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Abstract

We define diffeological spaces and give some examples. The dif-
feological category contains the category of smooth manifolds as full
subcategory. We prove that diffeological spaces and smooth maps form
a cartesian closed category.

The concepts of differential form and tangent functor are extended
from smooth manifolds to diffeological spaces.
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1. Introduction

Smooth n-dimensional manifolds are by definition topological spaces which
locally look like Rn and exhibit smooth coordinate changes.

In contrast, diffeological spaces do not a priori carry a topology or a
dimension. The central concept is that of ‘smooth maps’. So we define
diffeological spaces via a collection of maps from open sets of Rn for all
n into a set, such that this collection is closed under smooth coordinate
changes. This will lead to a concept which is better from a categorical point
of view: diffeological spaces form a cartesian closed category, which we will
prove in Chapter 3.

Even though the concept of a diffeological space is very general, we can
still extend some concepts from differential geometry to this new setting.
For example, in Chapter 4 we define differential forms, and in Chapter 5 we
define a tangent functor. Smooth manifolds are an example of diffeological
spaces, and in the last chapter we show that the new definitions agree with
the classical ones on the subcategory of manifolds.

We start by fixing the notation for the category of open subsets of real
spaces and smooth maps.

Definition 1.1. Let OR be the category whose objects are all open sets of
all Rn, n ∈ N, and whose morphisms are all smooth maps between these
open sets. The collection of smooth maps with domain in Rn and range in
Rp will be denoted by Lnp. The collection of maps from an open set U ⊂ Rn

into a set X is denoted by Ln(X), and we will use the letters α, β, γ, . . . for
elements of Ln(X). The corresponding domains are denoted by Uα, Uβ, Uγ

respectively. Lastly, let L(X) be the union of all the Ln(X).

Definition 1.2. Given maps α ∈ Lnp and β ∈ Lp(X), we say that (β, α)
is a composable pair if α(Uα) ⊆ Uβ. We will also just say that α and β
are composable. A collection {αi | i ∈ I} ⊂ Ln(X) is called compatible if
x ∈ Ui ∩ Uj implies αi(x) = αj(x). Every compatible family has a unique
smallest extension α which has domain ∪iUi and is defined to be equal to
αi on Ui.
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Now we proceed to define diffeological spaces and smooth maps between
diffeological spaces as in [Sou85].

Definition 1.3 (Diffeology). Given a set X consider a collection P(X) =
∪nPn(X) of maps into X, such that Pn(X) ⊂ Ln(X). We call P(X) a
diffeology if it satisfies the following axioms:

(D1) Every constant map x : U → X is in P(X).

(D2) Given a compatible family of maps in Pn(X), its smallest extension is
again in Pn(X).

(D3) If h ∈ Lpn and α ∈ Pn(X) are composable, then α ◦ h ∈ Pp(X).

The elements of Pn(X) are called n-plots or simply plots of the diffeology.
The pair (X,P(X)) is called a diffeological space.

Definition 1.4 (D-topology). Given a diffeological space (X,P(X)) we
define the -topology to be the initial topology with respect to the plots.
That is, a subset U ⊂ X is open if and only if for each plot α ∈ P(X), the
inverse image α−1(U) is open in Uα.

We can immediately give two examples.

Example 1.5 (Indiscrete Diffeology). Given any set X, the collection
L(X) of all possible maps into X with open domain is a diffeology. The
only open sets are X and the empty set, so the -topology is the indiscrete
topology.

Example 1.6 (Discrete Diffeology). Let P(X) denote the collection of
all locally constant maps. This is the smallest possible diffeology on the set
X. Note that we cannot restrict to all constant maps! This would violate
(D2): If we take two maps that are constant, taking distinct values on
disjoint domains, their smallest extension is merely locally constant. Every
subset of X is open in the -topology, so X is a discrete topological space.
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Axiom (D2) has an immediate consequence, which says that being a plot
is a local property of a map.

Lemma 1.7. Let (X,P(X)) be a diffeological space, Uα ⊂ Rn open and
α : Uα → X a map. If for each x ∈ Uα there is a neighborhood V of x in Uα

such that α restricted to V is a plot, then α is a plot.

Proof. Given x ∈ Uα, let Vx be a neighborhood of x such that αx := α|Vx
is a plot. Then {αx | x ∈ Uα} is a compatible family of plots with smallest
extension α. So it follows from axiom (D2) that α is a plot. 2

Lemma 1.8. The -topology of a diffeological space (X,P(X)) is locally
arc-connected.

Proof. Given a point x ∈ X, let P be the arc-component of x. So for
each y ∈ P, there is a continuous path from x to y. It suffices to show that P
is an open set. Let α : UαrightarrowX be a plot, and suppose that α−1(P )
is nonempty, containing a point p. As Uα is open, we can find an open ball
B ⊂ Uα containing p. We want to show B ⊂ α−1(P ), so let q ∈ B. To show
that α(q) ∈ P, we have to connect x and α(q) with a continuous path. By
choice of p, the image α(p) can be connected to x by a continuous path.
Now p and q can be connected in B, and we can compose this path with α
to get a path from α(p) to α(q). Then by concatenation, we get a path from
x to α(q). Thus α(q) ∈ P. This proves B ⊂ α−1(P ), hence α−1(P ) is open
in Uα, which concludes the proof. 2

Intersections of diffeologies are again diffeologies, and therefore it is easy
to define the diffeology generated by a given family of functions. We will
characterize the plots of such diffeologies.

