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Abstract

A symmetry of a Riemann surface X is an antiholomorphic invo-
lution φ. The species of φ is the integer εk, where k is the number of
connected components in the set Fix(φ) of fixed points of φ and ε = −1
if X \ Fix(φ) is connected and ε = 1 otherwise. A compact Riemann
surface X of genus g > 1 is said to be p-hyperelliptic if it admits a
conformal involution ρ, called a p-hyperelliptic involution, for which
X/ρ is an orbifold of genus p. Symmetries of p-hyperelliptic Riemann
surfaces has been studied by Klein for p = 0 and by Bujalance and
Costa for p > 0. Here we study the species of symmetries of so called
pq-hyperelliptic surface defined as a Riemann surface which is p- and
q-hyperelliptic simultaneously.
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1. Introduction

A symmetry of a Riemann surface X is an antiholomorphic involution φ. It
is known that projective complex algebraic curves bijectively and functori-
ally correspond to compact Riemann surfaces. Under this correspondence
the fact that a surface X is symmetric means that the corresponding curve
can be defined over the reals numbers. Furthermore the non-conjugate,
in the group of all automorphisms of X, symmetries correspond to non-
isomorphic, over the reals numbers, real curves called real forms. Finally
if X has genus g then the set Fix(φ) of fixed points of φ consists of k dis-
joint Jordan curves called ovals, where by the classical Harnack Theorem
[4], k varies between 0 and g + 1. This set is homeomorphic to a smooth
projective real model of the corresponding curve. Let ε be the separability
character of φ defined as ε = −1 if X \ Fix(φ) is connected and ε = 1
otherwise. A conjugate in Aut±X of φ is also a symmetry with the same k
and ε. We define the species sp(φ) of the real form represented by φ to be
the integer εk.

A compact Riemann surface X of genus g ≥ 2 is said to be p-hyperellip-
tic if X admits a conformal involution ρ, called a p-hyperelliptic involution,
such that X/ρ is an orbifold of genus p. This notion has been introduced
by H. Farkas and I. Kra in [3] where they also proved that for g > 4p+ 1,
p-hyperelliptic involution is unique and central in the full automorphism
group of X. In particular cases p = 0 and p = 1, X are called hyperelliptic
and elliptic-hyperelliptic Rieman sufaces respectively. Let φ be a symmetry
commuting with p-hyperelliptic involution ρ. F.Klein in [5] studied the
species of the symmetries φ and φρ in the hyperelliptic case. E.Bujalance
and A.Costa [2] found all possible species of such pair in the general case p ≥
0. In particular they determined the symmetry types of any p-hyperelliptic
Riemann surface of genus g > 4p + 1. We show that their results can be
applied for g in range 3p+1 < g ≤ 4p+1, since in this case any symmetry
and p-hyperelliptic involution commute if g is even while for odd g, except
g = 3p + 2 and p ≡ 1 (4), X always admits some conformal involution
commuting with any symmetry. Moreover, for any g in this range, there
exists a Riemann surface of genus g admitting exactly two p-hyperelliptic
involutions whose product is (g − 2p)-hyperelliptic involution. We present
an argumentation providing more detailed results concerning symmetry
types of such surface. In particular we obtain the symmetry types of any
p-hyperelliptic surface of genus g in range 4p− 2 ≤ g ≤ 4p+ 1.

Furthermore, we study the species of symmetries of so called
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pq-hyperelliptic Riemann surface defined as a Riemann surface which is p-
and q-hyerelliptic simultaneously. In [7] we proved that for q > p, the genus
g of such surface is bounded by 2q − 1 ≤ g ≤ 2p+ 2q + 1 and for any g in
this range, there exists a Riemann surface of genus g admitting commuting
p- and q-hyperelliptic involutions δ and ρ whose product is t-hyperelliptic
involution if and only if t = (g − p − q + 2k) for some integer k in range
0 ≤ k ≤ (2p+2q+1−g)/4. Moreover, we justified that p- and q-hyperelliptic
involutions of a Riemann surface of genus g > 3q+1 are central and unique
in the full automorphism group and so they commute with any symmetry
φ. We study the possible species of symmetries φ, φρ, φδ and φρδ in the case
when the product δρ is (g − p − q)-hyperelliptic involution. In particular
we determine the symmetry types of any pq-hyperelliptic Riemann surface
of genus g in range 2p+ 2q − 2 ≤ g ≤ 2p+ 2q + 1.

