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Abstract

The aim of this paper is to study L-fuzzy closure operator in L-
fuzzy topological spaces. We introduce two kinds of L-fuzzy closure op-
erators from different point view and prove that both L-TFCS—the
category of topological L-fuzzy closure spaces—and L-PTFCS—the

category of topological pointwise L-fuzzy closure spaces—are isomor-
phic to L-FCTOP.
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1. Introduction

Since Chang [2] introduced fuzzy set theory to topology, many re-
searchers have tried successfully to generalize the theory of general topol-
ogy to the fuzzy setting with crisp methods. However, in a completely
different direction, Hohle [5] created the notion of a topology being viewed
as an L-subset of a powerset. Then Kubiak [7] and Sostak [12] indepen-
dently extended Hohle’s notion to L-subsets of LX. In [15], we established
fuzzy remote neighborhood systems in L-fuzzy co-topology and prove that
TFRNS is isomorphic to L-FCTOP.

It is well-known that clsoure operator (or clsoure system) plays an im-
portant role in topology and it is a very good way to characterize topology.
Many authors [3, 7, 13] have studied closure operators in L-fuzzy topologyi-
cal spaces. But it is an pity that their closure operators are actually defined
by the level L-topology of the L-fuzzy topology, not by L-fuzzy topology
itself. In other words, their closure operators are still the closure operators
in L-topologies. The aim of this paper is to study L-fuzzy closure opera-
tors in L-fuzzy topological spaces in different ways from [3, 7, 13]. We give
two kinds of L-fuzzy closure operators and prove that both L-TFCS—the
category of topological L-fuzzy closure spaces—and L-PTFCS—the cat-
egory of topological pointwise L-fuzzy closure spaces—are isomorphic to
L-FCTOP.

2. Preliminaries

An element a in a complete lattice L is said to be coprime if a < bV ¢
implies that a < b or a < ¢. The set of nonzero V-irreducible elements(or
coprimes) of L is denoted by ¢(L). We say a is wedge below b, in symbols,
a < borb > a, if for every arbitrary subset D C L, \/ D > b implies a < d
for some d € D. A complete lattice is said to be completely distributive
if every element in L is the supremum of all the elements wedge below it.
For more details about completely distributive lattice, please refer to [4].

By the definition of complete distributivity it is easy to see that a
complete lattice L is completely distributive if and only if the operator
V : Low(L) — L taking every lower set to its supremum has a left adjoint
B, and in the case, f(a) = {b] b < a} for all @ € L. Hence the wedge
below relation has the interpolation property in a completely distributive
lattice, this is to say, a <1 b implies there is some ¢ € L such that a <1 c< b.
{a € L| a < b} is called the greatest minimal family of b, in symbol 5(b).
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Moreover, for b € L, define a(b) = {a € L| a’ < b'} which is called the
greatest maximal family of b.

Throughout this paper L is a completely distributive lattice and M is
a completely distributive lattice with an order reversing involution /. LX
is the set of all L-fuzzy sets on X. The set of nonzero V-irreducible ele-
ments (or coprime) in L¥ is denoted by c(L¥). Let x)|A denote the set
{B € LX|z\ £ B > A} for x) € ¢(LX) and A € LX. For undefined notions
about categories, please refer to [1], [6] and [11].

Definition 2.1[712l, An L-fuzzy co-topology is a mapping n : LX — M
such that

(FCT1) n(lx) = n(0x) =
(FCT2) n(A vV B) >n(A ) ( ) for all A, B € L,
(FCT3) n( A A Aj) > é\ n(A;) for every family {4;|j € J} C L¥.

The pair (L¥,7n) is called an L-fuzzy co-topological space (L-FCTop, for
short). A mapping F : (LX,n) — (LY,n) is said to be continuous
with respect to 1 and ny if n(F; (B)) > m(B) for all B € LY, where
F;~(B)(z) = B(F(z)) (following the notation in [14]). The category of
L-FCTops is denoted by L-FCTOP.