Lemma 1.9. Given a family {Pi | i ∈ I} of diffeologies on a set X, the
intersection ∩iPi is again a diffeology.
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Proof. We have to verify the three axioms (D1)-(D3) for P := ∩iPi.
By definition, each of the diffeologies Pi contains all constant maps, thus
the same is true for their intersection. Every compatible family of n-plots
in P is also compatible in each of the Pi. Therefore the smallest common
extension is element of each Pi, hence also of P. Similarly, if α ∈ P and h
are composable, then α ◦ h ∈ Pi for all i ∈ I, and therefore also α ◦ h ∈ P.
2

Corollary 1.10. If F ⊂ L(X) is a collection of maps into X, then there is a
unique smallest diffeology on X containing F.We will denote this diffeology
by hFi

Proof. Note that the indiscrete diffeology contains F. So the collection
of all diffeologies on X which contain F is nonempty, and we can take its
intersection. 2

Definition 1.11. If P(X) is the smallest diffeology containing a collection
of maps F, then the collection is called a generating family for the diffeology.
For a given generating family F, let nF denote the supremum

nF := sup{dim(Uα) | α ∈ F}.

Then the dimension of a diffeological space (X,P(X)) is the infimum

dim(X,P(X)) := inf{nF | F generates P(X)}

Lemma 1.12. Let X be a set and F ⊂ L(X). Then a map α : Uα → X is
in hF i if and only if it satisfies

(G) For each point x ∈ Uα there is an open neighborhood V ⊂ Uα of x
such that the restriction of α to V is either constant or of the form
f ◦ h for some f ∈ F and a smooth map h : V → Uf .
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Proof. Let P denote the collection of maps α satisfying (G). Clearly, P
contains F.We will first show that P is a diffeology. Constant maps certainly
satisfy (G), therefore (D1) holds. Now take a compatible family αi ∈ P with
smallest extension α. Each x ∈ Uα is contained in some dom(αi) = Ui and
has therefore a neighborhood in Ui on which α is constant or of the form
f ◦ g with smooth g and f ∈ F. Therefore α is in P, which shows (D2). To
verify (D3), let α and h : U → Uα be composable, where α is in P and h is
smooth. Let x ∈ U and y = h(x). Then there is a neighborhood V of y such
that either

• α|V is constant. Then α ◦ h|h−1(V ) is also constant.
or

• α|V is of the form f ◦ g for smooth g and f ∈ P. Then
α ◦ h|h−1(V ) = f ◦ g ◦ h.

As h−1(V ) is an open neighborhood of x, in either case we have that
α ◦ h ∈ P. This proves (D3). So P is a diffeology containing F. If we can
show P ⊂ hFi, we can conclude equality as hFi is minimal containing F. Let
α ∈ P. Then each point x ∈ Uα has a neighborhood Vx such that αx := α|Vx
is either constant or of the form f ◦ g with smooth g and f ∈ F. So in either
case, αx is in hFi, and the collection of the αx is a compatible family with
smallest extension α. Thus α ∈ hFi, which concludes the proof. 2

Diffeological spaces will be the objects of a category. Let us now define
the morphisms.

Definition 1.13 (Smooth Maps). Given two diffeological spaces
(X,P(X)) and (Y,P(Y )) and a map f : X → Y, we say that f is smooth if
for every α ∈ P(X), the composition f ◦ α is in P(Y ).

Lemma 1.14. If the diffeology P(X) is generated by a family F of func-
tions, then a map f : X → Y is smooth if f ◦ α ∈ P(Y ) for all α ∈ F.

Proof. Let α be a plot for X, and x ∈ Uα. By Lemma 1.12 we can choose
an open neighborhood Ux of x in Uα such that α|U is either constant or of
the form β ◦h for some β ∈ F and a smooth map h. In the first case f ◦α|U
is constant and thus in P(Y ). In the second case, f ◦ α|U = f ◦ β ◦ h which
is in P(Y ) since by assumption, f ◦ β ∈ P(Y ). The open sets Ux cover Uα,
so we use axiom (D2) to conclude that f ◦α ∈ P(Y ), hence f is smooth. 2
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Definition 1.15 (Diffeological Category). Diffeological spaces as objects
and smooth maps as morphisms form a category. We will call this category
the diffeological category and denote it by Diff. The collection of morphisms
between (X,P(X)) and (Y,P(Y )) will be denoted by [X,Y ] .

Remark 1.16. The author of [Gio03] denotes this construction as the carte-
sian closure of the model category OR. He more generally investigates open
sets and Cn-maps as a model category.

2. Some Examples

It turns out that diffeological spaces generalize smooth manifolds. Every
smooth manifold carries a natural diffeology which we define in Subsection
2.1. But the strength of the generality shows up when we equip mapping
spaces with a diffeology in Example 2.10.

2.1. Manifolds

Let M be a finite dimensional smooth manifold. The n-plots are the maps
α : Uα → M which are smooth in the usual sense of differential geometry.
We will briefly check if the three axioms of a diffeology are satisfied. (D1)
Clearly, constant maps are smooth. (D2) Let α be the smallest extension
of the αi. Then given x ∈ Uα, there is an i ∈ I such that x ∈ Ui and hence
α|Ui = αi is smooth. Now smoothness is a local condition, so α is smooth
on all of Uα. (D3) Compositions of smooth maps are smooth.

Lemma 2.1. Given two smooth manifolds M and N, the usual smooth
maps coincide with the smooth maps in the diffeological sense. In other
words, C∞(M,N) = [M,N ] .

