Proyecciones Journal of Mathematics Vol. 25, N° 2, pp. 179-189, August 2006. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172006000200004

ON SYMMETRIES OF PQ-HYPERELLIPTIC RIEMANN SURFACES *

EWA TYSZKOWSKA UNIVERSITY OF GDANSK, POLAND

Received : May 2006. Accepted : June 2006

Abstract

A symmetry of a Riemann surface X is an antiholomorphic involution ϕ . The species of ϕ is the integer εk , where k is the number of connected components in the set $\operatorname{Fix}(\phi)$ of fixed points of ϕ and $\varepsilon = -1$ if $X \setminus \operatorname{Fix}(\phi)$ is connected and $\varepsilon = 1$ otherwise. A compact Riemann surface X of genus g > 1 is said to be p-hyperelliptic if it admits a conformal involution ρ , called a p-hyperelliptic involution, for which X/ρ is an orbifold of genus p. Symmetries of p-hyperelliptic Riemann surfaces has been studied by Klein for p = 0 and by Bujalance and Costa for p > 0. Here we study the species of symmetries of so called pq-hyperelliptic surface defined as a Riemann surface which is p- and q-hyperelliptic simultaneously.

keywords : *p*-hyperelliptic Riemann surface, automorphisms of Riemann surface, fixed points of automorphism, symmetry

^{*}Supported by BW 5100-5-0089-5

1. Introduction

A symmetry of a Riemann surface X is an antiholomorphic involution ϕ . It is known that projective complex algebraic curves bijectively and functorially correspond to compact Riemann surfaces. Under this correspondence the fact that a surface X is symmetric means that the corresponding curve can be defined over the reals numbers. Furthermore the non-conjugate, in the group of all automorphisms of X, symmetries correspond to nonisomorphic, over the reals numbers, real curves called real forms. Finally if X has genus g then the set $\operatorname{Fix}(\phi)$ of fixed points of ϕ consists of k disjoint Jordan curves called ovals, where by the classical Harnack Theorem [4], k varies between 0 and g + 1. This set is homeomorphic to a smooth projective real model of the corresponding curve. Let ε be the *separability character* of ϕ defined as $\varepsilon = -1$ if $X \setminus \operatorname{Fix}(\phi)$ is connected and $\varepsilon = 1$ otherwise. A conjugate in $\operatorname{Aut}^{\pm} X$ of ϕ is also a symmetry with the same k and ε . We define the *species* $\operatorname{sp}(\phi)$ of the real form represented by ϕ to be the integer εk .

A compact Riemann surface X of genus $g \ge 2$ is said to be *p*-hyperelliptic if X admits a conformal involution ρ , called a *p*-hyperelliptic involution, such that X/ρ is an orbifold of genus p. This notion has been introduced by H. Farkas and I. Kra in [3] where they also proved that for g > 4p + 1, *p*-hyperelliptic involution is unique and central in the full automorphism group of X. In particular cases p = 0 and p = 1, X are called *hyperelliptic* and *elliptic-hyperelliptic* Rieman sufaces respectively. Let ϕ be a symmetry commuting with p-hyperelliptic involution ρ . F.Klein in [5] studied the species of the symmetries ϕ and $\phi \rho$ in the hyperelliptic case. E.Bujalance and A.Costa [2] found all possible species of such pair in the general case $p \geq p$ 0. In particular they determined the symmetry types of any p-hyperelliptic Riemann surface of genus g > 4p + 1. We show that their results can be applied for g in range $3p + 1 < g \leq 4p + 1$, since in this case any symmetry and p-hyperelliptic involution commute if g is even while for odd g, except g = 3p + 2 and $p \equiv 1$ (4), X always admits some conformal involution commuting with any symmetry. Moreover, for any g in this range, there exists a Riemann surface of genus q admitting exactly two p-hyperelliptic involutions whose product is (q-2p)-hyperelliptic involution. We present an argumentation providing more detailed results concerning symmetry types of such surface. In particular we obtain the symmetry types of any *p*-hyperelliptic surface of genus g in range $4p - 2 \le g \le 4p + 1$.

