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Abstract

A symmetry of a Riemann surface X is an antiholomorphic invo-
lution ¢. The species of ¢ is the integer ck, where k is the number of
connected components in the set Fix(p) of fized points of ¢ ande = —1
if X \ Fix(¢) is connected and € = 1 otherwise. A compact Riemann
surface X of genus g > 1 is said to be p-hyperelliptic if it admits a
conformal involution p, called a p-hyperelliptic involution, for which
X/p is an orbifold of genus p. Symmetries of p-hyperelliptic Riemann
surfaces has been studied by Klein for p = 0 and by Bujalance and
Costa for p > 0. Here we study the species of symmetries of so called
pq-hyperelliptic surface defined as a Riemann surface which is p- and
q-hyperelliptic simultaneously.
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1. Introduction

A symmetry of a Riemann surface X is an antiholomorphic involution ¢. It
is known that projective complex algebraic curves bijectively and functori-
ally correspond to compact Riemann surfaces. Under this correspondence
the fact that a surface X is symmetric means that the corresponding curve
can be defined over the reals numbers. Furthermore the non-conjugate,
in the group of all automorphisms of X, symmetries correspond to non-
isomorphic, over the reals numbers, real curves called real forms. Finally
if X has genus ¢ then the set Fix(¢) of fixed points of ¢ consists of k dis-
joint Jordan curves called ovals, where by the classical Harnack Theorem
[4], k varies between 0 and g 4+ 1. This set is homeomorphic to a smooth
projective real model of the corresponding curve. Let € be the separability
character of ¢ defined as ¢ = —1 if X \ Fix(¢) is connected and ¢ = 1
otherwise. A conjugate in Aut™X of ¢ is also a symmetry with the same k
and €. We define the species sp(¢) of the real form represented by ¢ to be
the integer ck.

A compact Riemann surface X of genus g > 2 is said to be p-hyperellip-
tic if X admits a conformal involution p, called a p-hyperelliptic involution,
such that X/p is an orbifold of genus p. This notion has been introduced
by H. Farkas and I. Kra in [3] where they also proved that for g > 4p + 1,
p-hyperelliptic involution is unique and central in the full automorphism
group of X. In particular cases p =0 and p = 1, X are called hyperelliptic
and elliptic-hyperelliptic Rieman sufaces respectively. Let ¢ be a symmetry
commuting with p-hyperelliptic involution p. F.Klein in [5] studied the
species of the symmetries ¢ and ¢p in the hyperelliptic case. E.Bujalance
and A.Costa [2] found all possible species of such pair in the general case p >
0. In particular they determined the symmetry types of any p-hyperelliptic
Riemann surface of genus g > 4p + 1. We show that their results can be
applied for g in range 3p+ 1 < g < 4p+ 1, since in this case any symmetry
and p-hyperelliptic involution commute if g is even while for odd g, except
g=3p+2and p =1 (4), X always admits some conformal involution
commuting with any symmetry. Moreover, for any ¢ in this range, there
exists a Riemann surface of genus g admitting exactly two p-hyperelliptic
involutions whose product is (g — 2p)-hyperelliptic involution. We present
an argumentation providing more detailed results concerning symmetry
types of such surface. In particular we obtain the symmetry types of any
p-hyperelliptic surface of genus ¢ in range 4p — 2 < g <4p + 1.

Furthermore, we study the species of symmetries of so called
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pq-hyperelliptic Riemann surface defined as a Riemann surface which is p-
and g-hyerelliptic simultaneously. In [7] we proved that for ¢ > p, the genus
g of such surface is bounded by 2¢g — 1 < g < 2p + 2¢q 4+ 1 and for any g in
this range, there exists a Riemann surface of genus ¢ admitting commuting
p- and g-hyperelliptic involutions ¢ and p whose product is t-hyperelliptic
involution if and only if t = (¢ — p — q + 2k) for some integer k in range
0 <k < (2p+2g+1—g)/4. Moreover, we justified that p- and g-hyperelliptic
involutions of a Riemann surface of genus g > 3¢+ 1 are central and unique
in the full automorphism group and so they commute with any symmetry
¢. We study the possible species of symmetries ¢, ¢p, 4 and ¢pd in the case
when the product dp is (9 — p — q)-hyperelliptic involution. In particular
we determine the symmetry types of any pg-hyperelliptic Riemann surface
of genus g in range 2p+ 2 —2 < g <2p+2q + 1.