2. Preliminaries

We shall approach the problem using Riemann uniformization theorem by
which each compact Riemann surface X of genus g ≥ 2 can be represented
as the orbit space of the hyperbolic plane H under the action of some Fuch-
sian surface group Γ. Furthermore a group of automorphisms (including
possibly anticonformal automorphisms) of a surface X = H/Γ can be rep-
resented as Λ/Γ for an NEC group Λ containing Γ as a normal subgroup.
An NEC group is a discrete subgroup of the group of isometries G of H
with compact quotient space, including those reversing orientation. Let
G+ denote a subgroup of G consisting of orientation-preserving isometries.
Then an NEC group is called a Fuchsian group if it is contained in G+
and a proper NEC group otherwise. Macbeath and Wilkie associated to
every NEC group a signature which determines its algebraic and geometric
structure. It has the form

(g;±; [m1, . . . ,mr]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk)})(2.1)

The numbers mi ≥ 2 are called the proper periods, the brackets
(ni1, . . . , nisi) the period cycles, the numbers nij ≥ 2 the link periods and
g ≥ 0 is said to be the orbit genus of Λ. The orbit space H/Λ is a surface
having k boundary components, orientable or not according to the sign
being + or − and having topological genus g.

NEC groups with the signatures (g;±; [−]; {(−), . . . , (−)}) are called
surface NEC groups. A Fuchsian group can be regarded as an NEC group
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with the signature
(g; +; [m1, . . . ,mr]; {−}).(2.2)

If Λ is a proper NEC group with the signature (2.1) then its canonical
Fuchsian subgroup Λ+ = Λ ∩ G+ has the signature

(γ; +; [m1,m1, . . . ,mr,mr, n11, . . . n1s1 , . . . , nk1, . . . , nksk ]; {−}),(2.3)

where γ = αg + k− 1 and α = 2 if the sign is + and α = 1 otherwise. The
group with the signature (2.1) has a presentation given by generators:

(i) xi, i = 1, . . . , r, (elliptic generators)
(ii) cij , i = 1, . . . , k; j = 0, . . . si, (reflection generators )
(iii) ei, i = 1, . . . , k, (boundary generators)
(iv) ai, bi, i = 1, . . . g if the sign is +, (hyperbolic generators)

di, i = 1, . . . g if the sign is −, (glide reflection generators)

and relations

(1) xmi
i = 1, i = 1, . . . , r,

(2) cisi = e−1i ci0ei, i = 1, . . . , k,
(3) c2ij−1 = c2ij = (cij−1cij)

nij = 1, i = 1, . . . , k; j = 1, . . . , si,

(4) x1 . . . xre1 . . . eka1b1a
−1
1 b−11 . . . agbga

−1
g b−1g = 1, if the sign is +,

x1 . . . xre1 . . . ekd
2
i . . . d

2
g = 1, if the sign is −.

Any system of generators of an NEC group satisfying the above relations
will be called a canonical system of generators.

Every NEC group has a fundamental region, whose hyperbolic area is
given by

μ(Λ) = 2π(αg + k − 2 +
rX

i=1

(1− 1/mi) + 1/2
kX
i=1

siX
i=1

(1− 1/nij)),(2.4)

where α is defined as in (2.3). It is known that an abstract group with the
presentation given by the generators (i) − (iv) and the relations (1) − (4)
can be realized as an NEC group with the signature (2.1) if and only if
the right-hand side of (2.4) is positive. If Γ is a subgroup of finite index in
an NEC group Λ then it is an NEC group itself and the Riemann-Hurwitz
formula says that