Proof. The inclusion C∞(M,N) ⊂ [M,N ] is a consequence of the chain
rule, because if α : Uα → M is a smooth map and f ∈ C∞(M,N), then
the composition f ◦ α is again smooth and hence in P(N). Conversely, let
f ∈ [M,N ] . We have to show that f is smooth, so let φ : U → Rn be a
chart in a given atlas A of M. By choice of f, the map f ◦ φ−1 is a plot for
N, and therefore a smooth map. This is true for every chart in A, which
shows that f ∈ C∞(M,N). 2
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Remark 2.2. In the terminology of category theory, the equality
C∞(M,N) = [M,N ] is expressed by saying that the category of smooth
manifolds is a full subcategory of Diff .

Lemma 2.3. LetM be a n-dimensional smooth manifold with atlas A and
the diffeology P(M) as described above. Then the family A−1 = {φ−1 | φ ∈
A} generates P(M).

Proof. Clearly hA−1i ⊂ P(M) as the inverse charts φ−1 are smooth. For
the other inclusion, we use the characterization (G) of a generated diffeology
from Lemma 1.12. Let α : Uα → M be a smooth map, x ∈ Uα and let φ :
U → Rn be a chart about α(x). Then V = α−1(U) is an open neighborhood
of x in Uα. The map h := φ◦α|V is smooth and we can write α|V = φ−1 ◦h,
where φ−1 ∈ A−1 and h is smooth. So by Lemma 1.12 it follows that
α ∈ hA−1i. 2

Corollary 2.4. Given a smooth n-dimensional manifold, its dimension as
a diffeological space (Definition 1.11) is also n.

Proof. Lemma 2.3 immediately yields that the diffeological dimension
is at most n. Now if it were strictly less than n, the diffeology would be
generated by its collection of n − 1-plots. But then by Lemma 1.12, every
smooth map into M would locally be constant or factor through an open
subset of Rn−1. This is certainly not true for local diffeomorphisms, e.g.
inverse maps of coordinate charts. 2

The next lemma will characterize the diffeological spaces which are man-
ifolds.

Lemma 2.5. Let (X,P(X)) be a diffeological space, equipped with the D-
topology. The following are equivalent.

1. There is a smooth atlasAmakingX a smooth n-dimensional manifold,
such that P(X) is the corresponding manifold diffeology.

2. There is an open cover {Ui}i∈I of X and an n ∈ N such that for
each i ∈ I there is a diffeomorphism φi between Ui and some open set
Vi ⊂ Rn. Here Ui is equipped with the subset diffeology, and Vi carries
the manifold diffeology.
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Proof. First assume that (1) holds, and let A = {(Ui, φi)}i∈I . The open
sets Ui coverX, and we claim that the maps φi are isomorphisms inDiff . But
this is clear, since it is an isomorphism in the category of smooth manifolds,
which is a full subcategory of Diff .

Now we assume that (2) holds. Clearly, the pairs (Ui, φi) form an atlas,
since all compositions φi ◦ φ−1j are smooth. Since φ−1i ∈ P(X), the corre-
sponding manifold diffeology is contained in P(X). To show equality, let α
be any plot. But then α is also smooth as a map between manifolds, because
for each i ∈ I, the map φ−1i ◦ α is smooth. 2

2.2. Generating new diffeological spaces

The next examples are of a more general nature and allow us to construct
new diffeological spaces from old ones. Some of these constructions are famil-
iar from topology and measure theory, for example products and quotients
of spaces.

A special feature of the diffeological category is that there is a natural
diffeology on the morphism sets. This functional diffeology is used exten-
sively in Chapter 3.

Definition 2.6 (Initial and Final Diffeology). Given a familiy of diffe-
ological spaces {(Yi,P(Yi)) |i ∈ I} and maps fi : X → Yi from a set X,
we define the initial diffeology on X with respect to the maps fi to be the
diffeology consisting of all maps α : Uα → X such that fi ◦α ∈ P(Yi) for all
i ∈ I. This is the largest diffeology making all the fi smooth.

Given a family of diffeological spaces {(Xi,P(Xi) |i ∈ I} and maps
fi : Xi → Y to a set Y, we define the final diffeology on Y with respect to
the maps fi to be the diffeology generated by the maps fi ◦ α for all i ∈ I
and all plots α. It is the smallest diffeology making all the fi smooth.

Definition 2.7. In the above definition, suppose that the family consists of
one space only. Let Pf (X) denote the set of all maps α : Uα → X such that
f ◦ α ∈ P(Y ), which is the initial diffeology with respect to f. Let Pf (Y )
denote the diffeology generated by the f ◦α for α ∈ P(X), that is, the final
diffeology with respect to f. If f is surjective and Pf (Y ) = P(Y ) we call f
a subduction. If f is injective and Pf (X) = P(X) we call f an induction.
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Example 2.8 (Subspaces and Quotients). Given a diffeological space
(X,P(X)) and a subset A ⊂ X, we obtain a diffeology on A by just taking
plots α ∈ P(X) which map into A. If ι : A → X is the inclusion map, we
recognize this diffeology as Pι(A). Thus the inclusion map is an induction.

Given a diffeological space (X,P(X)) and an equivalence relation ∼ on
X, we equip X/ ∼ with the final diffeology with respect to the projection π.
This diffeology makes π a subduction.

