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Abstract

P. Dierolf has shown that there is a strongest locally convex polar
topology which has the same subseries (bounded multiplier) convergent
series as the weak topology, and I. Tweddle has shown that there is a
strongest locally convex topology which has the same subseries conver-
gent series as the weak topology. We establish the analogues of these
results for multiplier convergent series if the sequence space of multipli-
ers has the signed weak gliding hump property. We compare our main
result with other known Orlicz-Pettis Theorems for multiplier conver-
gent series.
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The classical Orlicz-Pettis (OP) Theorem for normed linear spaces as-
serts that a series in a normed linear space which is subseries (ss) conver-
gent in the weak topology is actually ss convergent in the norm topology of
the space ([O],[P]). The theorem was generalized to locally convex spaces
by McArthur and asserts that a series which is ss convergent in the weak
topology is ss convergent in the original or the Mackey topology of the
space ([Mc]). Dierolf has shown that there is a strongest locally convex po-
lar topology which has the same ss convergent series as the weak topology
([D]), and Tweddle has shown that there is a strongest locally convex topol-
ogy which has the same ss convergent series as the weak topology ([T]). A
series

P
xj in a Hausdorff locally convex space (E, τ) is ss convergent iff for

every subsequence {xnj} the subseries
P

xnj is τ convergent; if I = {nj}
is a subsequence and CI is the characteristic function of I, then the sub-
series

P
xnj is τ convergent iff the series

P∞
j=1CI(j)xj is τ convergent. If

m0 = span{CI : I ⊂ N}, then a series Pxj in (E, τ) is ss convergent iffP∞
j=1 tjxj is τ convergent for every t = {tj} ∈ m0. This suggests that the

sequence space m0 could be replaced by other sequence spaces and the re-
sulting series could be studied. If λ is any vector space of scalar sequences
which contains the space c00 of sequences which are eventually 0, a seriesP

xj in (E, τ) is said to be τ λ-multiplier convergent if the series
P

tjxj is
τ convergent for every t = {tj} ∈ λ; thus, a series is ss convergent iff the se-
ries is m0-multiplier convergent. OP Theorems for multiplier convergent se-
ries have been established by several authors ([LCC],[WL],[SS1],[SS2],[Sw3])
and, in particular an OP Theorem for locally convex spaces has been estab-
lished for multiplier spaces λ with a property called the signed weak gliding
hump property ([SS2]). In this note we show that the analogues for the
Dierolf and Tweddle topologies exist for λ-multiplier convergent series when
λ has the signed weak gliding hump property. We then show that if the
multiplier space λ has a gliding hump property, called the signed weak glid-
ing hump property, then the Dierolf topology is stronger than the Mackey
topology and 2 other topologies often considered for the OP Theorem.

Let E,E0 be a dual pair with respect to the bilinear pairing h, i. The
weak (Mackey, strong) topology on E with respect to this duality is denoted
by σ(E,E0) (τ(E,E0), β(E,E0)) ( [Wi], [Sw1 ] ). Let λ be a sequence space
containing c00 . The β-dual of λ is defined to be λβ = {{sj} :

P
sjtj con-

verges for every t = {tj} ∈ λ}; if t = {tj} ∈ λ and s = {sj} ∈ λβ, we write
s · t =P

sjtj and note that λ, λ
β are in duality with respect to the bilinear

pairing s · t.
The Dierolf topology is the polar topology defined by the following col-
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lection M of σ(E0, E) bounded subsets of E0;
M ∈M iffM is σ(E0, E) bounded and for every linear continuous opera-

tor S : (E0, σ(E0, E))→ (l1, σ(l1,m0)) SM is relatively compact in (l1, kk1).
The Dierolf topology is the polar topology of uniform convergence on

the members of M and is the strongest polar topology with the same ss
convergent series as σ(E,E0) ([D]); see [K],[Wi],[Sw1] for a discussion of
polar topologies.)

The development of the basic properties of the Dierolf topology is based
on the following facts concerning m0 and its β-dual l

1: Let K ⊂ l1. The
following are equivalent:

(i) K is σ(l1,m0) compact
(ii) K is kk1 compact
(iii) limn

P∞
j=n |tj | = 0 uniformly for t = {tj} ∈ K.