Furthermore, we study the species of symmetries of so called

181

pq-hyperelliptic Riemann surface defined as a Riemann surface which is pand q-hyperelliptic simultaneously. In [7] we proved that for q > p, the genus g of such surface is bounded by $2q - 1 \le g \le 2p + 2q + 1$ and for any g in this range, there exists a Riemann surface of genus g admitting commuting p- and q-hyperelliptic involutions δ and ρ whose product is t-hyperelliptic involution if and only if t = (g - p - q + 2k) for some integer k in range $0 \le k \le (2p+2q+1-g)/4$. Moreover, we justified that p- and q-hyperelliptic involutions of a Riemann surface of genus g > 3q + 1 are central and unique in the full automorphism group and so they commute with any symmetry ϕ . We study the possible species of symmetries ϕ , $\phi\rho$, $\phi\delta$ and $\phi\rho\delta$ in the case when the product $\delta\rho$ is (g - p - q)-hyperelliptic involution. In particular we determine the symmetry types of any pq-hyperelliptic Riemann surface of genus g in range $2p + 2q - 2 \le g \le 2p + 2q + 1$.

2. Preliminaries

We shall approach the problem using Riemann uniformization theorem by which each compact Riemann surface X of genus $g \geq 2$ can be represented as the orbit space of the hyperbolic plane \mathcal{H} under the action of some Fuchsian surface group Γ . Furthermore a group of automorphisms (including possibly anticonformal automorphisms) of a surface $X = \mathcal{H}/\Gamma$ can be represented as Λ/Γ for an NEC group Λ containing Γ as a normal subgroup. An NEC group is a discrete subgroup of the group of isometries \mathcal{G} of \mathcal{H} with compact quotient space, including those reversing orientation. Let \mathcal{G}^+ denote a subgroup of \mathcal{G} consisting of orientation-preserving isometries. Then an NEC group is called a *Fuchsian group* if it is contained in \mathcal{G}^+ and a *proper NEC group* otherwise. Macbeath and Wilkie associated to every NEC group a signature which determines its algebraic and geometric structure. It has the form

$$(2.1) \qquad (g; \pm; [m_1, \dots, m_r]; \{(n_{11}, \dots, n_{1s_1}), \dots, (n_{k1}, \dots, n_{ks_k})\})$$

The numbers $m_i \geq 2$ are called the *proper periods*, the brackets

 $(n_{i1}, \ldots, n_{is_i})$ the period cycles, the numbers $n_{ij} \geq 2$ the link periods and $g \geq 0$ is said to be the orbit genus of Λ . The orbit space \mathcal{H}/Λ is a surface having k boundary components, orientable or not according to the sign being + or - and having topological genus g.

NEC groups with the signatures $(g; \pm; [-]; \{(-), \ldots, (-)\})$ are called *surface NEC groups*. A Fuchsian group can be regarded as an NEC group

with the signature (2.2) $(g; +; [m_1, ..., m_r]; \{-\}).$

If Λ is a proper NEC group with the signature (2.1) then its *canonical* Fuchsian subgroup $\Lambda^+ = \Lambda \cap \mathcal{G}^+$ has the signature

 $(2.3)(\gamma; +; [m_1, m_1, \ldots, m_r, m_r, n_{11}, \ldots, n_{1s_1}, \ldots, n_{k1}, \ldots, n_{ks_k}]; \{-\}),$

where $\gamma = \alpha g + k - 1$ and $\alpha = 2$ if the sign is + and $\alpha = 1$ otherwise. The group with the signature (2.1) has a presentation given by generators:

 $\begin{array}{ll} (i) & x_i, i = 1, \dots, r, \\ (ii) & c_{ij}, i = 1, \dots, k; j = 0, \dots s_i, \\ (iii) & e_i, i = 1, \dots, k, \\ (iv) & a_i, b_i, i = 1, \dots g \text{ if the sign is } +, \\ d_i, i = 1, \dots g \text{ if the sign is } -, \\ \end{array}$

and relations

(1) $x_i^{m_i} = 1, i = 1, \dots, r,$ (2) $c_{is_i} = e_i^{-1} c_{i0} e_i, i = 1, \dots, k,$ (3) $c_{ij-1}^2 = c_{ij}^2 = (c_{ij-1} c_{ij})^{n_{ij}} = 1, i = 1, \dots, k; j = 1, \dots, s_i,$ (4) $x_1 \dots x_r e_1 \dots e_k a_1 b_1 a_1^{-1} b_1^{-1} \dots a_g b_g a_g^{-1} b_g^{-1} = 1, \text{ if the sign is } +,$ $x_1 \dots x_r e_1 \dots e_k d_i^2 \dots d_g^2 = 1, \text{ if the sign is } -.$

Any system of generators of an NEC group satisfying the above relations will be called *a canonical system* of generators.