Example 2.9 (Direct Products and Sums). Given a family of diffeo-
logical spaces {(Xi,P(Xi)) |i ∈ I}, we can form disjoint union and direct
product of the sets Xi in the category of sets and maps. We equip the direct
product Y

i

Xi

with the initial diffeology with respect to the projections πi, and the disjoint
union a

i

Xi

with the final diffeology with respect to the injections ιi. Then the projec-
tions are subductions and the injections are inductions. Note that for two
spaces X,Y the product diffeology is given by plots of the form (α1, α2)
where α1 ∈ P(X) and α2 ∈ P(Y ).

Example 2.10 (Functional Diffeology). Let two diffeological spaces
(X,P(X)) and (Y,P(Y )) be given. Note that an open set U ⊂ Rn is also
a smooth manifold, and hence by Subsection 2.1 also a diffeological space.
So by Example 2.9, the product U × X is a diffeological space. Now we
say that α : Uα → [X,Y ] is a plot for [X,Y ] if the map α̃ : Uα × X → Y
defined by α̃(u, x) = α(u)(x) is smooth. Using the definitions of smooth map
and product diffeology, this condition can be reformulated as follows: given
β1 : U → Uα smooth and β2 : U → X a plot, the map u 7→ α(β1(u))(β2(u))
is a plot for Y.

Combining the above examples, we get as a very important example the
diffeomorphism groups of smooth manifolds. Those groups play a role in
areas of applications such as topological fluid dynamics and other parts of
theoretical physics (see for example [Don88]).
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Example 2.11 (Diffeomorphism Groups). Let M be a smooth mani-
fold. Then M carries a diffeology by Subsection 2.1, such that

C∞(M,M) = [M,M ] .

So by Example 2.10, the set C∞(M,M) is a diffeological space, and therefore
the subset of Diff(M) is a diffeological space. Its plots are maps α : Uα →
Diff(M) such that α̃ : Uα ×M → M is smooth, where α̃ is defined as in
Example 2.10.

3. Cartesian Closedness

This section is devoted to the proof of the fact that the category of diffe-
ological spaces is cartesian closed. First we define two functions which are
important in this context.

Definition 3.1. Let X,Y and Z be sets. We define the two maps

Φ :Maps(X, (Y,Z))→Maps(X × Y,Z)

and
Ψ :Maps(X × Y,Z)→Maps(X, (Y,Z))

by Φ(f)(x, y) = f(x)(y) and Ψ(f)(x)(y) = f(x, y). We also write

f̃ := Φ(f) and f̄ := Ψ(f).

Now let us state the main result of this section.

Theorem 3.2. Let (X,P(X)), (Y,P(Y )) and (Z,P(Z)) be diffeological spaces.
Then [X × Y,Z] and [X, [Y,Z]] can be equipped with diffeologies if we use
the product diffeology for X × Y and the functional diffeology for the mor-
phism sets. The map Ψ yields an isomorphism

[X × Y,Z] ∼= [X, [Y,Z]]

in the diffeological category, with inverse Φ.

Remark 3.3. This theorem implies that the category Diff is a cartesian
closed category. For more details on categories in general, see [Mac71].
Cartesian closed categories generated by maps are treated in [Fro86], and
for the concept of cartesian closure we refer to [Gio03].



162 Martin Laubinger

Before we prove this theorem we show that in the diffeological category,
evaluation yields a smooth map.

Lemma 3.4. Given diffeological spaces (X,P(X))and (Y,P(Y )), equip the
space [X,Y ]×X with the obvious diffeology. Then the evaluation map

E : [X,Y ]×X → Y (f, x) 7→ f(x)

is smooth.

Proof. Let α : Uα → [X,Y ]×X be a plot. We write α as (α1, α2). Then
α1 is a plot for [X,Y ] , hence

α̃1 : Uα ×X → Y

is smooth. Now E ◦α(u) = E(α1(u), α2(u)) = α1(u)(α2(u))
= α̃1(u, α2(u))
= α̃1(idUα × α2)(u). Hence E ◦ α = α̃1 ◦ (idUα × α2) is smooth, as it is a
composition of smooth maps. 2

We will now prove Theorem 3.2 in four steps. It is known that Ψ is a
bijection between Maps(X × Y,Z) and Maps(X,Maps(Y,Z)).

So essentially we have the following situation: Ψ is a bijection between
sets A and B with inverse Φ. To show that Ψ induces a bijection of subsets
A0 ⊂ A and B0 ⊂ B, it suffices clearly to show Ψ(A0) ⊂ B0 and Φ(B0) ⊂ A0.
This is the purpose of the first two lemmas. Lemmas 3.7 and 3.8 finally show
that Ψ and Φ are smooth, and therefore morphisms in Diff . This concludes
the proof of Theorem 3.2.

Lemma 3.5. If f ∈ [X × Y,Z] , then f̄ ∈ [X, [Y,Z]] .

Proof. Let f ∈ [X × Y,Z] . This means that for every plot (α1, α2) for
X × Y, the map f ◦ (α1, α2) is a plot for Z.

We claim that f̄ ∈ [X, [Y,Z]] . First let us show that f̄ takes values in
[Y,Z] . To this end note that we can write f̄(x) as composition f ◦ ι where
ι : Y → X × Y maps y to (x, y). As the injection ι is smooth, so is the
composition f̄ .