(See [BK], [K]22.4.(3).)
For use in our generalization of the Dierolf topology for general spaces

of multipliers, we establish another condition equivalent to (i)-(iii).
(iv) for every t = {ti} ∈ m0, limn

P∞
j=n tjxj = 0 uniformly for x ∈ K.

That (iii) implies (iv) ( even for t ∈ l∞ ) is clear. Suppose that (iii) fails.
Then there exists � > 0 such that for every k there exist mk > k, xk ∈ K

such that
P∞

i=mk

¯̄̄
xki

¯̄̄
> 5�. In particular, there exist m1, x

1 ∈ K such

that
P∞

i=m1

¯̄
x1i
¯̄
> 5�. There exists n1 > m1 such that

P∞
i=n1+1

¯̄
x1i
¯̄
< �.

Therefore,
Pn1

i=m1

¯̄
x1i
¯̄
> 4�. Set I1 = [m1, n1], I

+
1 = {i ∈ I1 : x

1
i >

0}, I−1 = {i ∈ I1 : x
1
i < 0}. Either

¯̄̄P
i∈I+1

x1i

¯̄̄
> 2� or

¯̄̄P
i∈I−1

x1i

¯̄̄
> 2�;

pick one of these index sets which gives this inequality and label it J1 so¯̄P
i∈J1 x

1
i

¯̄
> 2�. Continuing this construction produces an increasing se-

quence of subsets {Jk}, xk ∈ K,mk < nk < mk+1 < nk+1 < ... with

Jk ⊂ [mk, nk],
¯̄̄P

i∈Jk x
k
i

¯̄̄
> 2�,

P∞
i=nk+1

¯̄̄
xki

¯̄̄
< �. Put t =

P∞
i=1CJi (co-

ordinate sum). Then¯̄̄P∞
i=mk

tix
k
i

¯̄̄
≥
¯̄̄P

i∈Jk x
k
i

¯̄̄
−P∞

i=nk+1

¯̄̄
xki

¯̄̄
> 2� − � = � so (iii) fails to

hold.
For the case of a general space of multipliers, we make the following

definition of a condition analogous to condition (iv).

Definition 1. A subset K ⊂ λβ has uniform tails if for every t ∈ λ,
limn

P∞
j=n tjsj = 0 uniformly for s ∈ K.

Using the equivalence of conditions (ii) and (iv) above, the analogue of
the Dierolf topology for general spaces of multipliers is defined to be the
polar topology generated by the family D = Dλ:
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D ∈ Dλ iff D is σ(E0, E) bounded and for every linear continuous
S : (E0, σ(E0, E))→ (λβ, σ(λβ, λ)) SD has uniform tails in λβ .

As above,we denote the polar topology of uniform convergence on the
members of Dλ by Dλ (E,E

0). It follows from the equivalence of (i)-(iv)
above that when λ = m0 the Dierolf topology is exactly Dm0 (E,E

0) so it is
reasonable to view this topology as a generalization of the Dierolf topology.

In order to establish the basic property of the generalized Dierolf topol-
ogy we prove the following result.

Proposition 2. There is a 1-1 correspondence between σ(E,E0) λ-multiplier
convergent series

P
xj and linear continuous operators S : (E

0, σ(E0, E))→
(λβ, σ(λβ, λ)). The correspondence is given by xj = S0ej , where ej is the
sequence with 1 in the jth coordinate and 0 in the other coordinates and S0

is the adjoint operator.

Proof: Suppose that
P

xj is σ(E,E
0) λ-multiplier convergent. Define

T : λ → E by Tt =
P

tjxj (σ(E,E
0) sum). We claim that T is σ(λ, λβ) −

σ(E,E0) continuous. Let x0 ∈ E0, t ∈ λ. Then hx0, T ti = hx0,P tjxji =P
tj hx0, xji = t · {hx0, xji} where {hx0, xji} ∈ λβ. This implies that T is

σ(λ, λβ) − σ(E,E0) continuous. Therefore S = T 0 is σ(E0, E) − σ(λβ, λ)
continuous ([Sw1]26.14).