[Λ : Γ] = μ(Γ)/μ(Λ)(2.5)

We shall use the following theorem of Macbetath [6] on the number of
fixed points [6].
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Theorem 2.1. Let X = H/Γ be a Riemann surface with the group of
conformal automorphisms G = Λ/Γ and let x1, ..., xr be elliptic canonical
generators of the Fuchsian group Λ with periods m1, ...,mr respectively.
Let θ : Λ → G be the canonical epimorphism and for 1 6= h ∈ G let εi(h)
be 1 or 0 according as h is or is not conjugate to a power of θ(xi). Then
the number F (h) of points of X fixed by h is given by the formula

F (h) = |NG(hhi)|
rX

i=1

εi(h)/mi.(2.6)

3. Symmetry types of pq-hyperelliptic Riemann surfaces

Let X = H/Γ be a pq-hyperelliptic Riemann surface of genus g > 3q + 1
for some q > p. By Theorem 3.7 in [7], p- and q-involutions of X are
central and unique in the full automorphism group and so their product
is t-hyperelliptic involution, where the possible values of t are given in the
next

Lemma 3.1. For any integers g, p, q such that 0 ≤ p ≤ q, 2q ≤ g ≤
2p+2q+1 and g > 1, there exists a Riemann surface of genus g admitting
commuting p- and q-involutions whose product is a t-involution if and only
if t = g−p− q+2k for some integer k in range 0 ≤ k ≤ (2p+2q+1−g)/4.

Proof. By Theorem 3.4 in [7], such surface exists if and only if t is a non-
negative integer with (g+1)/2−(p+1) ≤ t ≤ (g+1)/2 for which p+q+t−g
is even and nonnegative. Thus t = g − p − q + 2k for some integer k. If l
denotes an integer such that (2p+2q+1)−4(l+1) < g ≤ (2p+2q+1)−4l
then k ≤ l and so 0 ≤ k ≤ (2p+ 2q + 1− g)/4.

In particular for any p, q, g such that 2 ≤ p < q < 2p and g > 3q + 1,
there exists a pq-hyperelliptic Riemann surface of genus g with central p and
q-involutions whose product is a (g − p− q)-involution. The next theorem
determines the symmetry types of such surface.

Theorem 3.2. Let X be a symmetric Riemann surface of genus g admit-
ting p- and q-hyperelliptic involutions δ and ρ such that ρδ is a (g− p− q)-
hyperelliptic involution for some integers p, q, g such that p < q < 2p,
3q + 1 < g ≤ 2p+ 2q + 1, and let φ be a symmetry of X. Then ρ, δ and φ
pairwise commute and the possible species of symmetries φ, φρ, φδ and φρδ
are:
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(i) If g ≡ 0 (2) :
(0,−1,−1,−1), (−1, 0,−1,−1), (−1,−1, 0,−1), (−1,−1,−1, 0).

(ii) If g ≡ 1 (2) and g 6= 2p+ 2q + 1 :
(0, 0, 0, 0), (−1,−1,−1,−1),
(0,−2,−2,−2), (−2, 0,−2,−2), (−2,−2, 0,−2), (−2,−2,−2, 0),
(−2a,−2a, 0, 0), (0, 0,−2a,−2a), 1 ≤ a ≤ (g + 1− 2q)/2,
(−2b, 0,−2b, 0), (0,−2b, 0,−2b), 1 ≤ b ≤ (g + 1− 2p)/2,
(−2c, 0, 0,−2c), (0,−2c,−2c, 0) 1 ≤ c ≤ (2p+ 2q + 1− g)/2,
(+d, 0, 0, 0), (0,+d, 0, 0), (0, 0,+d, 0), (0, 0, 0,+d),
where d = 2 or d = 4 according to pq ≡ 0 (2) or pq ≡ 1 (2).

