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Abstract

Classical theory of tensornorms and operator ideals studies mainly
those defined by means of sequence spaces cp. Considering Orlicz se-
quence spaces as natural generalization of cp spaces, in a previous
paper [12] an Orlicz sequence space was used to define a tensornorm,
and characterize minimal and maximal operator ideals associated, by
using local techniques. Now, in this paper we give a new characteri-
zation of the maximal operator ideal to continue our analysis of some
coincidences among such operator ideals. Finally we prove some new
metric properties of tensornorm mentioned above.
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1. Introduction

Using ideas from cp spaces, Saphar introduced a tensornorm gp (see [18])
and given the great relationship between tensornorms and operator ideals,
minimal and maximal operator ideals associated to the tensornorm in the
sense of Defant and Floret were studied in the classical theory of tensornorm
and operator ideals.

Since Orlicz spaces cM are natural generalizations of cp spaces, in [12] we
introduced a tensornorm gcM by means of an Orlicz space cM and using some
aspects of local theory we characterized the minimal and maximal operator
ideals associated to gcM . Now in this paper our aim is to give another
characterization of maximal operator ideal associated to this tensornorm
to study the coincidence between components of the two operator ideals
which in turn enables us to prove some metric properties of gcM and its
dual.

Notation is standard. We will always consider Banach spaces over the
real field, since we shall use results in the theory of Banach lattices. The
canonical inclusion map from Banach space E into the bidual E00 will be
denoted by JE. In general if E is a subspace of F , the inclusion of E into
F is denoted by IE,F . The set of finite dimensional subspaces of a normed
space E will be denoted by FIN(E).

We recall the more relevant aspects on Banach lattices (we refer the
reader to [1]). A Banach lattice E is order complete or Dedekind complete
if every order bounded set in E has a least upper bound in E, and it is
order continuous if every order convergent filter is norm convergent. Every
dual Banach sequence lattice E0 is order complete and all reflexive spaces
are even order continuous. A linear map T between Banach lattices E and
F is said to be positive if T (x) ≥ 0 in F for every x ∈ E, x ≥ 0. T is called
order bounded if T (A) is order bounded in F for every order bounded set
A in E.

Let ω be the vector space of all scalar sequences and ϕ its subspace of
the sequences with finitely many non zero coordinates. A sequence space λ
is a linear subspace of ω containing ϕ provided with a topology finer than
the topology of coordinatewise convergence. A Banach sequence space will
be a sequence space λ provided with a norm which makes it a Banach
lattice and an ideal in ω, i.e. such that if |x| ≤ |y| with x ∈ ω and y ∈ λ,
then x ∈ λ and kxkλ ≤ kykλ. A sectional subspace Sk(λ), k ∈ N, is the
topological subspace of λ of those sequences (αi) such that αi = 0 for every
i ≥ k. Clearly Sk(λ) is 1-complemented in λ. A Banach sequence space
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λ will be called regular whenever the sequence {ei}∞i=1 where ei := (δij)j
(Kronecker’s delta) is a Schauder base in λ.

We now discuss Orlicz spaces. A non degenerated Orlicz function M
is a continuous, non decreasing and convex function defined in R+ such
that M(t) = 0 if and only if t = 0 and limt→∞M(t) = ∞. The Orlicz
sequence space cM is the space of all sequences a = (ai)

∞
i=1 such thatP∞

i=1M(|ai|/c) <∞, for some c > 0. The functional

ΠM(a) = inf{c > 0 :
∞X
i=1

M(|ai|/c) ≤ 1}

is a norm in cM and (cM ,ΠM(.)) is a Banach space. We say that an Orlicz
function M has the ∆2 property at zero if M(2t)/M(t) is bounded in a
neighbourhood of zero. In general cM is not regular, but this is the case if
and only if M satisfies the ∆2 property at zero.

We say that the function M∗ is the complementary of M if M∗(u) :=
max{ut−M(t) : 0 < t <∞} then H∗ is also an Orlicz function. Associated
to M∗ we can introduce a new norm on cM , defined by

kakM = sup{
∞X
n=1

anbn : ΠM((bn)) ≤ 1}

if a = (ai)
∞
i=1 which is equivalent to ΠM(.). Then ifM has the ∆2-property

at zero, (cM ,ΠH(.))
0 = (cH∗ , k.kM∗) as isometric spaces. Moreover cM is

reflexive if and only if M and M∗ have the ∆2-property at zero. For more
information on Orlicz functions and Orlicz spaces we refer to [13].

All Orlicz spaces in this paper are considered regular and reflexive.
Moreover we will always suppose that M(1) = 1.

Let (Ω,Σ, µ) be a measure space, we denote by L0(µ) the space of
equivalence classes, modulo equality µ-almost everywhere, of µ-measurable
real-valued functions, endowed with the topology of local convergence in
measure. And the space of all equivalence classes of µ-measurable X-valued
functions is denoted by L0(µ,X). By a Köthe function space K(µ) on
(Ω,Σ, µ), we shall mean an order dense ideal of L0(µ), which is equipped
with a norm k.kK(µ) that makes it a Banach lattice(if f ∈ L0(µ) and
g ∈ K(µ) |f | ≤ |g|, then f ∈ K(µ) with kfkK(µ) ≤ kgkK(µ)). Similar-
ity, K(µ,X) = {f ∈ L0(µ,X) : kf(.)kX ∈ K(µ)}, endowed with the norm
kfkK(µ,X) = kkf(.)kXkK(µ).