If S : (E0, σ(E0, E))→ (λβ, σ(λβ, λ)) is linear and continuous, then S0 =
T : λ → E is σ(λ, λβ) − σ(E,E0) continuous ([Sw1]26.14). Now

P
ej is

σ(λ, λβ) λ-multiplier convergent so
P

S0ej =
P

Tej =
P

xj is σ(E,E0)
λ-multiplier convergent and the correspondence follows.

Thus, it follows from Proposition 2, to check that a subset D ⊂ E0

belongs to Dλ, it suffices to show that limn
P∞

j=n hx0, xji = 0 uniformly for
x0 ∈ D whenever

P
xj is a σ(E,E

0) λ-multiplier convergent series.

It follows from Proposition 2 that Dλ (E,E
0) is the strongest polar

topology on E with the same λ-multiplier convergent series as σ(E,E0).

Theorem 3. Dλ(E,E
0) is the strongest polar topology on E with the same

λ multiplier convergent series as σ(E,E0).

Proof: Suppose
P

xj is σ(E,E
0) λ multiplier convergent. Let T : λ→ E

be defined as in Proposition 2, T 0 = S and let D ∈ Dλ. Then SD =
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{{hx0, xji} : x0 ∈ D} has uniform tails in λβ so if t ∈ λ, limn
P∞

j=n tj hx0, xji =
0 uniformly for x0 ∈ D. That is,

P
tjxj is Dλ(E,E

0) convergent.
Suppose that α is a polar topology on E with the same λ multiplier con-

vergent series as σ(E,E0). If α is the polar topology of uniform convergence
on members of A and if

P
xj is σ(E,E

0) λ convergent, t ∈ λ and A ∈ A,
then limn

P∞
j=n tj hx0, xji = 0 uniformly for x0 ∈ A. Hence, A ∈ Dλ and α

is weaker than Dλ(E,E
0).

It is known in the locally convex case that there are locally convex topolo-
gies which are stronger than the Mackey topology and have the same ss
convergent series as σ(E,E0). We now compare the Dierolf topology with 2
of these locally convex topologies.

For this we next establish a lemma which will be used several times in
what follows. A sequence of intervals {Ij} in N is increasing if maxIj <
min Ij+1.

Lemma 4. SupposeM ⊂ E0 is such that there exist a σ(E,E0) λ-multiplier
convergent series

P
xj and t ∈ λ such that the series

P
tj hx0, xji do not

converge uniformly for x0 ∈ M . Then there exist � > 0, {x0k} ⊂ M and an

increasing sequence of intervals {Ik} with
¯̄̄P

j∈Ik tj hx
0
k, xji

¯̄̄
> � for every k.

Proof: If the series do not converge uniformly, then there exists � > 0
such that for every k there exist mk > k, x0 = x0(k) ∈ M such that¯̄̄P∞

j=mk
tj hx0, xji

¯̄̄
> 2�. In particular, there exist m1, x

0
1 ∈M with¯̄̄P∞

j=m1
tj hx01, xji

¯̄̄
> 2�. Since

P
xj is σ(E,E0) λ-multiplier conver-

gent , there exists n1 > m1 such that
¯̄̄P∞

j=n1+1 tj hx01, xji
¯̄̄
< �. Thus, if

I1 = [m1, n1], then
¯̄̄P

j∈I1 tj hx01, xji
¯̄̄
> �. Continuing this construction

establishes the lemma.

In order to establish our results we impose a gliding hump property on
the multiplier space. The space λ has the signed weak gliding hump property
(signed WGHP) if for every t ∈ λ and every increasing sequence of intervals
{Ij}, there is a subsequence {nj} and a sequence of signs �j = ±1 such
that the coordinatewise sum of the series

P∞
j=1 �jCInj

t belongs to λ; if the
signs �j can all be chosen to be equal to 1, then λ is said to have the weak
gliding hump property (WGHP). For example, any monotone space such as
c00, c0,m0, or l

p(0 < p ≤ ∞) has WGHP whereas the non-monotone space
bs, the space of bounded series, has signed WGHP but not WGHP (see
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[SS1],[SS2] or [Sw2] for further examples and applications; [BSS] contains
many examples of non-monotone spaces with signed WGHP).

