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Abstract

We first present a solution to a conjecture of (Correa, Hentzel, Labra, 2002) in
the positive. We show that if A is a commutative nonassociative algebra over a field of
characteristic # 2,3, satisfying the identity x(x(xxz)) = 0, then Lyty Lyts - Lats =0
ifty +to+---+ts > 10, where a € A.
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1. Introduction

Throughout this paper the term algebra is understood to be a commutative not necessarily
associative algebra. We will use the notations and terminology of (Fernandez, 2004). Let
A be an (commutative nonassociative) algebra over a field F. We define inductively the
following powers, A = A and 4% = % A AT for all positive integers s > 2. We
shall say that A is nilpotent if there is a positive integer s such that A* = (0). The least

i+j=s

such number is called the index of nilpotency of the algebra A. The algebra A is called
nilalgebra if given a € A we have that alg(a), the subalgebra of A generated by a, is
nilpotent. The (principal) powers of an element a in A are defined recursively by a! = a
and a't! = aa® for all integers 4 > 1. The algebra A is called left-nilalgebra if for every a
in A there exists an integer k = k(a) such that a* = 0. The smallest positive integer k
which this property is the index. Obviously, every nilalgebra is left-nilalgebra. For any
element a in A, the linear mapping L, of A defined by x — az is called multiplication
operator of A. An FEngel algebra is an algebra in which every multiplication operator is
nilpotent in the sense that for every a € A there exists a positive integer j such that
L} =0.

An important question is that of the existence of simple nilalgebras in the class of
finite-dimensional algebras. In (Fernandez, 2004) we proved that every nilagebra A of
dimension < 6 over a field of characteristic # 2,3,5 is solvable and hence A2A. For
power-associative nilalgebras of dimension < 8 over a field of characteristic # 2,3,5, we
have shown in (Fernandez, Suazo, 2005) that they are solvable, and hence there is no
simple algebra in this subclass. See also (Elgueta, Suazo, 2004; Fernandez, 2004) for
power-associative nilalgebras of dimension < 7.

We show now the process of linearization of identities, which is an important tool in
the theory of varieties of algebras. See (Gerstenhaber, 1960; Osborn, 1972; Zhevlakov,
1982) for more information. Let P be the free commutative nonassociative polynomial
ring in two generators x and y over a field F. For every ai,...,a, € P, the operator
linearization §[aq, ..., a,] can be defined as follows: if p(z,y) is a monomial in P, then
d[ai, ..., ap]p(x,y) is obtained by making all the possible replacements of r of the k
identical arguments x by «1,...,a, and summing the resulting terms if x—degree of

p(z,y) is > r, and is equal to zero in other cases. Some examples of this operator are
[11]6[y) (2 (zy)) = 2(zy)? + 2%y
S[2*, y)(a?) =222, 6ly, ay? 2)(a?) = 0.
For simplicity, o[« : 7] will denote d[a, ..., a,], where a; = -+ = a, = a. We observe

that if p(z) is a polynomial in P, then p(z + y) = p(x) + 3272, 6[y : jlp(x), where
Oy : jlp(x) is the sum of all the terms of p(x + y) which have degree j with respect to y.

Lemma 1. (Zhevlakov, 1982) Let p(z,y) be a commutative nonassociative polynomial
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of x-degree < n. If I' is a field of characteristic either zero or > n, and the F-algebra A
satisfies the identity p(z,y), then A satisfies all linearizations of p(x,y).

2. Left-nilalgebras of index 4

Throughout this section F' is a field of characteristic different from 2 or 3 and all the
algebras are over F. We will study left-nilalgebras of index < 4, that is the variety V' of
algebras over the field F' satisfying the identity

(2.1) 2t =0.

Let A be an algebra in V. For simplicity, we will denote by L and U the multiplication
operators, L, and L, 2 respectively, where = is an element in A. The following known
result is a basic tool in our investigation. See (Correa, Hentzel, Labra, 2002; Elduque,
Labra, 2007).

