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Abstract

A new notion of SP-compactness is introduced in L-topological
spaces by means of semi-preopen L-sets and their inequality, where L
is a complete De Morgan algebra. This new notion does not depend on
the structure of basis lattice L and L does not require any distributiv-
ity. This new notion implies semicompactness, hence it also implies
compactness. This new notion is a good extension and it has many
characterizations if L is completely distributive De Morgan algebra.
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1.Introduction

In general topological spaces, the concepts of semi-preopen sets and
semi-preclosed sets were introduced by Andrijevic [1]. Thakur and Singh
extended these concepts to [0,1]-topological spaces [11] in the Chang’s[4]
sense. In [2], we introduced the concept of SP-compactness in L-topological
spaces. It preserves many good properties of compactness in general topo-
logical spaces. However, the SP-compactness relies on the structure of
basis lattice L and L is required to be completely distributive. In [10], a
new definition of fuzzy compactness is presented in L-topological spaces by
means of open L-sets and their inequality, where L is a complete de Morgan
algebra. This new definition doesn’t depend on the structure of L.

In this paper, following the lines of [10], we’ll introduce a new notion of
SP-compactness in L-topological spaces by means of semi-preopen L-sets
and their inequality. It is a strong form of semi-compactness[8], hence it
is also a strong form of compactness[10]. It can also be characterized by
semi-preclosed L-sets and their inequality. It is defined for any L-subset,
and it is hereditary for semi-preclosed subsets, finitely additive, and is
preserved under SP-irresolute mapping. This new form of SP-compactness
is a good extension and it has many characterizations when L is completely
distributive De Morgan algebra.

2. Preliminaries

Throughout this paper, (L,V,A,") is a complete De Morgan algebra, X
a nonempty set. L~ is the set of all L-fuzzy sets (or L-sets for short) on
X. The smallest element and the largest element in LX are denoted by 0
and 1. An element a in L is called prime element if b A ¢ < a implies that
b<aorc<a. ain L is called a co-prime element if a’ is a prime element
[6]. The set of nonunit prime elements in L is denoted by P(L). The set
of nonzero co-prime elements in L is denoted by M (L).

The binary relation < in L is defined as follows: for a,b € L,a < b iff
for every subset D C L, the relation b < supD always implies the existence
of d € D with a < d [5]. In a completely distributive De Morgan algebra
L, each element b is a sup of {a € L|a < b}. {a € L|a < b} is called the
greatest minimal family of b in the sense of [7,12], in symbol 3(b). Moreover
for b € L, define 8*(b) = B(b) N M (L), a(b) = {a € Lja’ <V} and a*(b) =
a(b) N P(L). For a € L and A € LX, we denote A = {z € X|A(z) £ a}
and A,y = {z € Xla € B(A(z))}. For a subfamily ¢ C LX,2(¥) denotes
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the set of all finite subfamilies of .

An L-topological space (or L-ts for short) is a pair (X,0), where § is
a subfamily of LX which contains 0,1 and is closed for any suprema and
finite infima. ¢ is called an L-topology on X. Each member of § is called
an open L-set and its quasi-complement is called a closed L-set. The semi-
preopen set and semi-preclosed set are defined in [0,1]-topological space in
[11]. Analogously we can generalize it to L-subset in L-topological spaces.
Let (L%,0) be an L-ts. A € L¥ is called semi-preopen if there is a preopen
set B such that B < A < B™, and semi-preclosed if there is a preclosed set
B such that B° < A < B, where B° and B~ are the interior and closure
of B, respectively.

Definition 2.1 (]7,12]). For a topological space (X, 7), let wr(7) de-
note the family of all the lower semi-continuous maps from (X, 7) to L,
that is, wr, (1) = {A € LX|A@ € 7,a € L}. Then wy(7) is an L-topology
on X, in this case, (X,wr (7)) is topologically generated by (X, 7).

Definition 2.2 ([7,12]). An L-ts (X, 0) is weak induced if for all a € L,
for all A € §, it follows that A(®) ¢ [§], where [§] denotes the topology
formed by all crisp sets in 0. It is obvious that (X,wr (7)) is weak induced.

Definition 2.3([8,9]). Let (X,8) be an L-ts, a € L'\ {1}, and A € LX.
A family p C LX is called

(1) an a-shading of A if for any x € X, (A'(x) V Ve, B(z)) £ a.