Every NEC group has a fundamental region, whose hyperbolic area is given by

(2.4)
$$\mu(\Lambda) = 2\pi(\alpha g + k - 2 + \sum_{i=1}^{r} (1 - 1/m_i) + 1/2 \sum_{i=1}^{k} \sum_{i=1}^{s_i} (1 - 1/n_{ij})),$$

where α is defined as in (2.3). It is known that an abstract group with the presentation given by the generators (i) - (iv) and the relations (1) - (4) can be realized as an NEC group with the signature (2.1) if and only if the right-hand side of (2.4) is positive. If Γ is a subgroup of finite index in an NEC group Λ then it is an NEC group itself and the Riemann-Hurwitz formula says that

(2.5)
$$[\Lambda:\Gamma] = \mu(\Gamma)/\mu(\Lambda)$$

We shall use the following theorem of Macbetath [6] on the number of fixed points [6].

183

Theorem 2.1. Let $X = \mathcal{H}/\Gamma$ be a Riemann surface with the group of conformal automorphisms $G = \Lambda/\Gamma$ and let $x_1, ..., x_r$ be elliptic canonical generators of the Fuchsian group Λ with periods $m_1, ..., m_r$ respectively. Let $\theta : \Lambda \to G$ be the canonical epimorphism and for $1 \neq h \in G$ let $\varepsilon_i(h)$ be 1 or 0 according as h is or is not conjugate to a power of $\theta(x_i)$. Then the number F(h) of points of X fixed by h is given by the formula

(2.6)
$$F(h) = |N_G(\langle h \rangle)| \sum_{i=1}^r \varepsilon_i(h) / m_i.$$

3. Symmetry types of pq-hyperelliptic Riemann surfaces

Let $X = \mathcal{H}/\Gamma$ be a *pq*-hyperelliptic Riemann surface of genus g > 3q + 1for some q > p. By Theorem 3.7 in [7], *p*- and *q*-involutions of X are central and unique in the full automorphism group and so their product is *t*-hyperelliptic involution, where the possible values of *t* are given in the next

Lemma 3.1. For any integers g, p, q such that $0 \le p \le q$, $2q \le g \le 2p + 2q + 1$ and g > 1, there exists a Riemann surface of genus g admitting commuting p- and q-involutions whose product is a t-involution if and only if t = g - p - q + 2k for some integer k in range $0 \le k \le (2p + 2q + 1 - g)/4$.

Proof. By Theorem 3.4 in [7], such surface exists if and only if t is a nonnegative integer with $(g+1)/2 - (p+1) \le t \le (g+1)/2$ for which p+q+t-gis even and nonnegative. Thus t = g - p - q + 2k for some integer k. If l denotes an integer such that $(2p+2q+1) - 4(l+1) < g \le (2p+2q+1) - 4l$ then $k \le l$ and so $0 \le k \le (2p+2q+1-g)/4$.

In particular for any p, q, g such that $2 \le p < q < 2p$ and g > 3q + 1, there exists a pq-hyperelliptic Riemann surface of genus g with central p and q-involutions whose product is a (g - p - q)-involution. The next theorem determines the symmetry types of such surface.

Theorem 3.2. Let X be a symmetric Riemann surface of genus g admitting p- and q-hyperelliptic involutions δ and ρ such that $\rho\delta$ is a (g - p - q)hyperelliptic involution for some integers p, q, g such that p < q < 2p, $3q + 1 < g \leq 2p + 2q + 1$, and let ϕ be a symmetry of X. Then ρ, δ and ϕ pairwise commute and the possible species of symmetries $\phi, \phi\rho, \phi\delta$ and $\phi\rho\delta$ are: (i) If $g \equiv 0$ (2): (0, -1, -1, -1), (-1, 0, -1, -1), (-1, -1, 0, -1), (-1, -1, -1, 0).