On theory of operator ideals and tensor norms we refer to the books
[16] and [4] of Pietsch and Defant and Floret respectively.
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If E and F are Banach spaces and α is a tensor norm, then E ⊗α F
represents the space E ⊗ F endowed with the α-normed topology. The
completion of E ⊗α F is denoted by E⊗̂αF , and the norm of z in E⊗̂αF
by α(z;E ⊗ F ). If there is no risk of confusion we write α(z) instead of
α(z;E ⊗ F ).

2. The tensor norm gcM and M-nuclear operators associated
to an Orlicz function M

First we establish some notation. Given a Banach space E and an Or-
licz function M with M(1)=1 such that cM is reflexive, we say that a
sequence (xn)

∞
n=1 ∈ EN is strongly M -summing if (kxnk) ∈ cM and we

write πM((xi)) := ΠH((kxnk)) and it is said to be weakly M -summing if
εM((xi)) : = supkx0k≤1 k(|hxn, x0i|)kM . We denote by cM [E] (resp. cM(E))
the space of all strongly (resp. weakly) M -summing in E with the norm
πM(.) (resp. εM(.)).

The more natural approach to define a tensornorm in analogy to Saphar’s
tensornorm is as follows. Let E and F be Banach spaces and z ∈ E ⊗ F ,
we define

gM(z;E ⊗ F ) := inf πM((xn)) εM∗((yn))

taking the infimum over all representations of z as
Pm

n=1 xn ⊗ yn. We will
write gM(z) instead of gM(z;E⊗F ) if there is not possibility of confusion.

It is possible that for some M the functional gM does not satisfy the
triangle inequality, but it is always a reasonable quasi norm on E ⊗ F , see
[3] and [6]. We denote E⊗̂gMF the corresponding quasi Banach space.

To have a tensornorm gcM in [12] we took the Minkowski functional,
denoted gcM(z;E ⊗F ), of the absolutely convex hull of the unit closed ball
BgM := {z ∈ E ⊗ F / gM(z) ≤ 1} of the quasi norm gM in E ⊗ F , such
that

gcM(z;E ⊗ F ) := inf
nX
i=1

πM((xij)) εM∗((yij))

taking the infimum over all representations of z as
Pn

i=1

Pm
j=1 xij ⊗ yij .

Again, we will write gM(z) instead of gM(z;E⊗F ) if there is not possibility
of confusion.

It is easy to see that gcM is a tensor norm on the class of all Banach
spaces (using criterion 12.2 in [4] and bearing in mind that πM(ei) =
keikM∗ = 1 for every i ∈ N), and that ∀ z ∈ E ⊗ F gcM(z;E ⊗ F ) ≤
gM(z;E ⊗ F ). We denote E⊗̂gcMF the corresponding Banach space.
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Proceeding as in [3] and [18], it is easy to see that if z ∈ E⊗̂gMF , there
are (xi)

∞
i=1 ∈ cM [E] and (yi)

∞
i=1 ∈ cH∗(F ) such that πM((xi)) εM∗((yi)) <

∞ and z =
P∞

i=1 xi ⊗ yi. Moreover the quasi norm of z in E⊗̂gMF (again
denoted by gM(z)) is given by gM(z) = inf πM((xi)) εM∗((yi)) taking the
infimum over all such representations of z as

Pm
n=1 xn ⊗ yn. Similarly, if

z ∈ E⊗̂gcMF then z can be represented as z =
P∞

i=1

P∞
j=1 xij ⊗ yij where

(xij)
∞
i=1 ∈ cM [E] for each j ∈ N, (yij)∞i=1 ∈ cM∗(F ) for each j ∈ N andP∞

j=1 πM((xij)) εM∗((yij)) < ∞. Moreover, the norm of z in E⊗̂gcMF is
gcM(z) = inf

P∞
j=1 πM((xij)) εM∗((yij)) taking the infimum over all repre-

sentations of z as
P∞

i=1

P∞
j=1 xij ⊗ yij .

The topology defined by the quasi norm gM on E⊗F is normable with
norm equivalent to gcM . In fact, being cM a reflexive Orlicz space and fol-
lowing the arguments of proposition 16 of [3], we consider the bilinear onto
map R : cM [E]× cM∗(F )→ E⊗̂gMF such that R((xi), (yi)) =

P∞
i=1 xi⊗yi.

R is continuous with quasi norm less or equal one. Then there exists
a unique linear and continuous map cM [E] ⊗π cM∗(F ) → E⊗̂gMF (see
[20]). This map can be extended to a continuous linear and onto map
cM [E]⊗̂πcM∗(F ) → E⊗̂gMF which is open by the open mapping theo-
rem. Then E⊗̂gMF is isomorphic to a quotient of a Banach space and
so it is a Banach space itself. In this way there is a norm wM(.;E ⊗ F )
equivalent to the quasi norm gM(.;E ⊗ F ) furthermore it is easy to see
that wM(.;E ⊗ F ), gM(.;E ⊗ F ) and gcM(.;E ⊗ F ) are equivalent with
gcM(.;E⊗F ) ≤ wM(.;E⊗F ). Given the last equivalence, gM seems appro-
priate for our purposes, but we need gcM for our main results.