(2) a strong a-shading (briefly S-a-shading) of A if
/\xGX (A,(x) \% \/BG,u B(x)) ﬁ a.

(3) an a-R-neighborhood family (briefly a-R-NF) of A if for any = € X,
(A(z) A Npe, B(2)) 2 a.

(4) a strong a-R-neighborhood family (briefly S-a-R-NF)of A if \/ ¢ x (A(x)A
/\Bep, B(x)) Z a.

It is obvious that an S-a-shading of A is an a-shading of A, an S-a-R-NF
of Ais an a-R-NF of A, and p is an S-a-R-NF of A iff i/ is an S-a-shading
of A.

Definition 2.4([8]). Let (X,d) be an L-ts, a € L\ {0} and A € LX. A
family p C LX is called

(1)a Bg-cover of A if for any z € X, it follows that a € B(A'(z) V
\/Be,u B($))
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(2) a strong fg-cover (briefly S-SB4-cover) of A if a € B(Aex (A (x) V
Ve, B@)).

(3) a Qq-cover of A if for any x € X, it follows that A’(z)VV g, B(z) >
a.

It is obvious that an S-8,-cover of A must be a [,-cover of A, and a
Bq-cover of A must be a Q4-cover of A.

Definition 2.5([8,9]). Let a € L\ {0} and A € LX. A family
p C LY is said to have weak a-nonempty intersection in A if \/, ¢ x (A(x) A
Ape, B(x)) > a. p is said to have the finite weak a-intersection property
in A if every finite subfamily v of x4 has weak a-nonempty intersection in A.

Lemma 2.6 ([8]). Let L be a complete Heyting algebra, f: X — Y
be a map and f;” : LY — LY is the extension of f , then for any family
e LY,

VL (AWA N Bly)= V (A)A A fr7(B)(@)).

yey Bey zeX Bey

Definition 2.7([2,3,11]). Let (X,¢) and (Y, 7) be two L-ts’s. A map
f:(X,0) — (Y,7) is called

(1) semi-precontinuous if f; (B) is semi-preopen in (X,J) for every
Ber.

(2) semi-preirresolute if f; (B) is semi-preopen in (X, ) for every semi-
preopen L-set B in (Y, 7).

3. Definitions and properties

Definition 3.1. Let (X,d) be an L-ts. A € L¥ is called SP-compact if
for every family u of semi-preopen L-sets, it follows that

A (A’(JB)VB\éMB(:B))S VoA (A’(fv)VB\éVB(w))-

reX ve2(w) zeX
(X, 0) is called SP-compact if 1 is SP-compact.

Example 3.2. Let X = {z} and L = {0,1/3,2/3,1}. For each a € L
define ' = 1—a. Let 6 = {0, A, X}, where A(z) = 2/3, then 0 is a topology
on X. Clearly, any L-set in (X, ) is SP-compact.

Example 3.3. Let X be an infinite set(or X be a singleton), A and C
be two [0, 1]-sets on X defined as A(z) = 0.5, for all z € X; C(z) = 0.6, for
all z € X. Take 6 = {0}, A, X}, then § is a topology on X. Obviously, any



A new notion of SP-compact L-fuzzy sets 253

[0,1]-set in (X, ) is semi-preopen, and the set of all semi-open [0,1]-sets in
(X,9) is . In this case, we easily obtain that C' is not SP-compact, and
any [0,1]-set in (X, J) is semi-compact.

Remark 3.4. Since every semi-open L-set is semi-preopen|2,11], every
SP-compact L-set is semi-compact. Example 3.3 shows that semi-compact
L-set needn’t be SP-compact.

Theorem 3.5. Let (X,0) be an L-ts. A € LX is SP-compact iff for
every family p of semi-preclosed L-sets, it follows that

V (A@)A A B(x))>= AV (Al@)A A B(x)).
Bep Bev

zeX ve2w) zeX

proof. This is immediate from Definition 3.1 and quasi-complement.

Theorem 3.6. Let (X,§) be an L-ts and A € LX. Then the following
conditions are equivalent.

(1) A is SP-compact.

(2) For any a € L\ {1}, each semi-preopen S-a-shading p of A has a
finite subfamily which is an S-a-shading of A.