(iii) If g = 2p+ 2q + 1 :
(+(2q + 2), 0,+(2q + 2), 0), (0,+(2q + 2), 0,+(2q + 2)),
(+(2p + 2),+(2p + 2), 0, 0), (0, 0,+(2p + 2),+(2p + 2)) and those listed in
(ii) except (−2c, 0, 0,−2c), (0,−2c,−2c, 0).
In particular this theorem determines the symmetry types of any pq-hyperelliptic
Riemann surface of genus g ≥ 2p+ 2q − 2.
Proof. Let X = H/Γ be a Riemann surface defined in the theorem and
let t = g−p− q. Then there exist Fuchsian groups Γp,Γq and Γt admitting
Γ as a subgroup of index 2 such that hδi ' Γp/Γ, hρi ' Γq/Γ and hρδi '
Γt/Γ. By the Hurwitz Riemann formula, σ(Γj) = (j; +; [2, 2g+2−4j. . . , 2]) for
j = p, q, t and so j-hyperelliptic involution admits 2g+2− 4j fixed points.
By Theorem 3.7 [7], p- and q-hyperelliptic involutions of X are unique and
central in the full automorphism group. Thus ρ, δ and φ generate the group
G = Z2 ⊕Z2 ⊕ Z2 which is isomorphic to Λ/Γ for an NEC group Λ with a
signature

(g0;±; [2, r. . ., 2]; {(2, r1. . ., 2), . . . , (2, rs. . ., 2)}),
where g0, r, ri are nonnegative integers for which μ(Λ) given by (2.4) is
positive. Let Λ+ be the canonical Fuchsian subgroup of Λ. Then G+ =
Λ+/Γ is a subgroup of G generated by ρ and δ. By Theorem 2.1 and the
Hutwitz-Riemann formula, Λ+ has the signature (0;+; [2, g+3. . . , 2]). Thus by
(2.3), g+3 = 2r+

Ps
i=1 ri and 0 = αg0+ s− 1, where α = 2 or 1 according

to the sign in σ(Λ) being + or −. So there are only two possible signatures
of Λ:

τ1 = (1;−; [2, (g+3)/2. . . , 2]; {−}) or τ2 = (0;+; [2, (g+3−r1)/2. . . , 2]; {(2, r1. . ., 2)}).
Let φ1, φ2, φ3 and φ4 denote the symmetries φ, φρ, φδ and φρδ respectively
and let S be the sequence of species (sp(φ1), sp(φ2), sp(φ3), sp(φ4)). For
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i = 1, 2, 3, 4, let Λi denote an NEC group such that φi ∼= Λi/Γ. By the
Hurwitz-Riemann formula, Λi has one of the following signatures

((g + 1− ki)/2;+; [−]; {(−) ki. . ., (−)}) or (g + 1− ki;−; [−]; {(−) ki. . ., (−)}).

The number ki of empty period cycles and the sign in σ(Λi) determine the
species of φi. We shall find them using theorems of section 2 in [1]. If
σ(Λ) = τ1 then g is odd and S = (0, 0, 0, 0). So assume that σ(Λ) = τ2. Let
θ : Λ → G be the canonical epimorphism and let x1, . . . , xr, e, c0, . . . , cr1
denote the canonical generators of Λ. First suppose that r1 = 0. Then
r = (g + 3)/2 and so g is odd. Let l ∈ {1, 2, 3, 4} be an integer such
that θ(c0) = φl. Then sp(φi) = 0 for i 6= l and kl = 4 or 2 according
to θ(e) is or is not the identity. By Theorem 2.1, θ maps (g + 1)/2 − j
of elliptic generators onto j-hyperelliptic involution for j = p, q, t and so
θ(e) = θ(xr) r. . . θ(x1) is identity only if both integers p and q are odd. Since
any nonorientable word does not belong to Λl, it follows that sp(φl) = +4
or +2 according to pq being odd or even.