2. Preliminaries

We shall approach the problem using Riemann uniformization theorem by
which each compact Riemann surface X of genus g > 2 can be represented
as the orbit space of the hyperbolic plane H under the action of some Fuch-
sian surface group I'. Furthermore a group of automorphisms (including
possibly anticonformal automorphisms) of a surface X = H/I" can be rep-
resented as A/T" for an NEC group A containing I' as a normal subgroup.
An NEC group is a discrete subgroup of the group of isometries G of ‘H
with compact quotient space, including those reversing orientation. Let
G denote a subgroup of G consisting of orientation-preserving isometries.
Then an NEC group is called a Fuchsian group if it is contained in G
and a proper NEC group otherwise. Macbeath and Wilkie associated to
every NEC group a signature which determines its algebraic and geometric
structure. It has the form

(2.1)  (gE[me,...,mei {1, onasy )y (R - Mksy) )

The numbers m; > 2 are called the proper periods, the brackets
(ni1, ..., ngs,;) the period cycles, the numbers n;; > 2 the link periods and
g > 0 is said to be the orbit genus of A. The orbit space H/A is a surface
having k£ boundary components, orientable or not according to the sign
being + or — and having topological genus g.

NEC groups with the signatures (g;£;[—];{(—),...,(—)}) are called
surface NEC groups. A Fuchsian group can be regarded as an NEC group
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with the signature
(2.2) (g;+:[ma,...,me i {=}).

If A is a proper NEC group with the signature (2.1) then its canonical
Fuchsian subgroup AT = AN G™T has the signature

(23)(% +; [mbmlv cey My My M1y v - Mlsyy oo 5y TELy - - 7n/€8k]; {_})7

where v = ag+ k — 1 and « = 2 if the sign is + and a = 1 otherwise. The
group with the signature (2.1) has a presentation given by generators:

i)  wx,i=1,...,m (elliptic generators)

i)  cji=1,...,k;j=0,...5, (reflection generators )

i) e,i=1,...,k, (boundary generators)

iv) aj,bi,i=1,...¢gif thesignis 4+, (hyperbolic generators)
di,i =1,...gif the sign is —, (glide reflection generators)

and relations

(1) 2M=1,i=1,...,r,

(2

(2) Cis; :eflcioei,i: 1,...,]{,‘,
() == (cjacy)" =Li=1,.. kj=1,...s
(4) z1...z007... ekalblaflbl_l e agbgag_lbg_1 =1, if the sign is +,

:El...zcrel...ekdg...dg:l, if the sign is —.

Any system of generators of an NEC group satisfying the above relations
will be called a canonical system of generators.

Every NEC group has a fundamental region, whose hyperbolic area is
given by

(2.4) p(A) = (ag+k—2+z 1—1/my) +1/2ZZ —1/nij)),

i=11i=1

where « is defined as in (2.3). It is known that an abstract group with the
presentation given by the generators (i) — (iv) and the relations (1) — (4)
can be realized as an NEC group with the signature (2.1) if and only if
the right-hand side of (2.4) is positive. If " is a subgroup of finite index in
an NEC group A then it is an NEC group itself and the Riemann-Hurwitz
formula says that

(2.5) (A :T) = u(T)/u(A)
We shall use the following theorem of Macbetath [6] on the number of
fixed points [6].
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Theorem 2.1. Let X = H/I' be a Riemann surface with the group of
conformal automorphisms G = A/T" and let 1, ..., x, be elliptic canonical
generators of the Fuchsian group A with periods myq, ..., m, respectively.
Let 6 : A — G be the canonical epimorphism and for 1 # h € G let £;(h)
be 1 or 0 according as h is or is not conjugate to a power of 6(x;). Then
the number F(h) of points of X fixed by h is given by the formula

(2.6) ( ’NG Zfﬁ /mz

3. Symmetry types of pg-hyperelliptic Riemann surfaces

Let X = H/T be a pg-hyperelliptic Riemann surface of genus g > 3¢ + 1
for some ¢ > p. By Theorem 3.7 in [7], p- and g-involutions of X are
central and unique in the full automorphism group and so their product
is t-hyperelliptic involution, where the possible values of ¢ are given in the
next

Lemma 3.1. For any integers g,p,q such that 0 < p < ¢, 2g < g <
2p+2qg+1 and g > 1, there exists a Riemann surface of genus g admitting
commuting p- and g-involutions whose product is a t-involution if and only
ift = g—p—q+ 2k for some integer k in range 0 < k < (2p+2q+1—g)/4.