To introduceM -nuclear operators, bearing in mind that every represen-
tation of z ∈ E0⊗̂gcMF as

P∞
i=1

P∞
j=1 xij ⊗ yij defines a map Tz ∈ L(E,F )

such that ∀x ∈ E, Tz(x) :=
P∞

i=1

P∞
j=1hx0ij , xi yij . Furthermore, Tz

is well defined and independent of the chosen representation for z. Let
ΦEF : E

0⊗̂gcMF → L(E,F ) be defined by ΦEF (z) := Tz.

Definition 1. An operator between Banach spaces T : E → F is said to
be M - nuclear if T = ΦEF (z), for some z ∈ E0⊗̂gcMF .

Given any pair of Banach spaces E and F , the space of the M -nuclear
operators T : E → F endowed with the topology of the norm Nc

M(T ) :=
inf{gcM(z) / ΦEF (z) = T} or with the equivalent quasi-norm NM(T ) :=
inf{gM(z) / ΦEF (z) = T} is denoted by NH(E,F ). Also (NM(E,F ),N

c
M)

denotes a component of the minimal Banach operator ideal (NM ,Nc
M)

associated to the tensor norm gcM . Analogously as in [12] we obtain the
following result.
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Theorem 2. Let E,F be any pair of Banach spaces and an operator T ∈
L(E,F ). Then the following are equivalent:

1) T is M -nuclear.

2) T factors continuously in the following way:

c∞

E

A

?
-

B
cM

6
F

C

-
T

where B is a diagonal multiplication operator defined by a positive sequence
(bi) ∈ cM .

Furthermore NM(T ) = inf{kCkkBkkAk}, infimum taken over all such
factors.

3) T factors continuously in the following way:

c∞[c∞]

E

A

?
-

B
c1[cM ]

6
F

C

-
T

where B is a diagonal multiplication operator defined by a positive sequence
(bi) ∈ c1[cM ].

Furthermore Nc
M(T ) = inf{kCkkBkkAk}, infimum taken over all such

factors.

Associated to gM and gcM , there are other important operator ideal.

Definition 3. Let T ∈ L (E,F ), we say that T is M -absolutely summing
if exist a real number C > 0, such that for all sequences (xi) in E, with
εM ((xi)) <∞, it satisfies that

k (T (xi)) kM ≤ CεM ((xi))(2.1)
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For PM(E,F ) we denote the Banach ideal of theM -absolutely summing
operators T : E → F endowed with the topology of the norm PM(T ) :=
inf C, taking the infimum over all C that satisfies (2.1)

Theorem 4. Let E and F be Banach spaces.
³
E ⊗gcM F

´0
= PM∗ (F,E0)

isometrically.

3. M-integral operators

The characterization of maximal operator ideal obtained in [12] was given
in terms of theory of finite representability of Banach spaces and/or Banach
Lattices.

In present paper, we give another characterization of such ideals by
considering the structure of finite dimensional subspaces of Orlicz spaces
involved. The behavior of the Orlicz sequences spaces under ultraproducts
is also crucial.

On ultraproducts of Banach spaces we refer to [8]. We only set the
notation we will use. Let D be a non empty index set and U a non-trivial
ultrafilter in D. Given a family {Xd, d ∈ D} of Banach spaces, (Xd)U
denotes the corresponding ultraproduct Banach space. If every Xd, d ∈ D,
coincides with a fixed Banach space X the corresponding ultraproduct is
named an ultrapower of X and is denoted by (X)U . Recall that if every
Xd, d ∈ D is a Banach lattice, (Xd)U has a canonical order which makes it a
Banach lattice. If we have another family of Banach spaces {Yd, d ∈ D} and
a family of operators {Td ∈ L(Xd, Yd), d ∈ D} such that supd∈D kTdk <∞,
then (Td)U ∈ L((Xd)U , (Yd)U) denotes the canonical ultraproduct operator.

We now give a local definition which has been inspired in Gordon and
Lewis definition of local unconditional structure.

Definition 5. Given a sequence space λ, we say that a Banach space
X has an Sk(λ)-local unconditional structure if there exists a real constant
c > 0 such that for every finite dimensional subspace F of X, there is a
section Sn(λ) of λ and linear operators u : F → Sn(λ) and v : Sn(λ)→ X
such that kukkvk ≤ c and v u = IF,X .

The constant c which appears in above definition is called a Sk(λ)-local
unconditional structure constant of X and in this case we say that X has c-
Sk(λ)-local unconditional structure. If a Banach space X has c-Sk(λ)-local
unconditional structure for every c > C we say that it has C+-Sk(λ)-local
unconditional structure.
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The following definition was introduced by Pelczyǹnski and Rosenthal
[15] in 1975.

Definition 6. A Banach space X has the uniform projection property
if there is a b > 0 such that for each natural number n there is a natural
number m(n) such that for every n-dimensional subspace M ⊂ X there
exists a k-dimensional and b-complemented subspace Z of X containingM
with k ≤ m(n).

The constant b of the above definition is called a uniform projection
property constant of X, and in this case we say that X has the b-uniform
projection property. If X has the b-uniform projection property for every
b > B we say that X has the B+-uniform projection property.