Now we prove smoothness of f̄ , that is, we show for every plot α ∈ P(X)
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that f̄ ◦ α ∈ P([Y,Z]). By the definition of the functional diffeology, this is
true since ḡf ◦ α : (u, y) 7→ f̄(α(u))(y) = f(α(u), y),

so ḡf ◦ α = f ◦ (α ◦ idY ) is a composition of smooth maps and therefore
smooth. 2

Surjectivity of Ψ follows from the next lemma.

Lemma 3.6. If f ∈ [X, [Y,Z]] then f̃ ∈ [X × Y,Z] .

Proof. Let f ∈ [X, [Y,Z]] . Then we use the evaluation map to write

f̃(x, y) = f(x)(y) = E(f(x), y).

So f̃ = E ◦ (f × idY ). By Lemma 3.4 the evaluation E is smooth. Thus f̃ is
a composition of smooth maps, and therefore smooth. 2

that for every f̃ ◦ α ∈ P(Z). (α2(u)) α2(u))

Lemma 3.7. The map Ψ : [X × Y,Z]→ [X, [Y,Z]] is smooth.

Proof. We have to show that, given a plot α : Uα → [X × Y,Z] , the
composition Ψ ◦α is a plot for [X, [Y,Z]] . This means that we have to show
that gΨ ◦ α : Uα ×X → [Y,Z]

is smooth. Being smooth means that for every plot

β = (β1, β2) : Uβ → Uα ×X,

we get a plot gΨ ◦ α◦β for [Y,Z] .We use the definitions to compute gΨ ◦ α◦
β(u) = ( gΨ ◦ α)(β1(u), β2(u))
= α(β1(u))(β2(u)) ∈ [Y,Z] . This defines a plot if the map from Uβ×Y → Z
given by (u,y) 7→ α(β1(u))(β2(u))(y) = α(β1(u))(β2(u), y) is smooth. To see
that this is true, we use the hypothesis. By hypothesis, α : Uα → [X × Y,Z]
is a plot, so

(v, x, y) 7→ α(v)(x, y)

is smooth. But then the composition

(u, y) 7→ (β1(u), β2(u), y) 7→ α(β1(u))(β2(u), y)

is also smooth, and we are done. 2
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Lemma 3.8. The map Φ : [X, [Y,Z]]→ [X × Y,Z] is smooth.

Proof. We have to show that given a plot α : Uα → [X, [Y,Z]] , the map
Φ ◦ α is a plot for [X × Y,Z] . By definition of the functional diffeology this
amounts to showing that

(u, x, y) 7→ α(u)(x)(y)

is smooth. Recall that smooth means that for each plot β = (β1, β2, β3) for
Uα ×X × Y we get a plot

v 7→ α(β1(v))(β2(v))(β3(v))

for Z.
We know that α is a plot, so again by definition of the functional diffe-

ology, we know that (u, x) 7→ α(u)(x) ∈ [Y,Z] is smooth. With β being the
plot from above, we get a plot (β1, β2) for Uα ×X, and hence a plot

v 7→ α(β1(v))(β2(v))

for [Y,Z] . Again we use the definition of functional diffeology to conclude
that

(v, y) 7→ α(β1(v))(β2(v))(y)

is smooth. But now finally we use the plot (, β3) : Uα → Uα×Y to conclude
that

v 7→ α(β1(v))(β2(v))(β3(v))

is a plot for Z, which is what we had to show. 2

4. Differential Forms

It is not hard to generalize the notion of deRham differential forms to diffeo-
logical spaces. We will state the definition, and then show that, on manifolds,
the definition coincides with the classical definition.

Definition 4.1 (D-forms). A D-form of degree n on a diffeological space
(X,P(X)) is a map ω which assigns to each plot α ∈ P(X) a classical
differential form ω(α) ∈ Ωn(Uα). We require the following compatibility
condition: If h ∈ Lpn and α ∈ Pn(X) are composable, then ω(α ◦ h) =
h∗(ω(α)) = ω(α) ◦ dh. Let n(X) denote the collection of all -forms of degree
n on X.
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Remark 4.2. Note that Dn(X) is a vector space if we define

(sω + tη)(α) = sω(α) + tη(α),

given ω and η in Dn(X) and scalars s and t.

Next we want to show that this concept really generalizes differential
forms, in the sense that if we apply this definition to manifolds, we get the
classical differential forms.

Lemma 4.3. Given a smooth finite-dimensional manifold M, the vector
space Dn(M) is isomorphic to Ωn(M).

Proof. Given a n-form ω ∈ Ωn(M), we define aD-form η by η(α) = α∗(ω),
the pullback of ω under the smooth map α. As α∗ : Ωn(M) → Ωn(Uα) is
linear, this defines a linear map from Ωn(M) into Dn(M). Now given a D-
form η of degree n, we define ω ∈ Ωn(M) locally using charts. Given a chart
φ : U → V ⊂ Rk for the manifold M, we define ω|U to be the pullback of
η(φ−1) under φ :

ω|U = φ∗(η(φ−1)).(4.1)

To see that this gives a well defined form on M, we have to see what
happens if charts overlap. So let (φ1, U1) and (φ2, U2) be charts such that
U1 ∩ U2 is nonempty. By definition of a smooth manifold, the change of
coordinate map h = φ2 ◦ φ−11 is smooth. Therefore we can apply the com-
patibility condition in Definition 4.1 to get

η(φ−11 ) = η(φ−12 ◦ h) = h∗η(φ−12 )
= (φ−11 )

∗φ∗2η(φ
−1
2 ).