(ii) If $g \equiv 1$ (2) and $g \neq 2p + 2q + 1$: (0, 0, 0, 0), (-1, -1, -1, -1), (0, -2, -2, -2), (-2, 0, -2, -2), (-2, -2, 0, -2), (-2, -2, -2, 0), $(-2a, -2a, 0, 0), (0, 0, -2a, -2a), 1 \leq a \leq (g + 1 - 2q)/2,$ $(-2b, 0, -2b, 0), (0, -2b, 0, -2b), 1 \leq b \leq (g + 1 - 2p)/2,$ $(-2c, 0, 0, -2c), (0, -2c, -2c, 0), 1 \leq c \leq (2p + 2q + 1 - g)/2,$ (+d, 0, 0, 0), (0, +d, 0, 0), (0, 0, +d, 0), (0, 0, 0, +d),where d = 2 or d = 4 according to $pq \equiv 0$ (2) or $pq \equiv 1$ (2).

(iii) If g = 2p + 2q + 1: (+(2q + 2), 0, +(2q + 2), 0), (0, +(2q + 2), 0, +(2q + 2)), (+(2p + 2), +(2p + 2), 0, 0), (0, 0, +(2p + 2), +(2p + 2)) and those listed in (ii) except (-2c, 0, 0, -2c), (0, -2c, -2c, 0).

In particular this theorem determines the symmetry types of any pq-hyperelliptic Riemann surface of genus $g \ge 2p + 2q - 2$.

Proof. Let $X = \mathcal{H}/\Gamma$ be a Riemann surface defined in the theorem and let t = g - p - q. Then there exist Fuchsian groups Γ_p, Γ_q and Γ_t admitting Γ as a subgroup of index 2 such that $\langle \delta \rangle \simeq \Gamma_p/\Gamma$, $\langle \rho \rangle \simeq \Gamma_q/\Gamma$ and $\langle \rho \delta \rangle \simeq$ Γ_t/Γ . By the Hurwitz Riemann formula, $\sigma(\Gamma_j) = (j; +; [2, 2g+2-4j, 2])$ for j = p, q, t and so j-hyperelliptic involution admits 2g + 2 - 4j fixed points. By Theorem 3.7 [7], p- and q-hyperelliptic involutions of X are unique and central in the full automorphism group. Thus ρ, δ and ϕ generate the group $G = Z_2 \oplus Z_2 \oplus Z_2$ which is isomorphic to Λ/Γ for an NEC group Λ with a signature

$$(g'; \pm; [2, .., 2]; \{(2, .., 2), \dots, (2, .., 2)\}),$$

where g', r, r_i are nonnegative integers for which $\mu(\Lambda)$ given by (2.4) is positive. Let Λ^+ be the canonical Fuchsian subgroup of Λ . Then $G^+ = \Lambda^+/\Gamma$ is a subgroup of G generated by ρ and δ . By Theorem 2.1 and the Hutwitz-Riemann formula, Λ^+ has the signature $(0; +; [2, q^{+3}, 2])$. Thus by (2.3), $g + 3 = 2r + \sum_{i=1}^{s} r_i$ and $0 = \alpha g' + s - 1$, where $\alpha = 2$ or 1 according to the sign in $\sigma(\Lambda)$ being + or -. So there are only two possible signatures of Λ :

$$\tau_1 = (1; -; [2, \overset{(g+3)/2}{\dots}, 2]; \{-\}) \text{ or } \tau_2 = (0; +; [2, \overset{(g+3-r_1)/2}{\dots}, 2]; \{(2, \overset{r_1}{\dots}, 2)\})$$

Let ϕ_1, ϕ_2, ϕ_3 and ϕ_4 denote the symmetries $\phi, \phi\rho, \phi\delta$ and $\phi\rho\delta$ respectively and let S be the sequence of species $(sp(\phi_1), sp(\phi_2), sp(\phi_3), sp(\phi_4))$. For i = 1, 2, 3, 4, let Λ_i denote an NEC group such that $\phi_i \cong \Lambda_i / \Gamma$. By the Hurwitz-Riemann formula, Λ_i has one of the following signatures

$$((g+1-k_i)/2;+;[-];\{(-) \stackrel{k_i}{\ldots},(-)\})$$
 or $(g+1-k_i;-;[-];\{(-) \stackrel{k_i}{\ldots},(-)\})$.