We need to remark the following aspects involving Orlicz spaces.

The class of Banach spaces with the uniform projection property is
quite large and includes, for example the reflexive Orlicz spaces, see [14].
In particular they have the 1 + ε-uniform projection property for every
ε > 0. Furthermore If 1 ≤ p ≤ ∞ then, the Bochner space Lp(µ,E) and
cp(E) has the b-uniform projection property if E does, see [8]. We highlight
that the uniform projection property is stable under ultrapowers, see [8].
Moreover from [17].

Proposition 7. If cM is reflexive, then every ultrapower of c1[cM ] ( of
cM) has 1

+-Sr(c1)[Sk(cM)]-local unconditional structure (resp. 1
+-Sk(cM)-

local unconditional structure).

According to the general theory of tensor norms and operator ideals,
the normed ideal ofM -integral operators (IM , IM) is the maximal operator
ideal associated to the tensor norm gcM in the sense of Defant and Floret
[4], or in an equivalent way, the maximal normed operator ideal associated
to the normed ideal of M -nuclear operators in the sense of Pietsch [16].
From [4], for every pair of Banach spaces E and F , an operator T : E → F
is M -integral if and only if JFT ∈ (E ⊗(gc

λ
)0 F

0)0.
For every pair of Banach spaces E,F we define the finitely generated

tensor norm g0M such that if M ∈ FIN(E) and N ∈ FIN(F ), for every
z ∈M⊗N, g0M(z;M⊗N) := sup {|hz, wi| / gM(w;M 0 ⊗N 0) ≤ 1}. Clearly
g0M = (gcM)

0 since the unit ball in M 0 ⊗gcM N 0 is the convex hull of the unit
ball of M 0 ⊗gM N 0. But we remark that E0 ⊗gcM F 0 (and no E0 ⊗gM F 0 ) is
an isometric subspace of (E ⊗g0M F )0 because gcM is finitely generated, see
[4], 15.3.

In this case we define IM(T ) to be the norm of JF T considered as an
element of the topological dual of the Banach space E⊗g0λ F

0. Remark that



On operator ideals defined by a reflexive Orlicz sequence space 279

IM(T ) = IM(JF T ) as a consequence of F 0 be canonically complemented
in F 000.

First we give a non trivial example of M -integral operators.

Theorem 8. Let(Ω,Σ, µ) a measure space and let cM be a reflexive
Orlicz sequence space. Then every order bounded operator S : L∞(µ) →
cM and every order bounded operator S : L∞(µ)→ c1[cM ] are M -integral
with IM(S) = kSk.

Proof. We will only give the proof if S : L∞(µ) → cM is an order
bounded operator since the proof in the other case is similar.

The predual space of cM is cM∗, which is regular space becauseM∗ has
the ∆2 property at zero. Then, the linear span T of the set {ei, i ∈ N} is
dense in cM∗ and by the representation theorem of maximal operator ideals
(see 17.5 in [4]) and the density lemma (theorem 13.4 in [4]) we only have
to see that S ∈ (L∞(µ)⊗g0M T )

0.
Given z ∈ L∞(µ)⊗g0M T and ε > 0, let X and Y be finite dimensional

subspaces of L∞(µ) and T respectively such that z ∈ X ⊗ Y and

g0M(z;X ⊗ Y ) ≤ g0M(z;L∞(µ)⊗ T ) + ε.(3.1)

Let {gs}ms=1 be a basis for Y and let k ∈ N be such that ∀ 1 ≤ s ≤
m gs =

Pk
i=1 csiei. Then ∀ f ∈ X, ∀ 1 ≤ s ≤ m

hS, f ⊗ gsi = hf, S0(gs)i =
*
f,

Ã
kX
i=1

csi

!
S0(ei)

+
=

*
f ⊗

kX
j=1

csj ej ,
kX
i=1

S0(ei)⊗ ei
+
.

Then if U denotes the tensor U :=
Pk

i=1 S
0(ei) ⊗ ei ∈ L∞(µ)0 ⊗ λ, by

bilinearity we get ∀ z ∈ X ⊗ Y hz, Si = hU, zi.
Given ν > 0, for every 1 ≤ i ≤ k there is fi ∈ L∞(µ) such that kfik ≤ 1

and kS0(ei)k ≤ |hS0(ei), fii| + ν. Then f := sup1≤i≤k fi lies in the closed
unit ball of L∞(µ). On the other hand, cH is a dual lattice and hence it
is order complete. By the Riesz-Kantorovich theorem (see theorem 1.13 in
[1] for instance), the modulus |S| of the operator S exists in L(L∞(µ), cM).
By the lattice properties of cM we have

πM((S
0(ei)) = πM

Ã
kX
i=1

kS0(ei)k ei
!
≤ πM

Ã
kX
i=1

|hS0(ei), fii| ei
!
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+νπM

Ã
kX
i=1

ei

!
≤≤ πM

Ã
kX
i=1

|hS(fi), eii| ei
!
+ νπM

Ã
kX
i=1

ei

!

≤ πM

Ã
kX
i=1

h|S(fi)|, eii
!
+ νπM

Ã
kX
i=1

ei

!
≤ πM

Ã
kX
i=1

h|S|(|fi|), eii ei
!