Definition 2.201%, A fuzzy remote neighborhood system is a set R =
{Ry, |z € (LX)} of mappings R,, : LX — M such that
(FRN1) Ry, (Lx) = 0, Ra, (0x) = 1
(FRN2) R;, (A) > 0= z) £ A;
(FRN3) R;,(AV B) = Ry, (A) A Ry, (B).
R will be called a topological fuzzy remote neighborhood system if it also
satisfies the following equation:

(FRN4) RZL"A (A) = \/BExk\A /\yugB Ryu (B)>
and (L%, R) is called a topological fuzzy remote neighborhood space (TFRNS,
for short). A fuzzy continuous mapping between topological fuzzy remote
neighborhood spaces (LX,R) and (LY, S) is a mapping F : LX — LY such
that Sp-(4,)(B) < Re, (F (B)) for all z € c(LX) and B € LY. The cat-
egory of TFRNSs and fuzzy continuous mappings is denoted by TFRNS.

Lemma 2.3, Let n : LX — M be an L-fuzzy co-topology. Then we
have
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(1) R"={R], |z € c(LX)} is a topological fuzzy remote neighborhood
system, where R} is defined by

. B), z A,
R2A<A>={ R

for ) € ¢(LX) and A € L.
(2) If n and ¢ are two L-fuzzy co-topologies which determine the same
topological fuzzy remote neighborhood system, then n = (.

Lemma 2.4, Let R = {R,, |z) € ¢(LX)} be a fuzzy remote neighbor-
hood system and 7 : LX — M be defined by n(u) = Nzy 24 Ray (A) for all
A € LX. Then 7 is an L-fuzzy co-topology. Furthermore, if R and S are
two topological fuzzy remote neighborhood systems which determine the
same L-fuzzy co-topology, then R = S.

Lemma 2.51%, TFRNS is isomorphic to L-FCTOP.

3. L-fuzzy closure operator

In this section, we study L-fuzzy closure operator in a different direction
from [3, 7, 13].

Lemma 3.1. Let (LX,n) be an L-fuzzy co-topological space and define
C’Z :LX — M by

B 0, A% B,
CaB) = { n(B) A Nacpypn(D)s A< B.

Then {C}} scpx satisfying the following properties.

(23 C(B) > 0= A< B;

(3) CY(B) A C(E) < (B V B);
(4) Aver Ch,(B) < O} o (Aver B
(5) C}(B) A C(E) < C1(B);
(6) CZ(B) = /\AngB C?)( );
(7) C*)(4) = n(A);

SRS

)
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0, A £ B,
(8) C4(B) = { CR(B) A Na<pzs(ChH(D))', A<B.

Proof. We prove (3).

CAB)ACH(E) = nB)A N\ 0F) AnEYA N\ 0(G)
ASF2?B D<G#E

nBVE)A N\ nF)YA N nG)
A<F¥B D<GFE

nBVE)N N\ n(H)
AVD<H}?BVE
= Clyp(BVE).

IN

IN

Remark 3.2. (1) The value C'}(B) can be interpreted as the degree to
which B is the closure of A. When M = {0,1}, that is to say 7 is an
L-co-topology, and define A = B when C'|(B) = 1, then the operator
~: LX — LX is just the closure operator induced by 7.

(2) The readers can easily show that C} can be written as follows:

B 0, AL B,
CalB) = { Merzn B (B) A Ny < (R (A), A< B.

Definition 3.3. An L-fuzzy closure operator is a set C = {Ca|A € LX} of
mappings C4 : LX — M such that:

(FCl) COX (Ox) == 1;

(FC2) Ca(B) ACp(E) < Cavp(BV E);

(FC?’) /\teT CAt (Bt) < C/\teT Bt(/\teT Bt)-

C is called a topological L-fuzzy closure operator if it also satisfies the
following condition
0, A LB,

(FC4) CA(B) - { CB(B) A /\AgDZB(CD(D))/7 A < B.

The pair (LX,C) is called topological L-fuzzy closure space. A fuzzy
continuous mapping between L-fuzzy closure spaces (L~,C') and (LY, C?)
is a mapping F' : X — Y such that le(B)(Ff(B)) > C%(B) for all
B € LY. The category of topological L-fuzzy closure spaces and continu-
ous mappings is denoted by L-TFCS.
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Lemma 3.4. Let C = {C4|A € LX} be an L-fuzzy closure operator. Then
7€ : LX — M defined by n¢(A) = C4(A) is an L-fuzzy co-topology.

n

Lemma 3.5. (1) Let 17 be an L-fuzzy co-topology. Then n = n¢".
(2) If C is topologocal L-fuzzy closure operator, then C = cne.