(3) For any a € L\ {0}, each semi-preclosed S-a-R-NF 1 of A has a
finite subfamily which is an S-a-R-NF of A.

(4) For any a € L\ {0}, each family of semi-preclosed L-sets which has
the finite weak a-intersection property in A has weak a-nonempty intersec-
tion in A.

proof. This is immediate from Definition 3.1 and Theorem 3.5.

Theorem 3.7. Let L be a complete Heyting algebra. If both C' and D
are SP-compact, then C'V D is SP-compact.

Proof. For any family p of semi-preclosed L-sets, by Theorem 3.5 we
have that

V (CVvD)@)n N\ Blx))

zeX Bep

=1V (C@)A A BV (D@ A B@)
> A VC@A A BV AV (DEA A B@))

ve2(w) zeX ve2w) zeX Bev
= AN V(CVvD)x)A N\ B(z)).
ve2(n) xeX Bev

This shows that C vV D is SP-compact.
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Theorem 3.8. If C is SP-compact and D is semi-preclosed, then CA D
is SP-compact.

Proof. For any family p of semi-preclosed L-sets, by Theorem 3.5 we
have that

V (CAD)(z) A /\ B(z))

zeX

= V (Cx) A /\ B( )

reX Bepu{D}

= AN V(O )/\B/éVB(m))

ve2(nu{DY) zeX

={ A V(C@AA B@)IA{ A V (Cl@)AD@)A N\ B(z))}

ve2lw) zeX Bev ve2w) zeX Bev

={ AV (C(w)AD(ﬂs)/\B/éVB(ﬂi))}

ve2ln) zeX

= A V((C/\D)(xMB/E\VB(fU))-

ve2(n) xeX
This shows that C A D is SP-compact.

Corollary 3.9. Let (X,6) be SP-compact and D € L¥X is semi-
preclosed. Then D is SP-compact.

Definition 3.10.Let (X, J) and (Y, 7) be two L-ts’s. Amap f: (X,0) —
(Y, 7) is called

(1) strongly semi-precontinuous if f; (B) is semi-preopen in (X, d) for
every semi-open L-set B in (Y, 7).

(2) strongly semi-preirresolute if f;~(B) is semi-open in (X, ¢) for every
semi-preopen L-set B in (Y, 7).

Remark 3.11. It is obvious that a strongly semi-precontinuous map
is semi-precontinuous, and a strongly semi-preirresolute map is semi-
preirresolute. None of the converses need be true.

Example 3.12. Let X = {z,y},L = [0,1],Va € L,a’ =1 — a, and
A, B,C,D e LX defined as follows:

A(z) =0.2, A(y) =0.1;

B(x) = 0 5 B(y) = 0.5;

C(z) = Cly) =0.2;

D(z) = D(y) =0.7.
Then § = {O A,B,l} and 7 = {0,C,1} are topologies on X. Let f :
(X,0) — (X, 7) be an identity mapping. Obviously, f is semi-precontinuous.
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We can easily get that D is a semiopen L-set in (X, 7) and that f; (D) is
not semi-preopen in (X, ). Thus, f is not strongly semi-precontinuous.

Example 3.13. Let X = {z,y},L = [0,1],Va € L,a’ =1 — a, and
A, B,C € LX defined as follows:

A(z) =0.5,  A(y) =0.5;

B(z) =0.7, B(y) = 0.6;

C(z)=0.7, C(y)=0.38.
Then § = {0, A,1} and 7 = {0, B, 1} are topologies on X. Let f : (X,0) —
(X, 7) be an identity mapping. Obviously, f is semi-preirresolute. We can
easily get that C' is a semi-preopen L-set in (X, 7) and that f; (C) is not
semiopen in (X, d). Thus, f is not strongly semi-preirresolute.

Theorem 3.14. Let L be a complete Heyting algebra and f : (X,0) —
(Y, 7) be a semi-preirresolute map. If A is an SP-compact L-set in (X, 0),
then so is f; (A) in (Y, 7).

Proof. Suppose that p is a family of semi-preclosed L-sets in (Y, 7),
by Lemma 2.6 and SPR-compactness of A, we have that

V (f (A ) A B/g\MB (¥))

yey

= V. (Al@)A A fi B(x))
Bep

zeX

= NV (A(a:)/\B/; fi B(z))

vea(w) xeX

AV (7 (A)) AB/e\VB(y))-

1/62(”) er
Therefore f;7(A) is SP-compact.