+νπM

Ã
kX
i=1

ei

!
≤ πM

Ã
kX
i=1

h|S|(|f |), eii ei
!
+ νπM

Ã
kX
i=1

ei

!
=

= πM ( |S|(|f |)) + νπM

Ã
kX
i=1

ei

!
≤ k |S| k+ νπM

Ã
kX
i=1

ei

!
.

Moreover εM∗((ei)
k
i=1) ≤ 1. Hence, denoting by IX and IY the corre-

sponding inclusion maps into L∞(µ) and cH respectively, we have

|hS, zi| = |hU, zi| = |hU, ((IX)0 ⊗ (IY )0)(z)i| ≤

≤ gcM(U ;X ⊗ Y ) g0M(((IX)
0 ⊗ (IY )0)(z);X 0 ⊗ Y 0) ≤

≤ gM(U ;X ⊗ Y ) g0M(((IX)
0 ⊗ (IY )0)(z);X 0 ⊗ Y 0) ≤

≤ (gM(U ;L∞ ⊗ (cM)) + ε)g0M(z;L∞(µ)⊗ cM∗) ≤

≤ g0M(z;L∞(µ)⊗ cM∗
¡
πM((S

0(ei)) εM∗((ei)) + ε
¢
≤

≤ g0M(z;L∞(µ)⊗ cM∗)

Ã
k |S| k+ νπM

Ã
kX
i=1

ei

!
+ ε

!
and ν being arbitrary |hS, zi| ≤ g0M(z;L∞(µ)⊗cM∗)(k |S| k+ε). Finally,

by since ε is arbitrary we get |hS, zi| ≤ g0M(z;L∞(µ) ⊗ cM∗ k |S| k. But
from [1] theorem 1.10, |S|(χΩ) = sup{|S(f)|, |f | ≤ χΩ} and as cM is order
continuous

k |S| k = k |S|(χΩ)k = sup{k |S(f)| k, kfk ≤ 1} = kSk.

Then S is M−integral with IM(S) ≤ kSk. But as (IM , IM) is a Banach
operators ideal, kSk ≤ IM(S), hence IM(S) = kSk.
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Corollary 9. Let (Ω,Σ, µ) be a measure space and n, k ∈ N. Then
every operator T : L∞(µ) → Sk(cM) and every operator T : L∞(µ) →
Sn(c1)[Sk(M)] satisfy that IM(T ) = kTk.

Proof. The result follows easily from theorem 3, since every operator
T : L∞(µ) → Sk(cM) (T : L∞(µ) → Sn(c1)[Sk(cM)] in the other case) is
order bounded and Sk(cM) (resp. Sn(c1)[Sk(cM)]) is reflexive hence order
continuous.

For our next theorem we need a very deep technical result of Linden-
strauss and Tzafriri [14] which gives us a kind of ”uniform approximation”
of finite dimensional subspaces by finite dimensional sublattices in Banach
lattices.

Lemma 10. Let ε > 0 and n ∈ N be fixed. There is a natural number
h(n, ε) such that for every Banach lattice X and every subspace F ⊂ X
of dimension dim(F ) = n there are h(n, ε) disjoints elements {zi, 1 ≤ i ≤
h(n, ε)} and an operator A from F into the linear span G of {zi, 1 ≤ i ≤
h(n, ε)} such that

∀ x ∈ F kA(x)− xk ≤ ε kxk.

Theorem 11. Let cM be a regular Orlicz sequence space, G an abstract
M -space, and X a Banach space with c-Sk(cM) or c-Sk(c1)[Sn(cM)]-local
uniform structure . Then every operator T : G −→ X is M -integral and
IM(T ) ≤ c kTk.

Proof. We will prove the case where X has c-Sk(cM)-local uncon-
ditional structure since the other case is similar. By the representation
theorem of maximal operator ideals (see 17.5 in [4]), we only need to show
that JX T ∈ (G⊗g0M X 0)0.

Given z ∈ G⊗X 0 and ε > 0, let P ⊂ G andQ ⊂ X 0 be finite dimensional
subspaces and let z =

Pn
i=1 fi⊗x0i be a fixed representation of z with fi ∈ P

and x0i ∈ Q, i = 1, 2, .., n such that

g0M(z;G⊗X 0) ≤ g0M(z;P ⊗Q) ≤ g0M(z;G⊗X 0) + ε.

From lemma 10 we have a finite dimensional sublattice P1 of G and an
operator A : P → P1 so that ∀ f ∈ P, kA(f) − fk ≤ εkfk. Then, if idG
denotes the identity map on G we have

|hJXT, zi| =
¯̄̄̄
¯
nX
i=1

hT (fi), x0ii
¯̄̄̄
¯ ≤

¯̄̄̄
¯
nX
i=1

h T (idG −A)(fi), x
0
ii
¯̄̄̄
¯+
¯̄̄̄
¯
nX
i=1

hT A(fi), x
0
ii
¯̄̄̄
¯
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≤ εkTk
nX
i=1

kfik kx0ik+
¯̄̄̄
¯
nX
i=1

hT A(fi), x
0
ii
¯̄̄̄
¯ .