First, consider the polar topology γ(E,E0) of uniform convergence on
conditionally σ(E0, E) sequentially compact subsets of E0(i.e., subsets K ⊂
E0 such that every sequence {x0j} ⊂ K has a subsequence {x0nj} such that
lim

D
x
0
nj , x

E
exists for every x ∈ E (see [D]2.4(e) or [Di]). It has been

shown that every σ(E,E0) ss convergent series is also γ(E,E0) ss convergent
([Sw2]10.3.1, [SS2]).

Theorem 5. Let λ have signed WGHP. Then γ(E,E0) ⊂ Dλ (E,E
0).

Proof: Suppose that K ⊂ E0 is conditionally σ(E0, E) sequentially com-
pact. If K doesn’t belong to Dλ, then by Lemma 4 there exist � > 0, {x

0
k} ⊂

K and an increasing sequence of intervals {Ik} with

(∗)

¯̄̄̄
¯̄X
j∈Ik

tj
­
x0k, xj

®¯̄̄̄¯̄ > �

for every k. By the conditional σ(E0, E) sequential compactness we may

assume that lim
D
x
0
k, x

E
exists for every x ∈ E. Consider the matrix M =

[mij ] = [
P

l∈Ii tl
D
x
0
j , xl

E
]. We show that M is a signed K-matrix in the

sense of Antosik and Mikusinski so the diagonal of M should converge
to 0 but this will contradict (*) (see [S1],[S2] or [Sw2]2.2.2). First, the
columns of M converge by the compactness. Next, given any subsequence
there is a further subsequence {pj} and a sequence of signs �j such that
s = {sj} =

P∞
j=1 �jCIpj

t ∈ λ. Then
P∞

j=1 �jmipj =
D
x
0
k,
P∞

j=1 sjxj
E
→ 0.

Hence, M is a signed K-matrix as claimed and the result follows.

Next, consider the polar topology λ(E,E0) of uniform convergence on
σ(E0, E) compact subsets of E0. This topology is obviously stronger than
the Mackey topology and can be strictly stronger ([D]3.1). The topologies
λ(E,E0) and σ(E,E0) have the same ss convergent series ([BK]2.1,[D]).

Theorem 6. Let λ have signed WGHP. Then λ(E,E0) ⊂ Dλ (E,E
0).

Proof:LetB ⊂ E0 be σ(E0, E) compact. Assume thatB doesn’t belong to
Dλ and let the notation be as in the proof of Theorem 4. Let E0 = span{xj}.
The set {x0k : k} is relatively σ(E

0
0, E0) compact and, therefore, relatively

σ(E
0
0, E0) sequentially compact since E0 is separable ([Wi]9.5.3). Therefore,
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we may assume that lim hx0k, xi exists for every x ∈ E0. The proof can now
be completed as in Theorem 5.

It follows from Theorems 5 and 6 that if λ has the signed WGHP, then
any series which is σ(E,E0) λ-multiplier convergent is also γ(E,E0), λ(E,E0)
and τ(E,E0) λ-multiplier convergent. This result covers series which are not
ss convergent and not covered by Dierolf’s result ; for example, bs-multiplier
convergent series may not be subseries convergent since bs is not a monotone
space (other examples of non-monotone spaces with signed WGHP are given
in [BSS]). See Example 6 of [SS2] for a specific example of a bs-multiplier
convergent series which is not ss convergent.

Without some assumptions on the multiplier space λ, the inclusions in
Theorems 5 and 6 may not hold.

Example 7. Let μ be the space of all scalar sequences which are eventually
constant. Then if τ is any locally convex topology on E, a series

P
xj

in E is τ μ-multiplier convergent iff
P

xj is τ convergent. Thus, if one
chooses a series which is σ(E,E0) convergent but not τ(E,E0), the series is
σ(E,E0) μ-multiplier convergent but not τ(E,E0) μ-multiplier convergent.
[For example,

P
(ek+1− ek) is σ(c0, l

1) convergent but not kk∞ convergent.]