The number k_i of empty period cycles and the sign in $\sigma(\Lambda_i)$ determine the species of ϕ_i . We shall find them using theorems of section 2 in [1]. If $\sigma(\Lambda) = \tau_1$ then g is odd and S = (0, 0, 0, 0). So assume that $\sigma(\Lambda) = \tau_2$. Let $\theta : \Lambda \to G$ be the canonical epimorphism and let $x_1, \ldots, x_r, e, c_0, \ldots, c_{r_1}$ denote the canonical generators of Λ . First suppose that $r_1 = 0$. Then r = (g+3)/2 and so g is odd. Let $l \in \{1, 2, 3, 4\}$ be an integer such that $\theta(c_0) = \phi_l$. Then $\operatorname{sp}(\phi_i) = 0$ for $i \neq l$ and $k_l = 4$ or 2 according to $\theta(e)$ is or is not the identity. By Theorem 2.1, θ maps (g+1)/2 - j of elliptic generators onto j-hyperelliptic involution for j = p, q, t and so $\theta(e) = \theta(x_r) \cdot \overline{f} \cdot \theta(x_1)$ is identity only if both integers p and q are odd. Since any nonorientable word does not belong to Λ_l , it follows that $\operatorname{sp}(\phi_l) = +4$ or +2 according to pq being odd or even.

Next assume that $r_1 \neq 0$. For any pair (l, m) of indices from the set $\{1, 2, 3, 4\}$, let $\Lambda_{l,m}$ denote $\theta^{-1}(\langle \phi_l, \phi_m \rangle)$ and suppose that $\phi_l \phi_m$ is j(l, m)hyperelliptic involution for some $j(l,m) \in \{p,q,t\}$. The epimorphism θ cannot transform all the canonical reflections of Λ onto the same symmetry ϕ_l since otherwise $\sigma(\Lambda_l)$ would have nonempty period-cycle. First suppose that every canonical reflection belongs to $\Lambda_{l,m}$ for some fixed pair (l,m). Since Γ is a surface group, it follows that $\theta(c_0) = \theta(c_{2i})$ and $\theta(c_{2i-1}) =$ $\theta(c_0)\phi_l\phi_m$ for $i=1,\ldots,[r_1/2]$. Thus the relation $\theta(c_{r_1})=\theta(e)^{-1}\theta(c_0)\theta(e)$ implies that r_1 is even, which needs odd g ones again. By Theorem 2.3.3 in [1], $k_l = k_m = r_1$ and $k_i = 0$ for $i \neq l, m$. Since every period of the period-cycle in $\sigma(\Lambda)$ provides two proper periods in the signature of $\Gamma_{j(l,m)}$, it follows that r_1 does not exceed $F_{j(l,m)}/2$. If $r_1 < F_{j(l,m)}/2$ then there exists an elliptic generator $x_k \in \Lambda$ such that $\theta(x_k) = \phi_l \phi_m$. So $x_k c_0$ and $x_k c_1$ are nonorientable words such that one of them belongs to Λ_l while the other one to Λ_m and consequently $\operatorname{sp}(\phi_l) = \operatorname{sp}(\phi_m) = -r_1$. Now assume that $r_1 = F_{i(l,m)}/2$. If $g \neq 2p + 2q + 1$ then the sets F_p, F_q and F_t are nonempty and so there exist two elliptic generators of Λ , say x_k and x_n , such that $\theta(x_k)$ and $\theta(x_n)$ are two different involutions from the set $\{\rho, \delta, \rho\delta\} \setminus \{\phi_l \phi_m\}$. Since $\theta(x_k)\theta(x_n) = \phi_l \phi_m$, it follows that $x_k x_n c_0$ and $x_k x_n c_1$ are two nonorientable words such that one of them belongs to Λ_l and the other one to Λ_m . Consequently we obtain the same sequence S of species as before. If g = 2p + 2q + 1 then $F_t = 0$ and so neither Λ_l nor Λ_m does not admit any nonorientable word and consequently $\operatorname{sp}(\phi_l) = \operatorname{sp}(\phi_m) = +r_1$.