Proof. By Theorem 3.4 in [7], such surface exists if and only if ¢ is a non-
negative integer with (¢+1)/2—(p+1) <t < (g+1)/2 for which p+qg+t—g
is even and nonnegative. Thus t = g — p — g + 2k for some integer k. If [
denotes an integer such that (2p+2¢+1)—4(I+1) < g < (2p+2q+1)—4l
then k <landso 0 <k < (2p+2¢+1-—g)/4

In particular for any p,q,g such that 2 < p < ¢ < 2p and g > 3¢q+1,
there exists a pg-hyperelliptic Riemann surface of genus g with central p and
g-involutions whose product is a (g — p — ¢g)-involution. The next theorem
determines the symmetry types of such surface.

Theorem 3.2. Let X be a symmetric Riemann surface of genus g admit-
ting p- and gq-hyperelliptic involutions 6 and p such that pd is a (g —p — q)-
hyperelliptic involution for some integers p,q,g such that p < q < 2p,
3¢+1<g<2p+2g+1, and let ¢ be a symmetry of X. Then p,d and ¢
pairwise commute and the possible species of symmetries ¢, pp, p6 and ¢pd
are:
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(i) Ifg=0(2):
(0,—1,—1,—1),(—1,0,—1,—1),(—1,—1,0,—1),(—1,—1,—1,0).

(11) Ifg—l (2) and g #2p+2q+1:
( 7 ) ( 17_17_17_1)7

( [ ) ( 2,0,-2, _2)’(_2a _2707_2)7(_27_27 _270)7
(— 2 2a0 ,0),(0,0,—2a,—2a), 1<a<(g+1-2q)/2,

(— 2b0 2b0)(o,—2a0,—2@, 1<b<(g+1-2p)/2,
(—=2¢,0,0,—2¢), (0, —2¢,—2¢,0) 1 <ec<(2p+2¢+1-—g)/2,
(+4,0,0,0),(0,+d,0,0), (0,0, +d,0), (0,0,0,+d),

where d = 2 or d = 4 according to pg = 0 (2) or pg =1 (2).

(iii) If g=2p+2q + 1:

(+(2¢+2),0,+(2¢ +2),0), (0, +(2q + 2),0, +(2q + 2)),
(+(2p+2),+(2p+2),0,0), (0,0, +(2p + 2),+(2p + 2)) and those listed in
(ii) except (—2¢, 0,0, —2c), (0, —2¢, —2¢, 0).

In particular this theorem determines the symmetry types of any pg-hyperelliptic
Riemann surface of genus g > 2p + 2q — 2.

Proof. Let X = H/T be a Riemann surface defined in the theorem and
let t = g —p—q. Then there exist Fuchsian groups I',,, I'; and I'; admitting
I' as a subgroup of index 2 such that () ~ I'y/T", (p) ~ I';/I" and (pd) =~
I';/T. By the Hurwitz Riemann formula, o(T';) = (j;+;[2,29127%,2]) for
j =p,q,t and so j-hyperelliptic involution admits 2g + 2 — 45 fixed points.
By Theorem 3.7 [7], p- and ¢-hyperelliptic involutions of X are unique and
central in the full automorphism group. Thus p, § and ¢ generate the group
G = Zy® Zy © Zy which is isomorphic to A/I" for an NEC group A with a
signature
(¢ +502,.7., 2 {(2,.71.,2),...,(2,.75.,2)}),

where ¢',r,7; are nonnegative integers for which p(A) given by (2.4) is
positive. Let AT be the canonical Fuchsian subgroup of A. Then Gt =
AT /T is a subgroup of G generated by p and §. By Theorem 2.1 and the
Hutwitz-Riemann formula, AT has the signature (0; +; [2,973,2]). Thus by
(2.3),9g+3=2r+5%7; ;7 and 0 = ag’ + s — 1, where & = 2 or 1 according
to the sign in o(A) being + or —. So there are only two possible signatures
of A:

1= (1;—;[2,913)/2 2 {=1) or 75 = (0; +; [2, 93771/ 2): {(2, r1., 2)1).