Next assume that r1 6= 0. For any pair (l,m) of indices from the set
{1, 2, 3, 4}, let Λl,m denote θ−1(hφl, φmi) and suppose that φlφm is j(l,m)-
hyperelliptic involution for some j(l,m) ∈ {p, q, t}. The epimorphism θ
cannot transform all the canonical reflections of Λ onto the same symmetry
φl since otherwise σ(Λl) would have nonempty period-cycle. First suppose
that every canonical reflection belongs to Λl,m for some fixed pair (l,m).
Since Γ is a surface group, it follows that θ(c0) = θ(c2i) and θ(c2i−1) =
θ(c0)φlφm for i = 1, . . . , [r1/2]. Thus the relation θ(cr1) = θ(e)−1θ(c0)θ(e)
implies that r1 is even, which needs odd g ones again. By Theorem 2.3.3
in [1], kl = km = r1 and ki = 0 for i 6= l,m. Since every period of
the period-cycle in σ(Λ) provides two proper periods in the signature of
Γj(l,m), it follows that r1 does not exceed Fj(l,m)/2. If r1 < Fj(l,m)/2 then
there exists an elliptic generator xk ∈ Λ such that θ(xk) = φlφm. So xkc0
and xkc1 are nonorientable words such that one of them belongs to Λl
while the other one to Λm and consequently sp(φl) = sp(φm) = −r1. Now
assume that r1 = Fj(l,m)/2. If g 6= 2p+ 2q + 1 then the sets Fp, Fq and Ft
are nonempty and so there exist two elliptic generators of Λ, say xk and
xn, such that θ(xk) and θ(xn) are two different involutions from the set
{ρ, δ, ρδ} \ {φlφm}. Since θ(xk)θ(xn) = φlφm, it follows that xkxnc0 and
xkxnc1 are two nonorientable words such that one of them belongs to Λl and
the other one to Λm. Consequently we obtain the same sequence S of species
as before. If g = 2p+2q+1 then Ft = 0 and so neither Λl nor Λm does not
admit any nonorientable word and consequently sp(φl) = sp(φm) = +r1.
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Now suppose that for every pair (l,m) of indices from {1, 2, 3, 4}, there
exists a canonical reflection not belonging to Λl,m. Since the periods in
a period-cycle can be cyclically reordered we can assume that there ex-
ist α, β in range 0 ≤ α < β < r1 such that cα+1, . . . , cβ 6∈ Λl,m and
c0, . . . , cα, cβ+1, . . . , cr1 ∈ Λl,m. Since θ(ci) 6= θ(ci+1) for every i = 0, . . . , r1−
1, it follows that every period in the period-cycle but n0α+1 and n0β+1 pro-
vides proper periods in the signature of Γj(l,m) while the exceptional periods
n0α+1 and n0β+1 provide the proper periods in the signature of Γj(a,b) for
some a ∈ {l,m} and b 6∈ {l,m}. Repeating above argumentation for the
pair (a, b) we obtain that r1 − 2 periods of period-cycle provide the proper
periods in the signature of Γj(a,b) which implies that r1−2 = 1 or r1−2 = 2.
Since r1 = g + 3− 2r, it follows that g is even in the first case and odd in
the second one. If r1 = 3 then there exists i ∈ {1, 2, 3, 4} such that none of
canonical reflections does not belong to Λi and so sp(φi) = 0. For k 6= i,
there exists nonorientable word in Λk expressible as a composition of elliptic
generators and a reflection and so sp(φk) = −1. Next assume that r1 = 4.
If there exists i ∈ {1, 2, 3, 4} such that θ(ct) 6= φi for t = 0, . . . , r1 then
sp(φi) = 0, sp(φk) = −2 for k 6= i and otherwise S = (−1,−1,−1,−1).

Finally for any sequence S listed in the theorem, there exists an NEC
group Λ and an epimorphism θ : Λ→ Z2 ⊕Z2 ⊕Z2 such that X = H/kerθ
is a pq-hyperelliptic Riemann surface with symmetries φ, φρ, ρδ φρδ having
species S.

By Theorem 3.7 in [7] and Lemma 3.1, for any pq-hyperelliptic Riemann
surface of genus g in range 2p+2q− 2 ≤ g ≤ 2p+2q+1, the product of p-
and q-involutions is (g − p− q)-involution and so this theorem determines
the symmetry types of such surface.