Now suppose that for every pair (l, m) of indices from $\{1, 2, 3, 4\}$, there exists a canonical reflection not belonging to $\Lambda_{l,m}$. Since the periods in a period-cycle can be cyclically reordered we can assume that there exist α, β in range $0 \leq \alpha < \beta < r_1$ such that $c_{\alpha+1}, \ldots, c_\beta \notin \Lambda_{l,m}$ and $c_0, \ldots, c_{\alpha}, c_{\beta+1}, \ldots, c_{r_1} \in \Lambda_{l,m}$. Since $\theta(c_i) \neq \theta(c_{i+1})$ for every $i = 0, \ldots, r_1 - 1$ 1, it follows that every period in the period-cycle but $n_{0\alpha+1}$ and $n_{0\beta+1}$ provides proper periods in the signature of $\Gamma_{j(l,m)}$ while the exceptional periods $n_{0\alpha+1}$ and $n_{0\beta+1}$ provide the proper periods in the signature of $\Gamma_{j(a,b)}$ for some $a \in \{l, m\}$ and $b \notin \{l, m\}$. Repeating above argumentation for the pair (a, b) we obtain that $r_1 - 2$ periods of period-cycle provide the proper periods in the signature of $\Gamma_{j(a,b)}$ which implies that $r_1 - 2 = 1$ or $r_1 - 2 = 2$. Since $r_1 = g + 3 - 2r$, it follows that g is even in the first case and odd in the second one. If $r_1 = 3$ then there exists $i \in \{1, 2, 3, 4\}$ such that none of canonical reflections does not belong to Λ_i and so $\operatorname{sp}(\phi_i) = 0$. For $k \neq i$, there exists nonorientable word in Λ_k expressible as a composition of elliptic generators and a reflection and so $sp(\phi_k) = -1$. Next assume that $r_1 = 4$. If there exists $i \in \{1, 2, 3, 4\}$ such that $\theta(c_t) \neq \phi_i$ for $t = 0, \ldots, r_1$ then $sp(\phi_i) = 0$, $sp(\phi_k) = -2$ for $k \neq i$ and otherwise S = (-1, -1, -1, -1).

Finally for any sequence S listed in the theorem, there exists an NEC group Λ and an epimorphism $\theta : \Lambda \to Z_2 \oplus Z_2 \oplus Z_2$ such that $X = \mathcal{H}/\ker\theta$ is a pq-hyperelliptic Riemann surface with symmetries $\phi, \phi\rho, \rho\delta \phi\rho\delta$ having species S.

By Theorem 3.7 in [7] and Lemma 3.1, for any pq-hyperelliptic Riemann surface of genus g in range $2p + 2q - 2 \le g \le 2p + 2q + 1$, the product of pand q-involutions is (g - p - q)-involution and so this theorem determines the symmetry types of such surface.

4. On symmetric *p*-hyperelliptic Riemann surfaces

Let ϕ and ρ be a symmetry and *p*-hyperelliptic involution of a Riemann surface X of genus g > 1. E. Bujalance and A. Costa in [2] determined the possible species of the pair of symmetries ϕ and $\phi\rho$ in the case when ϕ and ρ commute. In particular, they determined the symmetry types of any *p*-hyperelliptic Riemann surface of genus g > 4p + 1. The next lemma shows that their results can be applied for some lower genera either.

Lemma 4.1. Let X be a symmetric p-hyperelliptic Riemann surface of genus g in range $3p+1 < g \leq 4p+1$. If g is even then any symmetry ϕ and p-hyperelliptic involution ρ of X commute. If ϕ and ρ do not commute for

some odd g, then $(\phi \rho)^2$ is (g - 2p + 2k)-hyperelliptic involution for some integer k in range $0 \le k \le (4p + 1 - g)/4$ and $(\phi \rho)^2$ is central in the full automorphism group of X except g = 3p + 2 and $p \equiv 1$ (4).