Lemma 2. Let A be a commutative left-nilalgebra of index 4. Then A satisfies the
identities

(2.2) xr = —x(zz), zz= ()= z(x(zz)),

and p(z) = 0, for every monomial p(x) with xz-degree > 7. Furthermore, we have

(2.3) (ld)L, = —LU-2L3

(2.4) Ly, = —U—2UL*>-2LUL +4L*,

(2.5) Lywey = —LU—2LUL—2LUL—AL’U —12L°,
(2.6) Ly(o(ez)y = 2LU+4LUL+4L*U +8LS,

and also

ULU LU? UL® LUL?* L*UL L%U L°
UL 0 -1 2 0 0 -2 -8

Table i. Multiplication identities of degree 5.

and two identities of x-degree 6 which may be written as

Table ii. Multiplication identities of degree 6.
UL*U (LU)* L*U? UL* Lvr® L*Url? UL LU LS
Us -2 -2 2 -8 -8 0 —4 8 40
UL -1 -1 1 —4 -2 2 0 4 24

We note that, for example, Table i means that U?L = —LU? 42U L3 —2L3U —8L5. From
the identities (2.3-2.6) we get that for any a € A the associative algebra A, generated by
all L. with ¢ € alg(a) is in fact generated by L, and L,2. Furthermore, every algebra in
V' is a nilalgebra of index < 7.
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We now pass to study homogeneous identities in A with z-degree > 7 and y-degree
1. From the relation 0 = §[y, z, =, z](z*) = 2y(z(2323)) + 4y (a3 (x2?)) + 22(y(z323)) +
427 (y(z2?)) + da(z®(y2?)) + 42°(2(ya®)) + 42° (2% (zy)) = 22((2%)y) + da(2®(2%y)) +
4z3(z(2%y)) + 423 (23 (2y)) = 2[L L83 + 2L L3 Lys + 2L, LLys + 21,3 Los L] (y) we have

(2.7) L3U?% = 2L3UL — L*UL — 5L°U — 20L7,

since we can use the reductions (2.3-2.6) and replace the occurrences of (UL)2. Multi-
plying the identity of Table i by U from the left, replacing first the occurrences of U3 and
next using reductions from Table i, Table ii and above identity we get a new identity as

follows:

0 =USL+ULU? - 2U?L?+2ULU +8UL® = [-2UL*UL — 2(LU)*L + 2L*U*L — 8UL®
—8LUL* —4L*UL? + 8L*UL +40L") + ULU? — 2U?L? + 2UL*U + 8UL®
= —2ULPUL + 2LUL*U +2L(LU)? + [AL*UL? + 2L*UL + 10L°U + 40L"]
+8LUL* + 4L*UL? — 4L*UL? — 8L°U + 48L"] + 2L*U*L — 8UL® — 8LU L*
—4IPUL? + 8L*UL + 40L" + ULU? + [[-2L*U?L + ALUL* — AL*UL — 16L"]
—4UL® +4LPUL? + 16L7] + 2UL*U + 8ULS,

that is,
ULU? = 2<UL2UL —~UL*U - LUL*U - L*ULU+
(2.8) UL’ — 2LUL* — 2L2°UL3 — 3LUL — L°U — 16L7>.
Next, we can reduce the relation 0 = [y, z, z, zx]z* using the above identities. This
yields
1
(2.9) UL’ = —LUL* + 5LQUL3 + %L‘*UL + %L5U +8L7.

Now combining (2.8) and (2.9) we obtain ULU? = 2ULUL — 2UL3U — 2LUL*U —
2L2ULU —8LUL* —2L2U L3 — 3L*U L+ L5U. Thus, we have three identities of z-degree

7 and y-degree 1 which may be written as multiplication identities:

Table iii. Multiplication identities of degree 7.
UL*UL UIL*U LULU L(LU)*> LUL* LUL* L*UL L*UL L[°U L'

LU 0 0 0 0 0 0 -2 -1 -5 —20
UL® 0 0 0 0 -1 1/2 0 3/4 3/4 8
ULU? 2 -2 -2 -2 -8 -2 0 -3 1 0

In an analogous way, using successively the identities

0= 5[y,1‘,1‘,1‘(1‘(l’2$))]$4, 0= 5[y7:1:a $,IE2$]ZE4, 0= 5[y7:1:a :E2,IL'(:IJ2£L‘)]ZE4,

multiplying the second identity of Table ii with the operator U from the left and replacing

3 .2 4

the occurrences of UU L, and finally using 0 = J[y, =, z°, z“z|z*, we obtain the following