LetX1 := T (P1). AsX has Sk(cM)-local unconditional structure, hence
there are k ∈ N, u : X1 → Sk(cM) and v : Sk(cM) → X such that
IX1,X = v u and kuk kvk ≤ c. Let X2 := v u(X1) which is a finite
dimensional subspace of X containing X1 and IX1,X2 = v u. Put K2 :
X 000 −→ X 0

2 = X 000/X◦
2 be the canonical quotient map. Then

nX
i=1

hT (A(fi)), x0ii =
nX
i=1

hIX1,X2 T (A(fi)),K2(x
0
i)i =

nX
i=1

hv u T (A(fi)),K2(x
0
i)i =

=
nX
i=1

hu T (A(fi)), v
0 K2(x

0
i)i = hu T,

nX
i=1

A(fi)⊗ v0 K2(x
0
i)i

with
Pn

i=1A(fi) ⊗ v0 K2(x
0
i) ∈ P1 ⊗ (Sk(cM))0 and u T : P1 → Sk(cM).

Since P1 is a reflexive abstractM -space it is lattice isometric to some L∞(µ)
space, hence by corollary 9 this map isM -integral with IM(u T ) ≤ kukkTk.
Then ¯̄̄̄

¯
nX
i=1

hT (A(fi)), x0ii
¯̄̄̄
¯ =

¯̄̄̄
¯
*
u T,

nX
i=1

A(fi)⊗ v0 K2(x
0
i)

+¯̄̄̄
¯ ≤

≤ IM(u T ) g0M(
nX
i=1

A(fi)⊗ v0 K2(x
0
i);P1 ⊗ Sk(cM)) ≤

≤ kuk kTk g0M
¡
(A⊗ v0 K2)(z);P1 ⊗ Sk(cM)

¢
≤

≤ kuk kTk kAk kv0k kK2k g0M(z;P ⊗Q) ≤

≤ (1 + ε) c kTk g0M(z;P ⊗Q) ≤ (1 + ε) c kTk (g0M(z;G⊗X 0) + ε)

and since ε is arbitrary we obtain |hJXT, zi| ≤ c kTk g0M (z;G⊗X 0)

Concerning to characterization theorem of M -integral operators we
have:

Theorem 12. Let cM be a regular Orlicz sequence space and let E
and F be Banach spaces. The following statements are equivalent:

1) T ∈ IM(E,F ).
2) JFT factors continuously in the following way:
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L∞(µ)

E

A

?
-

B
X

6
F 00

C

-
JF T

where X is an ultrapower of c1[cM ] and B is a lattice homomorphism. Fur-
thermore IM(T ) is equivalent to inf{kDkkBkkAk}, taking it over all such
factors.

Proof. 1) =⇒ 2). Let D := {(P,Q) : P ∈ FIN(E), Q ∈ FIN(F 0)}
where FIN(Y ) is the set of finite dimensional subspace of a Banach space
Y , endowed with the natural inclusion order

(P1, Q1) ≤ (P2,Q2)⇐⇒ P1 ⊂ P2, Q1 ⊂ Q2.

For every (P0, Q0) ∈ D, R(P0, Q0) := {(P,Q) ∈ D : (P0,Q0) ⊂ (P,Q)} and
R = {R(P,Q), (P,Q) ∈ D}. R is filter basis in D, and according to Zorn’s
lemma, let D be an ultrafilter on D containing R. If d ∈ D, Pd and Qd

denote the finite dimensional subspaces of E and F 0 respectively so that
d = (Pd, Qd). For every d ∈ D, if z ∈ Pd⊗Qd, JFT|Pd⊗Qd

∈ (Pd⊗g0M Qd)
0 =

M 0
d ⊗gM Q0d = NM(Pd, Q

0
d). Then from theorem 2 of characterization of

M -nuclear operators, JFT|Pd⊗Qd
factors as

c∞[c∞]

Pd

Ad

?
-

Bd

c1[cM ]

6
Q0d

Cd

-
JFT|Pd⊗Qd

whereBd is a positive diagonal operator and kAdk kBdk kCdk ≤ Nc
M(T|Pd⊗Qd

)+
ε = IM(T|Pd⊗Qd

) + ε. Then

kAdk kBdk kCdk ≤ IM(T|Pd⊗Qd
) + ε ≤ IM(T ) + ε

Without loss of generality we can suppose that kAdk = kCdk = 1. We
defineWE : E → (Md)D such thatWE(x) = (xd)D so that xd = x if x ∈Md
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and xd = 0 if x /∈ Md. In the same way we define WF 0 : F
0 → (Qd)D such

that WF 0(a) = (ad)D so that ad = a if a ∈ Qd and ad = 0 if a /∈ Qd. Then
we have the following commutative diagram:

(Pd)D

E

WE

?
-

(JFT|Pd⊗Qd
)D

((Qd)D)0(Q0d)D
-

I

6
F 00

W 0
F 0

-
JFT

(c∞[c∞])D (c1[cM ])D

(Ad)D (Cd)D

(Bd)D

?

6

-

where I is the canonical inclusion map. As in [14] ((c1[cM ])D)00 is a 1-
complemented subspace of some ultrapower ((c1[cM ])D)U which from [19]
is another ultrapower (c1[cM ])U1 with projection Q, the result follows with
A = (Ad)D, B = ((Bd)D)00 which is a lattice homomorphism,
C = PF 0000 (W

0
F 0 I (Cd)D)00 Q, where PF 0000 is the projection of F

0000 in F 00,
and X = (c1[λ])U1 , having in mind that as (c∞[c∞])D is an abstract M -
space, there is a measure space such that L∞(µ) = ((c∞[c∞])D)00, where
equality means that the spaces are lattice isometric.