Proof. Let $X = \mathcal{H}/\Gamma$ be a *p*-hyperelliptic Riemann surface of genus g > 3p + 1 and suppose that ϕ is a symmetry not commuting with phyperelliptic involution ρ . Then $\rho' = \phi \rho \phi$ is another *p*-hyperelliptic involution of X. By Theorem 3.2 in [8], every two p-involutions of X commute. Thus ϕ and ρ generate the dihedral group G of order 8 which can be identified with Λ/Γ for some NEC group Λ . Let Λ^+ be the canonical subgroup of Λ . Then Λ^+/Γ is isomorphic to the group $Z_2 \oplus Z_2$ generated by ρ and ρ' . By Lemma 3.1, the product $\rho\rho'$ is (g-2p+2k)-hyperelliptic involution, for some integer k in range $0 \le k \le (4p+1-q)/4$. Thus by Theorem 2.1 and the Hurwitz-Riemann formula, $\sigma(\Lambda^+) = (k; +; [2, \overset{g+3-4k}{\dots}, 3])$ and consequently by (2.3), $\sigma(\Lambda) = (\gamma; \pm; [2, ..., 2]; \{(2, ..., 2)_{i=1,...,s}, (-), ..., (-)\}),$ for some integers r, r_i, s, u such that $\alpha \gamma + s + u = k$ and $2r + \sum_{i=1}^{s} r_i = 1$ g + 3 - 4k. The canonical epimorphism $\theta : \Lambda \to G$ maps the canonical reflections of Λ onto ϕ or $\rho\phi\rho$. Since Γ is a surface Fuchsian group, it follows that $\theta(c_{ij-1}) \neq \theta(c_{ij})$ for $1 \leq i \leq s, 1 \leq j \leq r_i$. Furthermore $\theta(c_{ir_i}) = \theta(e_i)^{-1} \theta(c_{i0}) \theta(e_i)^{-1}$, which implies that r_i is even for $i = 1, \ldots, s$ and consequently $g = 2r + \sum_{i=1}^{s} r_i + 4k - 3$ is odd. Thus any symmetry of p-hyperelliptic surface of even genus g > 3p + 1 commutes with p-hyperelliptic involution. Finally by Theorem 3.2 and Proposition 3.5 in [8], for any q > 3p+1 except q = 3p+2 and $p \equiv 1$ (4), X can admit at most two p-involutions which means that $\rho \rho'$ is central in the full automorphism group of X.

So if a symmetry ϕ and *p*-hyperelliptic involution ρ of a Riemann surface X of genus g > 3p + 1 do not commute then X is *t*-hyperelliptic, where t = g - 2p + 2k for some k in range $0 \le k \le (4p + 1 - g)/4$. Furthermore, except the case when g = 3p + 2 and $p \equiv 1(4)$, ϕ is commuting with a *t*-hyperelliptic involution of X and consequently we can determine the possible species of ϕ using results of Bujalance and Costa.

For any p > 0 and g in range $3p+1 < g \le 4p+1$, there exists a Riemann surface admitting two p-involutions whose product is (g - 2p)-involution. The next theorem determines the symmetry types of such surface.

Theorem 4.2. Let X be a symmetric Riemann surface of genus g > 3p+1, except g = 3p + 2 and $p \equiv 1$ (4), admitting two p-hyperelliptic involutions whose product is (g - 2p)-hyperelliptic involution and let ϕ be a symmetry

of X. Then for even g, $\operatorname{sp}(\phi) = 0$ or -1. If g is odd then $\operatorname{sp}(\phi)$ is one of integers 0, -1, -2a, +d, where d = 2 or d = 4 according to $p \equiv 0$ (2) or $p \equiv 1$ (2) or d = 2p + 2 for g = 4p + 1 and a is positive integer not exceeding (g+1-2p)/2 if ϕ commutes with p-involutions and not exceeding (4p+1-g)/2 otherwise.