Let ¢1, @2, ¢3 and ¢4 denote the symmetries ¢, pp, pd and ¢pd respectively
and let S be the sequence of species (sp(¢1), sp(d2), sp(¢3), sp(¢a)). For
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i =1,2,3,4, let A; denote an NEC group such that ¢; = A;/T. By the
Hurwitz-Riemann formula, A; has one of the following signatures

(9 1= ki) /205 [ () Ay (D] or g+ 1 = b =5 [T () i, ()},

The number k; of empty period cycles and the sign in o(A;) determine the
species of ¢;. We shall find them using theorems of section 2 in [1]. If
o(A) = 11 then g is odd and S = (0,0,0,0). So assume that o(A) = 7. Let
0 : A — G be the canonical epimorphism and let x1,...,x,,€,co,...,cr,
denote the canonical generators of A. First suppose that r; = 0. Then
r = (¢g+3)/2 and so ¢ is odd. Let | € {1,2,3,4} be an integer such
that 6(co) = ¢;. Then sp(¢;) = 0 for i # [ and k; = 4 or 2 according
to 0(e) is or is not the identity. By Theorem 2.1, 6 maps (g + 1)/2 — j
of elliptic generators onto j-hyperelliptic involution for j = p,q,t and so
0(e) = 0(x,) .7. O(x1) is identity only if both integers p and g are odd. Since
any nonorientable word does not belong to A, it follows that sp(¢;) = +4
or +2 according to pq being odd or even.

Next assume that 71 # 0. For any pair (I,m) of indices from the set
{1,2,3,4}, let Ay, denote 07 1({¢y, ) and suppose that ¢;¢m, is 5 (I, m)-
hyperelliptic involution for some j(I,m) € {p,q,t}. The epimorphism 6
cannot transform all the canonical reflections of A onto the same symmetry
¢y since otherwise o(A;) would have nonempty period-cycle. First suppose
that every canonical reflection belongs to A;,, for some fixed pair (I, m).
Since T' is a surface group, it follows that 6(co) = 6(c;) and 0(cgi—1) =
0(co)ydpm for i = 1,...,[r1/2]. Thus the relation 6(c,,) = 0(e)~10(co)b(e)
implies that 71 is even, which needs odd ¢ ones again. By Theorem 2.3.3
in [1], kf = kp, = r1 and k; = 0 for @ # [,m. Since every period of
the period-cycle in o(A) provides two proper periods in the signature of
Lj(1,m), it follows that r1 does not exceed Fjq /2. If 71 < Fj(m)/2 then
there exists an elliptic generator xp € A such that 0(xr) = ¢;dm,. So zrco
and xxc; are nonorientable words such that one of them belongs to A;
while the other one to A,, and consequently sp(¢;) = sp(¢m) = —r1. Now
assume that r1 = Fjq ) /2. If g # 2p + 2q + 1 then the sets F), F; and F;
are nonempty and so there exist two elliptic generators of A, say x; and
Zn, such that O(xy) and 0(x,) are two different involutions from the set
{p,0,p0} \ {1dm}. Since 0(xy)0(xn) = Prm, it follows that xpz,co and
TrTpc1 are two nonorientable words such that one of them belongs to A; and
the other one to A,,. Consequently we obtain the same sequence S of species
as before. If g = 2p+2¢g+ 1 then F; = 0 and so neither A; nor A,, does not
admit any nonorientable word and consequently sp(¢;) = sp(¢n,) = +71.
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Now suppose that for every pair (I,m) of indices from {1,2,3,4}, there
exists a canonical reflection not belonging to A;,,. Since the periods in
a period-cycle can be cyclically reordered we can assume that there ex-
ist @, in range 0 < a < B < 1y such that coq1,...,¢8 € Ay, and
COs -+ Cas CR41s -+ Cry € N Since 0(c;) # 0(cip1) foreveryi =0, ... 71—
1, it follows that every period in the period-cycle but ngq41 and nggy1 pro-
vides proper periods in the signature of I'; ,,) while the exceptional periods
noa+1 and ngg41 provide the proper periods in the signature of T'j, ) for
some a € {l,m} and b ¢ {l,m}. Repeating above argumentation for the
pair (a,b) we obtain that 7, — 2 periods of period-cycle provide the proper
periods in the signature of I';(, 3) which implies that 711 —2 =1orr —2 = 2.
Since 1 = g + 3 — 2r, it follows that g is even in the first case and odd in
the second one. If 71 = 3 then there exists i € {1,2,3,4} such that none of
canonical reflections does not belong to A; and so sp(¢;) = 0. For k # 1,
there exists nonorientable word in Ay expressible as a composition of elliptic
generators and a reflection and so sp(¢r) = —1. Next assume that r = 4.
If there exists i € {1,2,3,4} such that 0(c;) # ¢; for t = 0,...,71 then
sp(¢i) =0, sp(¢r) = —2 for k # i and otherwise S = (—1,—1,—1,—1).