Analogously, we can obtain the following theorems.

Theorem 3.15. Let L be a complete Heyting algebra and f : (X,6) —
(Y, 7) be a semi-precontinuous map. If A is an SP-compact L-set in (X, 0),
then f7°(A) is a compact L-set in (Y, 7).

Theorem 3.16. Let L be a complete Heyting algebra and f : (X,d) —
(Y, 7) be a strongly semi-precontinuous map. If A is an SP-compact L-set
in (X,0), then f;7(A) is a semi-compact L-set in (Y, 7).

Theorem 3.17. Let L be a complete Heyting algebra and f : (X,6) —
(Y,7) be a strongly semi-preirresolute map. If A is a semi-compact L-set
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in (X,0), then f;7(A) is an SP-compact L-set in (Y, 7).

4. Further properties and goodness

In this section, we assume that L is a completely distributive de Morgan
algebra.

Theorem 4.1. Let (X,d) be an L-ts and A € L~. Then the following
conditions are equivalent.

(1) A is SP-compact.

(2) For any a € L\ {0}, each semi-preclosed S-a-R-NF 1 of A has a
finite subfamily which is an S-a-R-NF of A.

(3) For any a € L\ {0}, each semi-preclosed S-a-R-NF 1 of A has a
finite subfamily which is an a-R-NF of A.

(4) For any a € L\ {0} and any semi-preclosed S-a-R-NF ) of A, there
exist a finite subfamily ¢ of ¢ and b € B(a) such that ¢ is an S-b-R-NF of
A.

(5) For any a € L\ {0} and any semi-preclosed S-a-R-NF 9 of A, there
exist a finite subfamily ¢ of ¥ and b € 5(a) such that ¢ is a b-R-NF of A.

(6) For any a € L \ {1}, each semi-preopen S-a-shading p of A has a
finite subfamily which is an S-a-shading of A.

(7) For any a € L\ {1}, each semi-preopen S-a-shading p of A has a
finite subfamily which is an a-shading of A.

(8) For any a € L\ {1} and any semi-preopen S-a-shading p of A, there
exist a finite subfamily v of p and b € a(a) such that v is an S-b-shading
of A.

(9) For any a € L\ {1} and any semi-preopen S-a-shading p of A, there
exist a finite subfamily v of p and b € a(a) such that v is a b-shading of A.

(10) For any a € L\ {0}, each semi-preopen S-f,-cover p of A has a
finite subfamily which is an S-8,-cover of A.

(11) For any a € L\ {0}, each semi-preopen S-f,-cover p of A has a
finite subfamily which is a B4-cover of A.

(12) For any a € L\ {0} and any semi-preopen S-8,-cover u of A, there
exist a finite subfamily v of y and b € L with a € 3(b) such that v is an
S-fBp-cover of A.

(13) For any a € L\ {0} and any semi-preopen S-f,-cover p of A, there
exist a finite subfamily v of y and b € L with a € 3(b) such that v is a
By-cover of A.
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(14) For any a € L\ {0} and any b € B(a) \ {0}, each semi-preopen
Qq-cover p of A has a finite subfamily which is a Qp-cover of A.

(15) For any a € L\ {0} and any b € B(a) \ {0}, each semi-preopen
Qq-cover p of A has a finite subfamily which is a fp-cover of A.

(16) For any a € L\ {0} and any b € B(a) \ {0}, each semi-preopen
Qq-cover p of A has a finite subfamily which is an S-f,-cover of A.

Proof. This is analogous to the proof of Theorem 5.3 in [8].

Remark 4.2. In Theorem 4.1, a € L\ {0} and b € B(a) can be replaced
by a € M(L) and b € *(a) respectively. a € L\ {1} and b € a(a) can
be replaced by a € P(L) and b € a*(a) respectively. Thus, we can obtain
other 15 equivalent conditions about the SP-compactness.

Lemma 4.3 Let (X,wr (7)) be generated topologically by (X, 7). If A
is a preopen L-set in (X, 7), then y4 is a preopen set in (X,wr(7)). If B
is a preopen L-set in (X,wr (7)), then B, is a preopen set in (X, 7) for
every a € L.