Proof. Let ϕ be a symmetry of a *p*-hyperelliptic Riemann surface X defined in theorem. If ϕ commutes with p-involutions of X then we can find $sp(\phi)$ by repeating the argumentation from the proof of Theorem 3.2 for q = p. In particular, using the previous Lemma we obtain that $sp(\phi) = 0$ or -1 if g is even. So suppose that ϕ does not commute with some p-involution ρ of X and let $\rho' = \phi \rho \phi$. Then by the proof of Lemma 4.1, the involutions ϕ and ρ generate the dihedral group G of order 8 which can be identified with Λ/Γ for some NEC group Λ with one of signatures $\tau_1 = (1; -; [\overset{(g+3)/2}{\dots}, 2]; \{-\})$ or $\tau_2 = (0; +; [2, .., 2]; \{(2, .., 2)\}),$ where $2r + r_1 = g + 3$. Let $\theta : \Lambda \to G$ be the canonical epimorphism. Then $\Lambda' = \theta^{-1}(\langle \phi, \rho \phi \rho \rangle)$ and $\Gamma_{\rho\rho'} = \theta^{-1}(\rho\rho')$ are normal subgroups of Λ of indices 2 and 4 respectively. If $\sigma(\Lambda) = \tau_1$ then Λ' has not any period cycle and consequently $sp(\phi) = sp(\rho\phi\rho) = 0$. So assume that $\sigma(\Lambda) = \tau_2$. For any $1 \neq h \in G$, let s_h denote the number of elliptic generators x_i of Λ such that $\theta(x_i) = h$. Then by Theorem 2.2.4 in [1], the number of periods in the signature of $\Gamma_{\rho\rho'}$ is equal to $4s_{\rho\rho'} + 2r_1$. On the other hand such number is equal to 2g + 2 - 4(g - 2p) = 8p + 2 - 2g and so $s_{\rho\rho'} = (4p + 1 - g - r_1)/2$. Thus $s_{\phi\rho\phi} + s_{\rho} = r - s_{\rho\rho'} = g + 1 - 2p$ is even which means that $s_{\phi\rho\phi}$ and s_{ρ} have the same parities and consequently the relation $\theta(x_1 \dots x_r e_1) = 1$ implies that $\theta(e_1) = 1$ or $\rho \rho'$. So $e_1 \in \Lambda'$ and by Theorem 2.3.2 in [1], Λ' admits two period-cycles of the form $(2, \stackrel{r_1}{\ldots}, 2)$. Since every period in the period cycle of Λ' provides one proper period in the signature of $\Gamma_{\alpha\alpha'}$, it follows that $r_1 \leq F(\rho \rho')/2 = 4p + 1 - g$. For g = 4p + 1, $F(\rho \rho') = 0$, which means that there is no proper periods nor link periods in the signature of Λ' and consequently $\operatorname{sp}(\phi) = \operatorname{sp}(\rho\phi\rho) = +1$ or +2. For $g \neq 4p+1$, $\operatorname{sp}(\phi) = \operatorname{sp}(\rho\phi\rho) = -1 \text{ or } -2 \text{ if } r_1 = 0 \text{ and } \operatorname{sp}(\phi) = \operatorname{sp}(\rho\phi\rho) = \pm r_1 \text{ oth-}$ erwise, where the sign is - for $r_1 < 4p + 1 - q$ and the sign is + for $r_1 = 4p + 1 - g.$

Corollary 4.3. Let ϕ be a symmetry of a Riemann surface of genus g in range $4p - 2 \le g \le 4p + 1$ admitting two *p*-hyperelliptic involutions. Then the possible species of ϕ are given in the table, where d = 2 or d = 4 according to p is or is not even.

g	$\operatorname{sp}(\phi)$	Conditions
4p + 1	$0, \pm 1, \pm 2, -2a, +(2p+2), +d$	$1 \le a \le p+1, p>0$
4p	0, -1	p > 1
4p-1	$0, -1, \pm 2, -2a, +d$	$1 \leq a \leq p, p > 2$
4p-2	0, -1	p > 3

References

- E. Bujalance, J. Etayo, J. Gamboa, G. Gromadzki: "Automorphisms Groups of Compact Bordered Klein Surfaces. A Combinatorial Approach", Lecture Notes in Math. vol. 1439, Springer-Verlag (1990).
- [2] E. Bujalance, A.F.Costa: "On symmetries of p-hyperelliptic Riemann surfaces", Springer-Verlag (1997),
- [3] H. M. Farkas, I. Kra: "Riemann Surfaces", Graduate Text in Mathematics, Springer-Verlag (1980)
- [4] A.Harnack: "Uber die Vieltheiligkeit der ebenen algebraischen Kurven", Math. Ann. 10, (1876), pp. 189-199.
- [5] F.Klein: Über Realitätsverhältnisse bei einem beliebigen Geschlechte zugehörigen Normalkurve der φ " Math. Ann. **42** (1893) 1-29.
- [6] A. M. Macbeath:" Action of automorphisms of a compact Riemann surface on the first homology group". Bull. London Math. Soc. 5 (1973), 103-108.
- [7] E. Tyszkowska, On pq-hyperelliptic Riemann surfaces, Coll. Math. 103 (1), (2005), 115-120.
- [8] E. Tyszkowska, On p-hyperelliptic involutions of Riemann surfaces, Beiträge zur Algebra und Geometrie, to appear.

Ewa Tyszkowska

Institute of Mathematics University of Gdańsk Wita Stwosza 57, 80-952 Gdańsk Poland e-mail : Ewa.Tyszkowska@math.univ.gda.pl