2) =⇒ 1) As (IM , IM) is a operator ideal, it follows easily from theorem
3 and proposition 3

The following new formulation of the preceding characterization theo-
rem is needed in our context:

Theorem 13. Let cM be an Orlicz space. For every pair of Banach
spaces E and F , the following statements are equivalent:

1) T ∈ IM(E,F ).
2) There exists a σ-finite measure space (O,S, ν) and a Köthe function

space K(ν) which is complemented in a space with Sk(c1)[Sn(cM)]-local
unconditional structure, such that JFT factors continuously in the following
way:
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L∞(ν)

E

A

?
-

B
K(ν)

6
F 00

C

-
JF T

where B is a multiplication operator for a positive function of K(ν). Fur-
thermore IM(T ) = inf{kCkkBkkAk}, taking the infimum over all such
factors.

Proof. Starting from the theorem 12, as c1[cM ] has finite cotype, it is
order continuous ([7], 4.6), and for [13], theorem 1.a.9 c1[cM ] can be de-
composed into an unconditional direct sum of a family of mutually disjoint
ideals {Xh, h ∈ H} having a positive weak unit, and then from 1.b.14 in
[13], as every Xh is order isometric to a Köthe space of functions defined
on a probability space (Oh,Sh, νh), then (c1[cM ])U is order isometric to a
Köthe function space K(ν1) over a measure space (O1,S1, ν1), hence we
can substitute (c1[cM ])U for K(ν1) in 12. If we denote z := B(χΩ) with
z =

P∞
i=1 yhi with yhi ∈ Xhi for every i ∈ N, then B(L∞(µ)) is contained

in the unconditional direct sum of {Xhi , i ∈ N} which is is order isomet-
ric to a space of Köthe function space K(ν) over a σ-finite measure space
(O,S, ν) which is 1-complemented in K(ν1).

Now, since K(ν) is order complete, there exists g := supkfkL∞(µ)
B(f) in

K(ν). Then the operators B1 : L∞(µ) → L∞(ν) and B2 : L∞(ν) → K(ν),
such that B1(f)(ω) := B(f)(ω)/g(ω), for all f ∈ L∞(µ), ω ∈ O with
g(ω) 6= 0 and B1(f)(ω) = 0 otherwise, and B2(h)(ω) := g(ω)h(ω) for all
h ∈ L∞(ν), ω ∈ O, satisfy that B = B2B1 and B2 is a multiplication
operator for a positive element g ∈ K(ν).

4. On equality between M-nuclear and M-integral operators

Finally, using the preceding characterization theorems we give some prop-
erties of M -nuclear and M -integral operators. Let us establish now a nec-
essary condition for equality between components of M -nuclear and M -
integral operator ideals. First, we introduce a new operator ideal, which is
contained in the ideal of the M -integral operators.



286 G. Loaiza, J. López Molina and M. Rivera

Definition 14. Given E and F Banach spaces, let cM be a Orlicz
sequence. We say that T ∈ L (E,F ) is strictly M -integral if exist a
σ-finite measure space (O,S, ν) and a Köthe function space K(ν) which is
complemented in a space with Sk(c1)[Sn(cM)]-local unconditional structure,
such that T factors continuously in the following way:

L∞(ν)

E

A

?
-

B
K(ν)

6
F

C

-
T

where B is a multiplication operator for a positive function of K(ν). en-
dowed with the topology of the norm SIM(T ) = IM(T ).

Obviously, if F is a dual space, or it is complemented in its bidual space,
then SIM(E,F ) = IM(E,F ).

Theorem 15. Let cH be a Orlicz sequence space, and let E and F be
Banach spaces, such that E0 satisfies the Radon-Nikodým property then,
NM(E,F ) = SIM(E,F ).

Proof. Let T ∈ SIλc(E,F ) Were E0 has the Radon-Nikodým property
and.

a) First, we suppose that B is an multiplication operator for a function
g ∈ K(ν) with finite measure support D. We denote νD the restriction of
ν to D.

As (χDA) : E → L∞(νD), then (χDA)0 : (L∞(νD))0 → E0 and the
restriction of (χDA)

0
L1(νD)

: L1(νD) → E0, thus, for every x ∈ E and

f ∈ L1(νD)

­
x, (χDA)

0 (f)
®
= hχDA (x) , fi =

Z
D
χDA (x) fd(νD).

As E0 has the Radon-Nikodým property, by III(5) of [2], we have
that (χDA)

0 has a Riesz representation, therefore exist a function φ ∈
L∞(νD, E0) such that for every f ∈ L1(νD)

(χDA)
0 (f) =

Z
D
fφd(νD).
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Then, for every x ∈ E, we have that χDA(x)(t) = hφ(t), xi, νD-almost ev-
erywhere in D, and then B(χDA)(x) =< gφ(.), x >, νD-almost everywhere
inD. Let gφ this last operator, and we can consider it as K(νD, E0) element.
As the simple functions are dense in K(νD, E0), gφ can be approximated
by a sequence of simple functions ((Sk)

∞
k=1).