4. On symmetric p-hyperelliptic Riemann surfaces

Let φ and ρ be a symmetry and p-hyperelliptic involution of a Riemann
surface X of genus g > 1. E. Bujalance and A. Costa in [2] determined
the possible species of the pair of symmetries φ and φρ in the case when
φ and ρ commute. In particular, they determined the symmetry types of
any p-hyperelliptic Riemann surface of genus g > 4p+ 1. The next lemma
shows that their results can be applied for some lower genera either.

Lemma 4.1. Let X be a symmetric p-hyperelliptic Riemann surface of
genus g in range 3p+1 < g ≤ 4p+1. If g is even then any symmetry φ and
p-hyperelliptic involution ρ of X commute. If φ and ρ do not commute for
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some odd g, then (φρ)2 is (g − 2p + 2k)-hyperelliptic involution for some
integer k in range 0 ≤ k ≤ (4p + 1 − g)/4 and (φρ)2 is central in the full
automorphism group of X except g = 3p+ 2 and p ≡ 1 (4).

Proof. Let X = H/Γ be a p-hyperelliptic Riemann surface of genus
g > 3p + 1 and suppose that φ is a symmetry not commuting with p-
hyperelliptic involution ρ. Then ρ0 = φρφ is another p-hyperelliptic involu-
tion of X. By Theorem 3.2 in [8], every two p-involutions of X commute.
Thus φ and ρ generate the dihedral group G of order 8 which can be iden-
tified with Λ/Γ for some NEC group Λ. Let Λ+ be the canonical subgroup
of Λ. Then Λ+/Γ is isomorphic to the group Z2 ⊕ Z2 generated by ρ and
ρ0. By Lemma 3.1, the product ρρ0 is (g−2p+2k)-hyperelliptic involution,
for some integer k in range 0 ≤ k ≤ (4p+ 1− g)/4. Thus by Theorem 2.1
and the Hurwitz-Riemann formula, σ(Λ+) = (k; +; [2, g+3−4k. . . , 3]) and con-
sequently by (2.3), σ(Λ) = (γ;±; [2, r. . ., 2]; {(2, ri. . ., 2)i=1,...,s, (−), u. . ., (−)}),
for some integers r, ri, s, u such that αγ + s + u = k and 2r +

Ps
i=1 ri =

g + 3 − 4k. The canonical epimorphism θ : Λ → G maps the canonical
reflections of Λ onto φ or ρφρ. Since Γ is a surface Fuchsian group, it
follows that θ(cij−1) 6= θ(cij) for 1 ≤ i ≤ s, 1 ≤ j ≤ ri. Furthermore
θ(ciri) = θ(ei)

−1θ(ci0)θ(ei)−1, which implies that ri is even for i = 1, . . . , s
and consequently g = 2r +

Ps
i=1 ri + 4k − 3 is odd. Thus any symme-

try of p-hyperelliptic surface of even genus g > 3p + 1 commutes with
p-hyperelliptic involution. Finally by Theorem 3.2 and Proposition 3.5 in
[8], for any g > 3p+1 except g = 3p+2 and p ≡ 1 (4), X can admit at most
two p-involutions which means that ρρ0 is central in the full automorphism
group of X.

So if a symmetry φ and p-hyperelliptic involution ρ of a Riemann surface
X of genus g > 3p + 1 do not commute then X is t-hyperelliptic, where
t = g − 2p+ 2k for some k in range 0 ≤ k ≤ (4p+ 1− g)/4. Furthermore,
except the case when g = 3p + 2 and p ≡ 1 (4), φ is commuting with
a t-hyperelliptic involution of X and consequently we can determine the
possible species of φ using results of Bujalance and Costa.

For any p > 0 and g in range 3p+1 < g ≤ 4p+1, there exists a Riemann
surface admitting two p-involutions whose product is (g − 2p)-involution.
The next theorem determines the symmetry types of such surface.

