambda_{l, m}$. Since $\theta\left(c_{i}\right) \neq \theta\left(c_{i+1}\right)$ for every $i=0, \ldots, r_{1}-$ 1, it follows that every period in the period-cycle but $n_{0 \alpha+1}$ and $n_{0 \beta+1}$ provides proper periods in the signature of $\Gamma_{j(l, m)}$ while the exceptional periods $n_{0 \alpha+1}$ and $n_{0 \beta+1}$ provide the proper periods in the signature of $\Gamma_{j(a, b)}$ for some $a \in\{l, m\}$ and $b \notin\{l, m\}$. Repeating above argumentation for the pair (a, b) we obtain that $r_{1}-2$ periods of period-cycle provide the proper periods in the signature of $\Gamma_{j(a, b)}$ which implies that $r_{1}-2=1$ or $r_{1}-2=2$. Since $r_{1}=g+3-2 r$, it follows that g is even in the first case and odd in the second one. If $r_{1}=3$ then there exists $i \in\{1,2,3,4\}$ such that none of canonical reflections does not belong to Λ_{i} and so $\operatorname{sp}\left(\phi_{i}\right)=0$. For $k \neq i$, there exists nonorientable word in Λ_{k} expressible as a composition of elliptic generators and a reflection and so $\operatorname{sp}\left(\phi_{k}\right)=-1$. Next assume that $r_{1}=4$. If there exists $i \in\{1,2,3,4\}$ such that $\theta\left(c_{t}\right) \neq \phi_{i}$ for $t=0, \ldots, r_{1}$ then $\operatorname{sp}\left(\phi_{i}\right)=0, \operatorname{sp}\left(\phi_{k}\right)=-2$ for $k \neq i$ and otherwise $S=(-1,-1,-1,-1)$.

Finally for any sequence S listed in the theorem, there exists an NEC group Λ and an epimorphism $\theta: \Lambda \rightarrow Z_{2} \oplus Z_{2} \oplus Z_{2}$ such that $X=\mathcal{H} / \operatorname{ker} \theta$ is a $p q$-hyperelliptic Riemann surface with symmetries $\phi, \phi \rho, \rho \delta \phi \rho \delta$ having species S.

By Theorem 3.7 in [7] and Lemma 3.1, for any $p q$-hyperelliptic Riemann surface of genus g in range $2 p+2 q-2 \leq g \leq 2 p+2 q+1$, the product of p and q-involutions is $(g-p-q)$-involution and so this theorem determines the symmetry types of such surface.

4. On symmetric p-hyperelliptic Riemann surfaces

Let ϕ and ρ be a symmetry and p-hyperelliptic involution of a Riemann surface X of genus $g>1$. E. Bujalance and A. Costa in [2] determined the possible species of the pair of symmetries ϕ and $\phi \rho$ in the case when ϕ and ρ commute. In particular, they determined the symmetry types of any p-hyperelliptic Riemann surface of genus $g>4 p+1$. The next lemma shows that their results can be applied for some lower genera either.

Lemma 4.1. Let X be a symmetric p-hyperelliptic Riemann surface of genus g in range $3 p+1<g \leq 4 p+1$. If g is even then any symmetry ϕ and p-hyperelliptic involution ρ of X commute. If ϕ and ρ do not commute for
some odd g, then $(\phi \rho)^{2}$ is $(g-2 p+2 k)$-hyperelliptic involution for some integer k in range $0 \leq k \leq(4 p+1-g) / 4$ and $(\phi \rho)^{2}$ is central in the full automorphism group of X except $g=3 p+2$ and $p \equiv 1$ (4).