Therefore
φ∗1η(φ

−1
1 ) = φ∗2η(φ

−1
2 )

which shows that (4.1) defines a form on M. To see that (4.1) yields a
linear map from Dn(M) to Ωn(M) one uses the vector space structure from
Remark 4.2 and the fact that φ∗ is linear. The last step would be to show
that the given maps are inverse to each other. This follows directly from
the definitions, and we will omit the proof here. 2

Definition 4.4. Let 0 denote the subcategory of OR consisting of the ob-
jects which contain the origin, and the morphisms that map the origin to
itself. Let L0 denote the collection of all morphisms in this category. Given
a diffeology P on X, we denote by Px the plots whose domains are in 0 and
which map 0 to x. We will say that these plots are centered at x.
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Definition 4.5 (Value of a D-form at a point). Given differential forms
ω and η on a diffeological space (X,P) and a point x ∈ X, we say that ω
and η take the same value at x and write ω ∼x η if for all α ∈ Px we have

ω(α)0 = η(α)0.

The equivalence class of a form ω under ∼x is the value of ω at x, denoted
by ωx.

Applications of differential forms on diffeological spaces include coho-
mology of path spaces ([Che86]) and quantization ([Sou85]).

5. The Tangent Functor

The following construction of the tangent functor is taken from [Hec95]. We
present the construction in three steps. First we define the tangent space
at a point, then the tangent bundle, and finally the differential of a smooth
map. We conclude the chapter by discussing the relation between tangent
vectors and D-forms.

5.1. Tangent Space at a Point

Given throughout this section are a diffeological space (X,P(X)) and a
point x ∈ X. We want to construct a vector space TxX and linear maps
jα : T0Uα → TxX for each plot α centered at x. The maps jα will be
interpreted as differentials of the plots. The construction is motivated by
the idea that those differentials satisfy a chain rule for plots of the form α◦h.
Every choice of a plot α and a smooth map h gives a reparametrization as
in the following Figure 5.1.

Figure 1. Reparametrization
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By ‘chain rule’ we mean that the corresponding diagram of differentials
should commute:

So we require

jα◦h = jα ◦ d0h

which is the chain rule for the composition α◦h. This motivates the definition
of the tangent space.

Definition 5.1 (Tangent Space). Let Eα denote the tangent space T0Uα.
Let the direct sum

Ex :=
M
α∈Px

Eα

be equipped with the final diffeology with respect to the injections

ια : Eα → Ex

(see Example 2.6). Often we will identify v ∈ Eα with its image under ια.
Define a linear subspace of Ex as follows.

Êx := hιβ(v)− (ια ◦ d0h)(v) | β = α ◦ h and v ∈ T0Uβi.

Then the quotient space

Tx(X) := Ex/Êx,

is the tangent space to X at x. If π : Ex → TxX is the linear projection, we
get a family jα := π ◦ ια : Eα → TxX of linear maps indexed by Px.

By construction, the tangent space together with the family (jα)α∈Px is a
colimit in the category of vector spaces. Thus we have a universal property.
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Lemma 5.2 (Universal Property). Assume that F is a vector space to-
gether with a family of linear maps (kα)α∈Px such that kα : Eα → F and all
the triangles

commute. Then there is a unique linear map k : TxX → F such that for
each α ∈ Px the triangle

commutes.

Proof. First note that by the universal property for the direct sum Ex,
the linear map

k̂ := ⊕α∈Pxkα
is the unique map such that

kα = k̂ ◦ jα

for all α ∈ Px. Using Diagram 5.1 we see that k̂ vanishes on the subspace
Êx. Thus k̂ factors through TxX :
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which yields existence of a map k making the Diagrams 5.2 commute. To
see that k is unique, suppose that k0 is another map making all Diagrams
5.2 commute. Note that the vector space TxX is generated by elements of
the form jα(v) with v ∈ Eα. Commutativity of Diagram 5.2 yields

k0(jα(v)) = k(v).

So k0 and k agree on a set of vectors spanning TxX, which proves k0 = k. 2

5.2. Tangent Bundle

We want to construct a new diffeological space, the tangent bundle of X.
Just as in the classical case, the underlying set is the union of the tangent
spaces to all points of X. The diffeology will be generated by the differentials
of plots.

Definition 5.3. Let TX be the disjoint union of all tangent spaces to X,

TX :=
[
x∈X

TxX.

Next we will define the differential of a plot, which will be a map dα :
TUα → TX.

Definition 5.4. Let α be a plot, not necessarily centered at a point x ∈ X.
Given any point u ∈ Uα, let

h: Uα → Uα − u

y 7→ y − u.
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Then we define the linear map

duα := jβ ◦ duh : TuUα → Tα(u)X

where β = α ◦ h−1 is a plot centered at α(u). This yields a map

dα : TUα → TX

v 7→ duα(v) if v ∈ TuUα.

For u = 0, the map h is the identity map, and therefore this definition
is consistent with letting jα = d0α for plots centered at a point x = α(0).

Now we are ready to define a diffeology on TX.

Definition 5.5. Using TUα
∼= Uα×Rn we can regard TUα as an object in

OR. So we can use the maps dα, α ∈ P(X) to generate a diffeology P(TX)
on the set TX. The diffeological space (TX,P(TX)) is the tangent bundle
to the diffeological space (X,P).

This is a natural definition and is similar to the manifold structure on
the tangent bundle to a manifold. We want to see that the projection map,
vector addition and scalar multiplication on TX become smooth maps if
TX is equipped with this diffeology.

Lemma 5.6. The bundle projection π : TX → X is a smooth map.