Theorem 4.2. LetX be a symmetric Riemann surface of genus g > 3p+1,
except g = 3p+ 2 and p ≡ 1 (4), admitting two p-hyperelliptic involutions
whose product is (g− 2p)-hyperelliptic involution and let φ be a symmetry
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of X. Then for even g, sp(φ) = 0 or −1. If g is odd then sp(φ) is one
of integers 0,−1,−2a,+d, where d = 2 or d = 4 according to p ≡ 0 (2)
or p ≡ 1 (2) or d = 2p + 2 for g = 4p + 1 and a is positive integer not
exceeding (g+1−2p)/2 if φ commutes with p-involutions and not exceeding
(4p+ 1− g)/2 otherwise.

Proof. Let φ be a symmetry of a p-hyperelliptic Riemann surface
X defined in theorem. If φ commutes with p-involutions of X then we
can find sp(φ) by repeating the argumentation from the proof of Theo-
rem 3.2 for q = p. In particular, using the previous Lemma we obtain
that sp(φ) = 0 or −1 if g is even. So suppose that φ does not commute
with some p-involution ρ of X and let ρ0 = φρφ. Then by the proof of
Lemma 4.1, the involutions φ and ρ generate the dihedral group G of order
8 which can be identified with Λ/Γ for some NEC group Λ with one of

signatures τ1 = (1;−; [(g+3)/2. . . , 2]; {−}) or τ2 = (0;+; [2, r. . ., 2]; {(2, r1. . ., 2)}),
where 2r + r1 = g + 3. Let θ : Λ → G be the canonical epimorphism.
Then Λ0 = θ−1(hφ, ρφρi) and Γρρ0 = θ−1(ρρ0) are normal subgroups of Λ of
indices 2 and 4 respectively. If σ(Λ) = τ1 then Λ

0 has not any period cycle
and consequently sp(φ) = sp(ρφρ) = 0. So assume that σ(Λ) = τ2. For
any 1 6= h ∈ G, let sh denote the number of elliptic generators xi of Λ such
that θ(xi) = h. Then by Theorem 2.2.4 in [1], the number of periods in the
signature of Γρρ0 is equal to 4sρρ0 +2r1. On the other hand such number is
equal to 2g+2− 4(g− 2p) = 8p+2− 2g and so sρρ0 = (4p+1− g− r1)/2.
Thus sφρφ + sρ = r − sρρ0 = g + 1− 2p is even which means that sφρφ and
sρ have the same parities and consequently the relation θ(x1 . . . xre1) = 1
implies that θ(e1) = 1 or ρρ

0. So e1 ∈ Λ0 and by Theorem 2.3.2 in [1], Λ0

admits two period-cycles of the form (2, r1. . ., 2). Since every period in the
period cycle of Λ0 provides one proper period in the signature of Γρρ0 , it
follows that r1 ≤ F (ρρ0)/2 = 4p+1− g. For g = 4p+1, F (ρρ0) = 0, which
means that there is no proper periods nor link periods in the signature
of Λ0 and consequently sp(φ) = sp(ρφρ) = +1 or +2. For g 6= 4p + 1,
sp(φ) = sp(ρφρ) = −1 or −2 if r1 = 0 and sp(φ) = sp(ρφρ) = ±r1 oth-
erwise, where the sign is − for r1 < 4p + 1 − g and the sign is + for
r1 = 4p+ 1− g.

Corollary 4.3. Let φ be a symmetry of a Riemann surface of genus g in
range 4p− 2 ≤ g ≤ 4p+ 1 admitting two p-hyperelliptic involutions. Then
the possible species of φ are given in the table, where d = 2 or d = 4
according to p is or is not even.
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g sp(φ) Conditions

4p+ 1 0,±1,±2,−2a,+(2p+ 2),+d 1 ≤ a ≤ p+ 1, p > 0

4p 0,−1 p > 1

4p− 1 0,−1,±2,−2a,+d 1 ≤ a ≤ p, p > 2

4p− 2 0,−1 p > 3
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