Proof. Let $X=\mathcal{H} / \Gamma$ be a p-hyperelliptic Riemann surface of genus $g>3 p+1$ and suppose that ϕ is a symmetry not commuting with p hyperelliptic involution ρ. Then $\rho^{\prime}=\phi \rho \phi$ is another p-hyperelliptic involution of X. By Theorem 3.2 in [8], every two p-involutions of X commute. Thus ϕ and ρ generate the dihedral group G of order 8 which can be identified with Λ / Γ for some NEC group Λ. Let Λ^{+}be the canonical subgroup of Λ. Then Λ^{+} / Γ is isomorphic to the group $Z_{2} \oplus Z_{2}$ generated by ρ and ρ^{\prime}. By Lemma 3.1, the product $\rho \rho^{\prime}$ is $(g-2 p+2 k)$-hyperelliptic involution, for some integer k in range $0 \leq k \leq(4 p+1-g) / 4$. Thus by Theorem 2.1 and the Hurwitz-Riemann formula, $\sigma\left(\Lambda^{+}\right)=\left(k ;+;\left[2,{ }^{g+3-4 k}, 3\right]\right)$ and consequently by $(2.3), \sigma(\Lambda)=\left(\gamma ; \pm ;[2, . \stackrel{r}{.}, 2] ;\left\{\left(2, ._{.} . ., 2\right)_{i=1, \ldots, s},(-), .^{u} .,(-)\right\}\right)$, for some integers r, r_{i}, s, u such that $\alpha \gamma+s+u=k$ and $2 r+\sum_{i=1}^{s} r_{i}=$ $g+3-4 k$. The canonical epimorphism $\theta: \Lambda \rightarrow G$ maps the canonical reflections of Λ onto ϕ or $\rho \phi \rho$. Since Γ is a surface Fuchsian group, it follows that $\theta\left(c_{i j-1}\right) \neq \theta\left(c_{i j}\right)$ for $1 \leq i \leq s, 1 \leq j \leq r_{i}$. Furthermore $\theta\left(c_{i r_{i}}\right)=\theta\left(e_{i}\right)^{-1} \theta\left(c_{i 0}\right) \theta\left(e_{i}\right)^{-1}$, which implies that r_{i} is even for $i=1, \ldots, s$ and consequently $g=2 r+\sum_{i=1}^{s} r_{i}+4 k-3$ is odd. Thus any symmetry of p-hyperelliptic surface of even genus $g>3 p+1$ commutes with p-hyperelliptic involution. Finally by Theorem 3.2 and Proposition 3.5 in [8], for any $g>3 p+1$ except $g=3 p+2$ and $p \equiv 1$ (4), X can admit at most two p-involutions which means that $\rho \rho^{\prime}$ is central in the full automorphism group of X.

So if a symmetry ϕ and p-hyperelliptic involution ρ of a Riemann surface X of genus $g>3 p+1$ do not commute then X is t-hyperelliptic, where $t=g-2 p+2 k$ for some k in range $0 \leq k \leq(4 p+1-g) / 4$. Furthermore, except the case when $g=3 p+2$ and $p \equiv 1(4), \phi$ is commuting with a t-hyperelliptic involution of X and consequently we can determine the possible species of ϕ using results of Bujalance and Costa.

For any $p>0$ and g in range $3 p+1<g \leq 4 p+1$, there exists a Riemann surface admitting two p-involutions whose product is $(g-2 p)$-involution. The next theorem determines the symmetry types of such surface.

Theorem 4.2. Let X be a symmetric Riemann surface of genus $g>3 p+1$, except $g=3 p+2$ and $p \equiv 1(4)$, admitting two p-hyperelliptic involutions whose product is $(g-2 p)$-hyperelliptic involution and let ϕ be a symmetry
of X. Then for even $g, \operatorname{sp}(\phi)=0$ or -1 . If g is odd then $\operatorname{sp}(\phi)$ is one of integers $0,-1,-2 a,+d$, where $d=2$ or $d=4$ according to $p \equiv 0$ (2) or $p \equiv 1$ (2) or $d=2 p+2$ for $g=4 p+1$ and a is positive integer not exceeding $(g+1-2 p) / 2$ if ϕ commutes with p-involutions and not exceeding $(4 p+1-g) / 2$ otherwise.