We suppose Sk =
Pmk

j=1 x
0
kjχAkj

, where {Aki : i = 1, ..,m} is a family
of ν-measure set of Ω pairwise disjoint. For each k ∈ N, we can interpret
Sk as a map Sk : E → K(ν) such that Sk(x) =

Pmk
j=1 < x0kj , x > χAkj

with
norm less or equal than the norm of Sk in K(ν,E0).

Clearly for all k ∈ N, Sk is M -nuclear since it has finite rang, but we
need to evaluate its M -nuclear norm coinciding with it M -integral norm.
Let S1k : E → L∞(ν) be such that

S1k(x) =
mkX
j=1

hx0kj , xi
kx0kjk

χAkj

and let S2k : L∞(ν)→ K(ν) be such that S2k(f) =
Pmk

j=1 kx0kjkfχAkj .
Then kS1kk ≤ 1 and kS2kk ≤ kSkkK(ν,E0) and Sk = S2k S1k . But as K(ν)

is a complemented subspace of space with Sk(c1)(Sn(cM))-local uncondi-
tional structure, from 11, there is K > 0 such that IM(S

2
k) ≤ K kS2kk ≤

K kSkkK(ν,E0), hence Nc
M(S

2
k) ≤ K kS2kk ≤ kSkkK(ν,E0), hence Nc

M(Sk) ≤
K kSkkK(ν,E0).

Then, as (Sk)
∞
k=1 converges in the K(νD, E0) space, it is a Cauchy se-

quence in
NM(E,K(νD)), and since this is complete, (Sk)∞k=1 converges to gφ, that is
to say, gφ ∈ NM(E,K(νD)). Therefore, gφ = BχDA is M -nuclear and so
T is also M -nuclear.

b) Now, if g is any element of K(ν), g it can be approximated in norm by
means of a sequence (tn)

∞
n=1 of simple functions with finite measure support,

and therefore by a), the sequence Tn = CBtnA is a Cauchy sequence in
NM(E,F ) converging to T in L(E,F ), and then T ∈ NM(E,F ).

As consequence of the former result and of the factorization theorems
13 and 2, we obtain the following metric properties of gcM and (gcM)

0.

Theorem 16. (gcM)
0 is a totally accessible tensor norm.

Proof. Since (gcM)
0 is finitely generated, it is sufficient to prove that

the map F ⊗(gcM )0 E /→ PM∗ (E0, F 00), is a isometric.

Let z =
Pn

i=1

Pli
j=1 yij ⊗ xij ∈ F ⊗(gcM )0 E, and let Hz ∈ PM∗(E0, F 00)

be the canonical map associated to z, that is to say,
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Hz (x
0) =

Pn
i=1

Pli
j=1 hxij , x0i yij for all x0 ∈ E0, con Hz ∈ L (E0, F ) ⊂

L (E0, F 00).
Applying the theorem 15.5 of [4] for α = (gcλ)

0, the theorem 4, and the
equality (gcM)

00 = gcM since gcM finitely generated, we have that inclusion

F ⊗←−−−
(gcM )

0 E/→
³
F 0 ⊗gcM E0

´0
→PM∗

¡
E0, F 00

¢
is an isometry, and therefore by proposition 12.4 in [4] we obtain

PM∗ (Hz) =
←−−−
(gcM)

0 (z;F ⊗E) ≤ (gcM)0 (z;F ⊗E) .

Now, givenN , a finite dimensional subspace of F such that z ∈ N⊗(gcM )0
E, there exists V ∈ (N ⊗(gcM )0 E)

0 = I(N,E0) such that IM(V ) ≤ 1 and
(gcM)

0(z;N ⊗ E) = hz, V i. Clearly enough V ∈ SIM(N,E0) = IM(N,E0)
because E0 is a dual space, andN 0, being finite dimensional, has the Radon-
Nikodým property. Therefore by theorem 15, V ∈ NM (N,E0) and by
theorem 2, given � > 0, there is a factorization V in the way

c∞[c∞]

N

A

?
-

B
c1[cM ]

6
E0

C

-
T

such that kCkkBkkAk ≤ Nc
M(V ) + � = IcM(V ) + � ≤ 1 + �.

As c∞[c∞] has the extension metric property, (to see proposition 1,
C.3.2. in [16]), A can be extended to a continuous map A ∈ L (F, c∞[c∞])
such that

°°°A°°° = kAk. By theorem 2 again, W := CBA is in NM (F,E
0),

so there is a representation w =:
P∞

i=1

P∞
j=1 y

0
ij ⊗ x0ij ∈ F 0 b⊗gcME0 of W

verifying

∞X
i=1

πM
³³

y0ij
´´

εM∗
³³

x0ij
´´
≤ Nc

M (W ) + � ≤ kCk kBk
°°°A°°°+ � ≤ 1 + 2�.

Then, (gcM)
0(z;F ⊗E) ≤ (gcM)0(z;N ⊗E) = hz, V i = hz,W i it follows that

(gcM)
0(z;F ⊗E) ≤ gcM(w)PM∗(Hz) ≤ (1 + 2�)PM∗(Hz)

whence (gcM)
0(z;F ⊗E) ≤ PM∗(Hz), and the equality is obvious.
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Finally, as consequence of the former theorem and of proposition 15.6
of [4], we have:

Corollary 17. gcM is an accessible tensor norm.
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