Proof. By Lemma 1.14 it suffices to verify smoothness on a generating
family, so we have to show that π ◦ dα ∈ P(X) for all plots α ∈ P(X). But
this follows immediately from the definitions, since π ◦ dα = α. 2

Lemma 5.7. The scalar multiplication

⊗ : R× TX → TX
(r,v) 7→ rv

is smooth.
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Proof. The diffeology ofR×TX is generated by (α, dβ), where β : U → X
is a plot and α : TU → R is a smooth map.

So let (α, dβ) be a plot in the generating family. Then observe that

⊗ ◦ (α, dβ)(u) = α(u)dβ(u) = dβ(α(u)u)

because of the linearity of each dxβ. Now define the map γ : TU → TU by
γ(u) = α(u)u.

The map α is smooth, and so is the scalar multiplication on TU, thus
the map γ is a smooth map, and we see that ⊗ ◦ (α, dβ) = dβ ◦ γ is a plot
for TX. This implies that ⊗ is a smooth map. 2

We have defined the functor T on the objects of Diff . In the next sub-
section we will extend the definition to morphisms.

5.3. Differentials of Smooth Maps

Let us consider two spaces (X,P(X)) and (Y,P(Y )) and a smooth map
f ∈ [X,Y ] . We want to define a smooth map Tf : TX → TY by defining
its restriction Txf to each fiber TxX. So let x ∈ X be any point and let
y = f(x). We will now use the Universal Property (Lemma 5.2) for TxX to
define the map Txf : TxX → TyY.

Definition 5.8. Consider the family

F = {f ◦ α | α ∈ Px(X)} ⊂ Py(Y ).

If h ∈ L0, then the map f ◦α ◦ h is a plot for Y, centered at y. In particular
we have that

jf◦α◦h = jf◦α ◦ d0h,

so the family F makes the Diagram 5.1 commute. Hence by Lemma 5.2
there is a unique linear map

Txf : TxX → TyY

such that for every α ∈ Px(X) we have

d0(f ◦ α) = Txf ◦ d0α.
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Remark 5.9. Note that we use different notation in order to distinguish
differentials of plots dα : TUα → TX and of smooth maps Tf : TX → TY,
because these two concepts are defined in a different way. However, we can
regard Uα as a manifold and thus as a diffeological space, and in Chapter 6
we will prove the equality dα = Tα for plots.

Uniqueness of the differential Tx yields the following chain rule.

Lemma 5.10 (Chain Rule). Given smooth maps f and g, we have

Tx(g ◦ f) = Tf(x)g ◦ Txf.

Proof. Looking at

we see that the map Tf(x)g ◦ Txg satisfies

jg◦f◦α = Tf(x)g ◦ Txg ◦ jα.

But by Definition 5.8, Tx(g ◦ f) is the unique linear map with that
property. Thus we have the equality

Tx(g ◦ f) = Tf(x)g ◦ Txg.

2

Lemma 5.11 (Chain Rule for Plaques). Let α ∈ P(X) and f ∈ [X,Y ] .
Then

d(f ◦ α) = Tf ◦ dα.
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Proof. Given u ∈ Uα, by definition of differential for plots we have

du(f ◦ α) = d0(f ◦ α ◦ h−1) ◦ duh

and
Tα(u)f ◦ duα = Tα(u)f ◦ d0(α ◦ h−1) ◦ duh.

We claim that the left hand sides are equal, so let us show that the right
hand sides are equal. Let us write δ := α ◦ h−1 ∈ P(X). Then by Definition
5.8 we have that d0(f ◦ δ) = Tα(u)f ◦ d0δ, which implies equality of the right
hand sides. 2

Lemma 5.12. The map Tf : TX → TY is smooth.

Proof. By Lemma 1.14 it suffices to show

Tf ◦ dα ∈ P(TY )

for all α ∈ P(X). But this follows immediately from the chain rule for plots,
since Tf ◦ dα = d(f ◦ α) ∈ P(TY ). 2

Corollary 5.13. The assignments X 7→ TX and f 7→ Tf define a functor

T : Diff → Diff .

In Chapter 6 we will show that this functor extends the classical tangent
functor for smooth manifolds.

5.4. D-Forms and Tangent Vectors

In this last subsection we want to show how 1-forms as defined in Chapter
4 yield smooth maps from TX to R.

Lemma 5.14. Let ω be a D-form of degree 1 on the diffeological space X.
The map ωx : Ex → R defined by

ωx(
P

α cαvα) =
P

α cαωx(vα)
=
P

α cαω(α)0(vα) vanishes on Êx and therefore gives rise to a well-defined
map

ωx : TxX → R.
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Proof. It suffices to check that ωx vanishes on vectors of the form

ιβ(v)− (ια ◦ d0h)(v)

with β = α ◦ h and v ∈ Eβ. Omitting the ι, we can reformulate this as

ωx(v) = ωx(d0h(v)).

The left hand side equals ω(β)0(v) = ω(α ◦ h)0(v), which is the same as
h∗(ω(α))0(v) by definition of D-forms. The right hand side equals
ω(α)0(d0h(v)) = h∗(ω(α))0(v) by definition of h∗. 2

Theorem 5.15. The map ω : TX → R sending v ∈ TxX to ωx(v) is
smooth if R is equipped with the manifold diffeology.