Proof. Let ϕ be a symmetry of a p-hyperelliptic Riemann surface X defined in theorem. If ϕ commutes with p-involutions of X then we can find $\operatorname{sp}(\phi)$ by repeating the argumentation from the proof of Theorem 3.2 for $q=p$. In particular, using the previous Lemma we obtain that $\operatorname{sp}(\phi)=0$ or -1 if g is even. So suppose that ϕ does not commute with some p-involution ρ of X and let $\rho^{\prime}=\phi \rho \phi$. Then by the proof of Lemma 4.1, the involutions ϕ and ρ generate the dihedral group G of order 8 which can be identified with Λ / Γ for some NEC group Λ with one of signatures $\tau_{1}=\left(1 ;-;\left[{ }^{(g+3) / 2}, 2\right] ;\{-\}\right)$ or $\tau_{2}=\left(0 ;+;[2, . r ., 2] ;\left\{\left(2, r^{r_{1}}, 2\right)\right\}\right)$, where $2 r+r_{1}=g+3$. Let $\theta: \Lambda \rightarrow G$ be the canonical epimorphism. Then $\Lambda^{\prime}=\theta^{-1}(\langle\phi, \rho \phi \rho\rangle)$ and $\Gamma_{\rho \rho^{\prime}}=\theta^{-1}\left(\rho \rho^{\prime}\right)$ are normal subgroups of Λ of indices 2 and 4 respectively. If $\sigma(\Lambda)=\tau_{1}$ then Λ^{\prime} has not any period cycle and consequently $\operatorname{sp}(\phi)=\operatorname{sp}(\rho \phi \rho)=0$. So assume that $\sigma(\Lambda)=\tau_{2}$. For any $1 \neq h \in G$, let s_{h} denote the number of elliptic generators x_{i} of Λ such that $\theta\left(x_{i}\right)=h$. Then by Theorem 2.2.4 in [1], the number of periods in the signature of $\Gamma_{\rho \rho^{\prime}}$ is equal to $4 s_{\rho \rho^{\prime}}+2 r_{1}$. On the other hand such number is equal to $2 g+2-4(g-2 p)=8 p+2-2 g$ and so $s_{\rho \rho^{\prime}}=\left(4 p+1-g-r_{1}\right) / 2$. Thus $s_{\phi \rho \phi}+s_{\rho}=r-s_{\rho \rho^{\prime}}=g+1-2 p$ is even which means that $s_{\phi \rho \phi}$ and s_{ρ} have the same parities and consequently the relation $\theta\left(x_{1} \ldots x_{r} e_{1}\right)=1$ implies that $\theta\left(e_{1}\right)=1$ or $\rho \rho^{\prime}$. So $e_{1} \in \Lambda^{\prime}$ and by Theorem 2.3 .2 in [1], Λ^{\prime} admits two period-cycles of the form ($2, . r_{1}, 2$). Since every period in the period cycle of Λ^{\prime} provides one proper period in the signature of $\Gamma_{\rho \rho^{\prime}}$, it follows that $r_{1} \leq F\left(\rho \rho^{\prime}\right) / 2=4 p+1-g$. For $g=4 p+1, F\left(\rho \rho^{\prime}\right)=0$, which means that there is no proper periods nor link periods in the signature of Λ^{\prime} and consequently $\operatorname{sp}(\phi)=\operatorname{sp}(\rho \phi \rho)=+1$ or +2 . For $g \neq 4 p+1$, $\operatorname{sp}(\phi)=\operatorname{sp}(\rho \phi \rho)=-1$ or -2 if $r_{1}=0$ and $\operatorname{sp}(\phi)=\operatorname{sp}(\rho \phi \rho)= \pm r_{1}$ otherwise, where the sign is - for $r_{1}<4 p+1-g$ and the sign is + for $r_{1}=4 p+1-g$.

Corollary 4.3. Let ϕ be a symmetry of a Riemann surface of genus g in range $4 p-2 \leq g \leq 4 p+1$ admitting two p-hyperelliptic involutions. Then the possible species of ϕ are given in the table, where $d=2$ or $d=4$ according to p is or is not even.

g	$\operatorname{sp}(\phi)$	Conditions
$4 p+1$	$0, \pm 1, \pm 2,-2 a,+(2 p+2),+d$	$1 \leq a \leq p+1, p>0$
$4 p$	$0,-1$	$p>1$
$4 p-1$	$0,-1, \pm 2,-2 a,+d$	$1 \leq a \leq p, p>2$
$4 p-2$	$0,-1$	$p>3$

References

[1] E. Bujalance, J. Etayo, J. Gamboa, G. Gromadzki: "Automorphisms Groups of Compact Bordered Klein Surfaces. A Combinatorial Approach", Lecture Notes in Math. vol. 1439, Springer-Verlag (1990).
[2] E. Bujalance, A.F.Costa: "On symmetries of p-hyperelliptic Riemann surfaces ", Springer-Verlag (1997),
[3] H. M. Farkas, I. Kra: "Riemann Surfaces", Graduate Text in Mathematics, Springer-Verlag (1980)
[4] A.Harnack: "Uber die Vieltheiligkeit der ebenen algebraischen Kurven", Math. Ann. 10, (1876), pp. 189-199.
[5] F.Klein: Über Realitätsverhältnisse bei einem beliebigen Geschlechte zugehörigen Normalkurve der φ " Math. Ann. 42 (1893) 1-29.
[6] A. M. Macbeath:"Action of automorphisms of a compact Riemann surface on the first homology group". Bull. London Math. Soc. 5 (1973), 103-108.
[7] E. Tyszkowska, On pq-hyperelliptic Riemann surfaces, Coll. Math. 103 (1), (2005), 115-120.
[8] E. Tyszkowska, On p-hyperelliptic involutions of Riemann surfaces, Beiträge zur Algebra und Geometrie, to appear.

Ewa Tyszkowska

Institute of Mathematics
University of Gdańsk
Wita Stwosza 57,
80-952 Gdańsk
Poland
e-mail : Ewa.Tyszkowska@math.univ.gda.pl

[^0]: *Supported by BW 5100-5-0089-5