Lemma 3.6. (1) F : (LX,CY) — (LY,C?) is continuous, then F : (LX,7¢") —
(LY ,n°") is continuous.

(2) F : (LX,n') — (LY,n?) is continuous, then F : (L¥X,C7) —
(LY ,C"") is continuous.

Theorem 3.7. L-TFCS is isomorphic to L-FCTOP.

Question 3.8. We know that B is the closure of A if and only if B is
the smallest closed set containing A. In fact, the L-fuzzy closure operator
studied in Lemma 3.1 is just defined according to this kind of definition.
We can also define the closure of A from other ways, such as from the
direction of adherent point of A,

CrB)= A RL(AA N (RL(A).
TALB z\<B

From Remark 3.2 (2), we know that there is some difference in this form
and that in Lemma 3.1. We wonder whether C'}"(B) is equal to C'}(B) or
not.

4. Pointwise L-fuzzy closure operator

In this section, we give one definition of Pointwise L-fuzzy closure oper-
ator and study the relationship between this kind of closure operator and
fuzzy remote neighborhood system.

Lemma 4.1. Let n : LX — M be an L-fuzzy co-topology and define
Cl : L* — M by CJl, (A) = Apegya1(B)'. Then C" = {C}] |z € ¢(L¥)}
satifies:

(1) €7, (1x) = 1,C7, (0x) = 0;
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(2) CL (A) <1=xz) £ A
(3) CL(AV B)=C] (A) v CY (B);
(4) C7,(A) = Apeayja Vy, 28 C), (B).

Proof. From the definition of C} , we know that C} (A) = R} (A)". By
(FRN1)—(FRN4), we have (1)—(4).

Remark 4.2. The value C}/, (A) can be interpreted as the degree to which
xy is an adherent point of A.

Definition 4.3. A pointwise L-fuzzy closure operator is aset C = {Cy, |x) €
c(LX)} of mappings C,, : LX — M such that

(FPC1) Cy, (1x) = 1,Cy, (0x) = 0

(FPC2) Cyp, (A) <1 = e £ A

(FPC3) Cy, (AV B) = Cy, (A) V Cy, (B).
and (LX,C) is called an pointwise L-fuzzy closure space (L-PFCS, for
short). C will be called a topological L-fuzzy closure operator if it also
satisfies the following equation:

(FPC4) Ce, (A4) = /\Bex)\|A VyugB Cyu (B),
and (LX,C) is called a topological pointwise L-fuzzy closure space (L-
PTFCS, for short). A fuzzy continuous mapping between topological L-
fuzzy closure spaces (L~,C') and (LY,C?) is a mapping F : X — Y such
that C} (A) < C’%LH(M)(FL_’(A)) for all ) € ¢(LX) and A € L. The
category of L-PTFCS and continuous mappings is denoted by L-PTFCS.

Remark 4.4. When L = {0, 1}, the definition of pointwise L-fuzzy closure
operator is just the definition of fuzzifying closure operator in [11].

It is easy to verify the next two theorems:

Theorem 4.5. (1) Let (LX,C) be a topological pointwise L-fuzzy closure
space and define RgA : LX — M by RgA (A) = Csy(A). Then RC =
{RgA lzx € c(LX)} is a topological fuzzy remote neighborhood system.

(2) Let (L%, R) be a topological fuzzy remote neighborhood space and
define C% : LX — M by CF (A) = Ry, (A)'. ThenC® = {CF |z € ¢(L¥)}
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is a topological pointwise L-fuzzy closure space.

Theorem 4.6. (1) If F : (LX,C') — (LY,C?) is continuous, then F :
(LX,RC") — (LY, RC) is continuous.

(2) If F: (LX,RY) — (LY,R2) is continuous, then F : (LX,CR") —
(LY ,CR*) is continuous.

From Theorem 4.5 and Theorem 4.6, we have one main theorem in this
paper.

Theorem 4.7. L-PTFCS is isomorphic to TFRNS. Hence, L-PTFCS
is isomorphic to L-FCTOP.