Proof. The diffeology of TX is generated by the dα, so it suffices to
check that ω ◦ dα : TUα → R is a smooth map for each plot α ∈ P(X).
Given v ∈ TuUα, we use the definition of dα to get

ω(duα(v)) = ω(jβ(duh(v)))

with β = α ◦ h−1 and h being the translation y 7→ y − u. Let w = duh(v).
Then by definition of ω we get

ω(jβ(w)) = ωα(u)(π(ιβ(w)))
= ω(β)0(w)
= ω(α)u(d0h

−1(w))
= ω(α)u(v) So ω ◦ dα = ω(α) ∈ Ω1(Uα) which proves that v 7→ ω(dα(v)) is
smooth. 2

6. The Tangent Functor on Manifolds

The content of this section is also found in [Hec95]. We work out the proofs
in some more detail.

We have seen in Lemma 2.1 that the categoryMfd of smooth manifolds
over R forms a full subcategory of Diff . Now we have two possibly different
tangent functors onMfd, the restriction of our diffeological tangent functor
from Chapter 5, and the classical tangent functor. It is not clear however
that the diffeological tangent bundle of a manifold is again a manifold.

The goal of this chapter is to show that the diffeological tangent functor
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indeed restricts to the category Mfd, and that this restriction agrees with
the classical tangent functor. Until we prove equality, let us write T̃ for the
diffeological tangent functor and d̃ for the differential of plots as defined in
5.4.

We will have to show the following:

• The vector spaces T̃xM and TxM are isomorphic. This implies that
the underlying sets of the tangent bundles are equal.

• The diffeology P(T̃M) defined in Chapter 5 is the same as the manifold
diffeology consisting of all smooth maps into TM.

• T̃xf = Txf for smooth maps f ∈ C∞(M,N) = [M,N ] .

It then follows that T̃ f is smooth in the classical sense, because

C∞(TM,TN) =
h
T̃M, T̃N

i
.

We start by proving the first point:

Theorem 6.1. Let M be a smooth manifold. For every point x on M, the
vector spaces T̃xM and TxM are isomorphic.

Proof. For each plot α centered at x let

kα := d0α : Eα → TxM,

where d0 denotes the classical differential. If β = α ◦ h it follows from the
classical chain rule that the triangle 5.1 commutes. So by Lemma 5.2 there
is a unique linear map k : T̃xM → TxM such that d0α = k ◦ jα for each
α ∈ Px(M). We claim that k is an isomorphism. Let (ψ,U) be a chart of
M about x such that ψ(x) = 0. Then φ := ψ−1 is a plot centered at x, and
d0φ is a bijection. As d0φ = k ◦ jφ, the map k is necessarily surjective. It
remains to show that k is injective. In order to make the notation more
readable we will identify vα ∈ Eα with its image under ια in Ex, and we will
write [x] for the class of x ∈ Ex in TxX. So suppose

0 = k
¡£P

α∈Px cαvα
¤¢

=
P

α cα(k ◦ jα)(vα)
=
P

α cαd0α(vα) for some element
P

α cαvα ∈ Ex, where vα ∈ Eα. Choose
a chart ψ as above, such that its inverse φ is a plot centered at x. Then

dxψ : TxM → Eφ
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is an isomorphism, and therefore 0 = dxψ(
P

α cαd0α(vα))
=
P

α cαd0(ψ ◦ α)(vα).
The vector vα−d0(ψ ◦α)(vα) lies in Êx as α = φ ◦ (ψ ◦α). So P

α cαvα =P
α cαvα −

P
α cαd0(ψ ◦ α)(vα)

=
P

α cα(vα − d0(ψ ◦ α)(vα)) represents the zero vector in Ex/Êx, and
therefore k is injective. 2

To show the second point, we will first prove that the differential of plots
as defined in 5.4 agrees with the classical differential.

Corollary 6.2. For a plot α, the maps d̃α and dα agree.

Proof. We use the map k from above Theorem 6.1 to identify diffeological
and classical tangent space. So the equality

k ◦ jα = d0α,

shows that jα = d̃0α is to be identified with d0α. Now for u 6= 0 the map
d̃uα is defined as

jβ ◦ duh

where β = α ◦ h−1. Using jβ = d0β we get

d̃uα = d0β ◦ duh = du(β ◦ h) = duα.

2

Corollary 6.3. The manifold diffeology on TM as defined in Subsection
2.1 and the tangent diffeology from Definition 5.5 are equal.

Proof. Recall from Definition 5.5 that the tangent diffeology on TM is
generated by the differentials dα of charts, which are smooth maps by Corol-
lary 6.2. So the tangent diffeology is contained in the manifold diffeology,
which consists of all smooth maps into TM.

On the other hand, by Lemma 2.3 the manifold diffeology is generated
by A−1 where A is an atlas for the manifold. The tangent bundle has an
atlas given by

TA := {dφ | φ ∈ A},



Diffeological Spaces 177

so the inverse charts are of the form d(φ−1). Now the smooth maps φ−1 are
plots for M. Therefore the maps d(φ−1) are contained in the generating set
for the tangent diffeology. Hence the manifold diffeology is contained in the
tangent diffeology. This implies equality of the two diffeologies. 2

Corollary 6.4. Given a smooth map f : M → N between smooth mani-
folds M and N, the differentials T̃xf and Txf agree.

Proof. We have established the equality jα = d0α for plots centered at
x. Thus jf◦α = d0(f ◦ α) = Txf ◦ d0α by the classical chain rule. But by
construction, the diffeological differential T̃xf is the unique map satisfying
this equality for all plots α ∈ PxX. Thus T̃xf = Txf. 2
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