Finally for any sequence S listed in the theorem, there exists an NEC
group A and an epimorphism 0 : A — Zy @ Zy @ Z3 such that X = H /kerf
is a pg-hyperelliptic Riemann surface with symmetries ¢, ¢p, pd ¢pd having
species S.

By Theorem 3.7 in [7] and Lemma 3.1, for any pg-hyperelliptic Riemann
surface of genus g in range 2p+2q — 2 < g < 2p + 2¢q + 1, the product of p-
and g-involutions is (g — p — ¢)-involution and so this theorem determines
the symmetry types of such surface.

4. On symmetric p-hyperelliptic Riemann surfaces

Let ¢ and p be a symmetry and p-hyperelliptic involution of a Riemann
surface X of genus g > 1. E. Bujalance and A. Costa in [2] determined
the possible species of the pair of symmetries ¢ and ¢p in the case when
¢ and p commute. In particular, they determined the symmetry types of
any p-hyperelliptic Riemann surface of genus g > 4p + 1. The next lemma
shows that their results can be applied for some lower genera either.

Lemma 4.1. Let X be a symmetric p-hyperelliptic Riemann surface of
genus g in range 3p+1 < g < 4p+1. If g is even then any symmetry ¢ and
p-hyperelliptic involution p of X commute. If ¢ and p do not commute for
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some odd g, then (¢p)? is (g — 2p + 2k)-hyperelliptic involution for some
integer k in range 0 < k < (4p + 1 — g)/4 and (¢p)? is central in the full
automorphism group of X except g =3p+2 and p=1(4).

Proof. Let X = H/I be a p-hyperelliptic Riemann surface of genus
g > 3p + 1 and suppose that ¢ is a symmetry not commuting with p-
hyperelliptic involution p. Then p’ = ¢p¢ is another p-hyperelliptic involu-
tion of X. By Theorem 3.2 in [8], every two p-involutions of X commute.
Thus ¢ and p generate the dihedral group G of order 8 which can be iden-
tified with A/T for some NEC group A. Let AT be the canonical subgroup
of A. Then A*/T is isomorphic to the group Zs @ Zs generated by p and
p'. By Lemma 3.1, the product pp’ is (g — 2p + 2k)-hyperelliptic involution,
for some integer k in range 0 < k < (4p + 1 — g)/4. Thus by Theorem 2.1
and the Hurwitz-Riemann formula, o(AT) = (k; +; [2,9737%% 3]) and con-
sequently by (2'3)7 J(A) = (7; +; [27 e 2]; {(2’ e 2)i:1,...787 (_)7 S (_)})7
for some integers r,7;,s,u such that ay +s+u =k and 2r + > 7 ;1 =
g + 3 — 4k. The canonical epimorphism 6 : A — G maps the canonical
reflections of A onto ¢ or pgp. Since I' is a surface Fuchsian group, it
follows that 0(c;j—1) # 0(cij) for 1 < i < s, 1 < j < r;. Furthermore
O(cir,) = 0(e;)"10(cio)0(e;) 1, which implies that 7; is even for i = 1,...,s
and consequently g = 2r 4+ > 7 r; + 4k — 3 is odd. Thus any symme-
try of p-hyperelliptic surface of even genus ¢ > 3p + 1 commutes with
p-hyperelliptic involution. Finally by Theorem 3.2 and Proposition 3.5 in
[8], for any g > 3p+1 except g = 3p+2 and p = 1(4), X can admit at most
two p-involutions which means that pp’ is central in the full automorphism
group of X.