Theorem 4.8. Let C = {C,, |z\ € M (LX)} be a pointwise L-fuzzy closure
operator. Then the following statements are equivalent:

(1) Cx>\ (A) = /\BemA VyugB Cyu(B);

(2) Coy(A) = Apeay a(Car(B) V Vy, 25 Cy, (B)).
(3) Cuy (A) = Apeayja(Cay(A) V V25 Cy.(B)).
(4) CIA (A) = /\BEJ:,\|A(C$>\ (B) v vyuﬁB Oyu (A))

Proof. (1) & (2) & (3) is trivial. We only prove (1) < (4). (1)=(4) is
trivial. Now suppose (4) holds, i.e,

Corn(A)= N\ (Ce,(B)V \/ Ca(A)).

Bezxy|A YuLB

Let
tea(Cn(A)=al N\ Cu(B)V \/ Cu(4))

Bezy|A yu&B

= U aCBV V Cy4).

BG{L’)\|A yuﬁB

Then there exists some B € x)|A such that
(1) t € G\ (B)); (2) Vyu £ B, t € a(Cy,(A)).

It is clear that the meet of fuzzy sets containing A and fulfilling (1)
and (2) is still of such kind. So we can define B; to be the minimal fuzzy
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set containing A and fulfilling (1) and (2) , i.e., t € a(Cy, (By)) and t €
a(Cy,(A)) for all y,, £ By. Thus, Yy, £ By , it follows from t € a(C,, (A))
that there exists W,,, € y,|A such that

(3)tea(Cy,(W,,)), (4)Vzy £W,,, tea(C,, (A)).

It is easy to check that B; A W, satisfies (1) and (2). Hence, by the
minimality of By, it follows that By < By A W,,. Therefore By < W,,.
Then we can get that Yy, £ By, Cy,(Bi) < Cy, (Wy,).

Then ¢ € a(Cy, (By)) Thus, t >V, +p, Cy,(B:)). Therefore,

ABewyja Vy, 28 Cy,.(B) < t. From the arbitrariness of ¢, we have Cy, (4) >
ABezyjaVy, 28 Cy. (B). Since Cy, (A) < Apes,ja Vy, 28 Cy, (B) is obvious,
we have Cy, (A) = Apegyja Vy, 28 Cy.(B), as desired.

It is well-known that derived operator and closure operator have close
relationship in L-topology. In the following discussion, we study the rela-
tionship between pointwise L-fuzzy derived operator and pointwise L-fuzzy
closure operator.

Lemma 4.9, Let A € LX, ) € ¢(L¥) and define A — z, € LX by

Aly), = #y,
V)\ﬁq/,a:,ygA Y, T=Y.

A—-zy\(y) = {

Then

(1) Vier(Ae — xz) = Vier At — 2x;
(2) $>\$A = A—$>\:A.

Definition 4.10. A topological pointwise L-fuzzy derived operator is a set
D = {D,,|zx € ¢(L*)} of mappings D, : LX — M such that

(FD1) D4, (0x) = 0;

(FD2) Dy, (A) <1=z)y L A—xy;

(FDS) Da?/\ (A v B) = D:C,\ (A) v D:C,\ (B),

(FD4) DIA (A) = /\BEI,\|A—I,\ \/y,“gB Dyu (B)
(LX, D) is called a topological pointwise L-fuzzy derived space (L-TFDS,
for short).

It is easy to verify the following two theorems.
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Theorem 4.11. (1) Let (LX,C) be a topological pointwise L-fuzzy closure
space and define DgA : LX — M by DgA (A) = Cy, (A — ). Then D¢ =
{R% |z) € ¢(LX)} is a topological pointwise L-fuzzy derived operator.

(2) Let (L, D) be a topological pointwise L-fuzzy derived operator and
define Cg : LX — M by

1, Ty < A,

D _
Cay(A4) = { Da, (4), =) % A.

Then CP = {CP|zy\ € (LX)} is a topological pointwise L-fuzzy closure
operator.

Theorem 4.12. (1) Let C be a topological pointwise L-fuzzy closure op-
erator. Then C = CP°.

(2) Let D be a topological pointwise L-fuzzy closure operator. Then
D > DC”.
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