Tweddle has shown that there is a strongest locally convex topology,
t(E,E0), on E which has the same ss convergent series as σ(E,E0) ([T]).
We now establish the analogue of Tweddle’s result for multiplier conver-
gent series. Let G0 be the space of all linear functionals x0 on E such thatP

ti hx0, xii = hx0,P tixii for every σ(E,E0) λ-multiplier convergent seriesP
xi and for every t ∈ λ.

Theorem 8. Let λ have signed WGHP. Then Dλ (E,G
0) is the strongest

locally convex topology on E which has the same λ-multiplier convergent
series as σ(E,E0).

Proof: If
P

xi is σ(E,E
0) λ-multiplier convergent, then

P
xi is σ(E,G

0)
λ-multiplier convergent and ,therefore, Dλ (E,G

0) λ-multiplier convergent .
Suppose that ν is a locally convex topology on E with the same λ-

multiplier convergent series as σ(E,E0).Put H 0 = (E, ν)0. Then H 0 ⊂ G0 so
by Theorem 6

ν ⊂ τ(E,H 0) ⊂ Dλ (E,H
0) ⊂ Dλ (E,G

0).
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In general, a series which is ss convergent in the weak topology σ(E,E0) is
not ss convergent in the strong topology β(E,E0) [consider

P
ek in σ(l∞, l1)

where β(l∞, l1) = kk∞]. However, if the multiplier space λ satisfies suffi-
ciently strong conditions, it is known that a σ(E,E0) multiplier convergent
series will be β(E,E0) multiplier convergent ([LCC],[Sw3]). We show that
if the multiplier space λ satisfies the gliding hump property of [Sw3] , then
the strong topology is weaker than Dλ (E,E

0) so any σ(E,E0) λ-multiplier
convergent series is also β(E,E0) λ-multiplier convergent.

Definition 9. The multiplier space λ has the infinite gliding hump property
(∞−GHP) if whenever t ∈ λ and {Ik} is an increasing sequence of intervals,
there exist a subsequence {nk} and ank > 0, ank →∞ such that every subse-
quence of {nk} has a further subsequence {pk} such that

P∞
k=1 apkCIpk

t ∈ λ
(coordinate sum). [The term ∞-GHP is used to suggest that the ”humps”
CIkt are multiplied by terms in a sequence which tends to ∞.]

A list of spaces, some of which are non-monotone , and which satisfy
∞-GHP is given in [Sw3] ( for example, lp(0 < p < ∞), c0,cs), where it
is shown that if λ has ∞-GHP, then σ(E,E0) and β(E,E0) have the same
λ-multiplier convergent series. We now show that if λ has ∞-GHP , then
β(E,E0) is weaker than Dλ (E,E

0) so any σ(E,E0) λ-multiplier convergent
series is β(E,E0) λ-multiplier convergent recovering one of the main result
of [Sw3].

Theorem 10. Let λ have∞-GHP. Then β(E,E0) is weaker thanDλ (E,E
0).

Proof: Let B ⊂ E0 be σ(E0, E) bounded. Assume that B doesn’t belong
to Dλ and let the notation be as in the proof of Theorem 5. So

(∗)

¯̄̄̄
¯̄X
l∈Ik

tl
­
x0k, xl

®¯̄̄̄¯̄ > �

for every k with x0k ∈ B. By the∞-GHP, there exist {pk}, apk > 0, apk →∞
such that every subsequence of {pk} has a further subsequence {qk} such
that s = {sj} =

P
k aqkCIqk

t ∈ λ. Consider the matrix M = [mij ] =
[
P

l∈Ij tlapj hx
0
i/api , xli]. We show that M is a K-matrix ([Sw2]2.2). Since

x0i/api → 0 in σ(E0, E), the columns of M converge to 0. Given a subse-
quence of {pj}, let {qj} be a further subsequence as above. Then

P∞
j=1miqj =P∞

j=1

P
l∈Ij sl hx

0
i/api , xli = hx0i/api ,

P
l slxli→ 0 where

P
l slxl is the σ(E,E

0)
sum of the series. Thus, M is a K-matrix and the diagonal of M should
converge to 0 ([Sw2]2.2.2). But, this contradicts (*).
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