So if a symmetry ¢ and p-hyperelliptic involution p of a Riemann surface
X of genus g > 3p + 1 do not commute then X is t-hyperelliptic, where
t =g —2p+ 2k for some k in range 0 < k < (4p + 1 — g)/4. Furthermore,
except the case when g = 3p + 2 and p = 1(4), ¢ is commuting with
a t-hyperelliptic involution of X and consequently we can determine the
possible species of ¢ using results of Bujalance and Costa.

For any p > 0 and g in range 3p+1 < g < 4p+1, there exists a Riemann
surface admitting two p-involutions whose product is (g — 2p)-involution.
The next theorem determines the symmetry types of such surface.

Theorem 4.2. Let X be a symmetric Riemann surface of genus g > 3p+1,
except g = 3p + 2 and p = 1 (4), admitting two p-hyperelliptic involutions
whose product is (g — 2p)-hyperelliptic involution and let ¢ be a symmetry
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of X. Then for even g, sp(¢) = 0 or —1. If g is odd then sp(¢) is one
of integers 0, —1, —2a, +d, where d = 2 or d = 4 according to p = 0 (2)
orp=1(2)ord=2p+2 for g =4p+ 1 and a is positive integer not
exceeding (g+1—2p)/2 if ¢ commutes with p-involutions and not exceeding
(4p+1—g)/2 otherwise.

Proof. Let ¢ be a symmetry of a p-hyperelliptic Riemann surface
X defined in theorem. If ¢ commutes with p-involutions of X then we
can find sp(¢) by repeating the argumentation from the proof of Theo-
rem 3.2 for ¢ = p. In particular, using the previous Lemma we obtain
that sp(¢) = 0 or —1 if g is even. So suppose that ¢ does not commute
with some p-involution p of X and let p’ = ¢pp. Then by the proof of
Lemma 4.1, the involutions ¢ and p generate the dihedral group G of order
8 which can be identified with A/I" for some NEC group A with one of
signatures 71 = (1; —; [9F3)/2 2]; {=}) or 7 = (0;+;[2,.7.,2]; {(2, "1.,2)}),
where 2r + 71 = g+ 3. Let § : A — G be the canonical epimorphism.
Then A’ = 071 ((, ppp)) and T,y = 071 (pp’) are normal subgroups of A of
indices 2 and 4 respectively. If 0(A) = 71 then A’ has not any period cycle
and consequently sp(¢) = sp(pop) = 0. So assume that o(A) = 7». For
any 1 # h € G, let s, denote the number of elliptic generators z; of A such
that 6(z;) = h. Then by Theorem 2.2.4 in [1], the number of periods in the
signature of ',y is equal to 4s,,, +2r;. On the other hand such number is
equal to 2g +2 —4(g9 —2p) = 8p+2—2g and so s,y = (dp+1—g—11)/2.
Thus sgpp + 8, =1 — 5,y = g+ 1 — 2p is even which means that s4,s and
s, have the same parities and consequently the relation 0(z1...2,e1) =1
implies that 6(e;) = 1 or pp’. So e; € A’ and by Theorem 2.3.2 in [1], A’
admits two period-cycles of the form (2,.71.,2). Since every period in the
period cycle of A’ provides one proper period in the signature of T',y, it
follows that 1 < F(pp')/2=4p+1—g. For g =4p+1, F(pp’) = 0, which
means that there is no proper periods nor link periods in the signature
of A" and consequently sp(¢) = sp(ppp) = +1 or +2. For g # 4p + 1,
sp(@) = sp(pgp) = —1 or =2 if r; = 0 and sp(¢) = sp(ppp) = +r1 oth-
erwise, where the sign is — for r1 < 4p + 1 — g and the sign is + for
rm=4p+1—g.

Corollary 4.3. Let ¢ be a symmetry of a Riemann surface of genus g in
range 4p — 2 < g < 4p + 1 admitting two p-hyperelliptic involutions. Then
the possible species of ¢ are given in the table, where d = 2 or d = 4
according to p is or is not even.
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g sp(¢) Conditions
dp+110,£1,4£2, —2a,+(2p+2),+d | 1 <a<p+1,p>0
4p 0,—-1 p>1
dp—110,—-1,4£2, —2a,+d 1<a<pp>2
4p—210,-1 p>3
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