Proof. This is analogous to the proof of Theorem 5.7 in [9].

Lemma 4.4 Let (X, wy (7)) be generated topologically by (X, 7). If A is
a semi-preopen L-set in (X, 7), then x 4 is a semi-preopen set in (X, wr,(7)).
If B is a semi-preopen L-set in (X,wr (7)), then B(q) is a semi-preopen set
in (X, 7) for every a € L.

Proof. This is analogous to the proof Theorem 5.4 in [8], by Lemma 4.3.

Theorem 4.5. Let (X, 7) be a topological space and (X, wr (7)) be gen-
erated topologically by (X, 7). Then (X,wr(7)) is SP-compact iff (X, 7) is
SP-compact.

Proof. Necessity. Let p be a semi-preopen cover of (X, 7). Then
{xa|A € u} is a family of semi-preopen L-sets in (X, wr (7)) with
Nzex(Vaeu xa(z)) = 1. From SP-compactness of (X,wr (7)), we have that

I= A(V xa@)< V AV xa@).

zeX Aep ve2lw) xeX Acv
This implies that there exists v € 2(*) such that Ayey(Vac, xa(2)) = 1.
Hence, v is a cover of (X, 7). Therefore (X, 7) is SP-compact.
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Sufficiency. Let p be a family of semi-preopen L-sets in (X, wr(7)) and

Nzex(Vpe, B(w)) = a. If a = 0, obviously we have that
AV B@)< V A(V B).

reX Bep ve2(w) xeX Bev
Now we suppose that a # 0. In this case, for any b € B(a) \ {0}, we have
that

beB(A(V B)< N AV Bl)= N U B(B(x)).

zeX Bep zxeX Bep re€X Bep

From Lemma 4.4, this implies that {B)|B € p} is a semi-preopen cover of
(X, 7). From SP-compactness of (X, 7), we know that there exists v € 2(#)
such that {B)|B € v} is a cover of (X, 7). Hence b < A\,cx(Vpe, B(2)).
Further, we have that

b< A(V B(@)< V. A(V B).

reX Bev ve2(n) xeX Bev
This implies that

AV B(x)) =a=V{bbepla)} < V A (V B).

ze€X Bep ve2w) xeX Bev
Therefore, (X,wr (7)) is SP-compact.

References

[1] D.Andrijevic, Semi-preopen sets, Mat.Vesnik, 38, pp.24-32, (1986).

.Z.Bai, L-tuzzy SP-compact sets, vances in Mathematics, 33, pp.316-322,
2] S.Z.Bai, L-f SP Ad in Math ics, 33 316-322
(2004).

[3] S.Z.Bai, Countably SP-compact subsets, Fuzzy Systems and Mathematics,
19, pp.59-61, (2005).

[4] C.L.Chang, Fuzzy topological spaces, J.Math.Anal.Appl. 24, pp.182-190,
(1968).

[5] P.Dwinger, Characterizations of the complete homomorphic images of a com-
pletely distributive complete lattice, I, Nederl. Akad. Wetensch. Indag. Math.
44, pp.403-414, (1982).

[6] G.Gierz, et al. A Compendium of Continuous Lattices, Springer Verlag,
Berlin, (1980).

[7] Y.M.Liu, M.K.Luo, Fuzzy Topology, World Scienti.c, Singapore, (1998).

[8] F.G.Shi, Semicompactness in L-topological spaces, International Journal of
Mathematics Mathematical Sciences, 12, pp.1869-1878, (2005).



[9]

A new notion of SP-compact L-fuzzy sets 259

F.G.Shi, A new form of fuzzy -compactness, Proyecciones Journal of Math-
ematics, 24, pp.105-119, (2005).

F.G.Shi, Fuzzy compactness in L-topological spaces, Acta Math.Sinica, sub-
mitted.

S.S.Thakur, S.Singh, On fuzzy semi-preopen sets and fuzzy semi-
precontinuity, Fuzzy Sets and Systems, 98, pp.383-391, (1998).

G.J.Wang, Theory of L-Fuzzy Topological Space, Shaanxi Normal University
Press, Xian, (1988).

Shi-Zhong Bai
Department of Mathematics
Wuyi University
Guangdong 529020

P.R. China

E-mail : shizhongbai@yahoo.com