5 multiplication identities:
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Table iv. Multiplication identities of degree 8.
UL*U LUL*UL LUL?U L*ULU L*UL* L*UL* L°UL L°v 18

L*ULU 0 0 0 0 0 —1/2 -2 —11/2 —20
ULU? —4 -2 -2 0 2 —5/2 13 31/2 32
(UL)? 0 1 0 -1 -12  —11/4 -7/2 25/4 36
ULPUL -1 -1 -1 0 -4 —11/2 -3 9/2 0
L*UL? 0 0 0 0 0 -3/4 -3/2 -3/4 -8

Now, relations 0 = §[y, z,z3, z(x?2?)]zt, 0 = 6y, z, 22, x(x(222?))]2?, 0 = d[y, 22, 22,
(x222)])z4, 0 = Sy, =, 2%2?, 22222, 0 = 6[y, 22, 23, 2%2%]2*, and multiplying the relation
determined by the last row of Table iii with the operator U from the left and first replacing

the occurrences of UU L, imply the following 6 multiplication identities:

Table v. Multiplication identities of degree 9.

LUL*U  (L*U)*L LU L°
LSUL 0 0 -7 —48
L(LU)? 0 —217 —4510/3
UL*UL 1 0 —587/2 —6155/3
L?ULPU 0 0 29/3 422/9
UL*ULU 0 0 1318/3 27988/9
LSUL? 0 0 —23 —496/3

The author used a simples MAPLE language program to check these identities. We now
present a solution of a Conjecture of (Correa, Hentzel, Labra, 2002) in the positive. We
see that for every a € A, the associative algebra A,, generated by the multiplication

operators L, and L2, is nilpotent of index < 10.

Theorem 1. Let A be an algebra over a field F of characteristic # 2,3, satisfying
2% = 0. Then every monomial in P of x-degree > 10 and y-degree 1 is an identity in A.
In particular, L'° = 0 for all a € A.

Proof. First we shall prove that every monomial of z-degree 10 and y-degree 1 is an
identity in A. Multiplying the operators in the first line of Table v with L from the left
and from the right, and the operators in the first line of Table iv with U from the left
and from the right and next using reductions from Tables i-v we see that we only need to
prove that L2UL*U = 0, L3U = 0 and L'° = 0 are multiplication identities in A. Now,
for any z in A we have

HLTUL = L(LSUL) = —7L8U — 48L'°,
L°UL?* = (LSUL)L = —7TLTUL — 48L'° = 49L8U + 288L'°,
L°UL? = L(L°UL?) = —23L%U — 496/3L"°.

Therefore

(2.10) 27L3U 4 170LY = 0.
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Now,

ILPUL? = (LPUL?)L = —23L7UL — 496/3L'° = 161L3U + 2816/3 L,

LPUL? = IL*(LPUL?) = —3/4L°UL? — 3/2L7UL — 3/4LU — 8L'°
= —27L3U — 152L"°,
and hence
(2.11) 141180 + 818LY° = 0.
Next
[LPULPU = L(L?UL3U) = 29/3L3U + 422/9L°,
LPULPU = (LPULU = —-3/4L*UL*U — 3/2L°ULU — 3/4LSUU — 8L3U
= —3/AL(L*UL?U) — 3/2L*(L*ULU) — 3/4L*(L*U?) — 8L'°
=9/ALSUL? 4+ 15/ALTU L + 667/4L8U + 2345/2L'°
= 1003L3U + 3281/2L1°,

so that
(2.12) 17880L3U + 28685 L0 = 0.

Combining (2.10-2.12) we obtain that L8U = 0 and L!® = 0. Now, we have by Table v
that 0 = (L2UL3U)L = L2(UL3UL) = —L2UL*U — L3UL*UL — L3UL3U — AL*UL* —
11/2L5U L% -3LTUL+9/218U = —L2UL*U — (L3U L?U)L —AL(L3U L®)L = —L?U L*U.
Therefore, we have L2UL*U = 0.

In an analogous way, we can see that every monomial of x-degree 11 and y-degree 1
is an identity in A. This proves the theorem. O

Now we shall investigate two subvarieties of V. We start in Subsection 2.1 with
the class of all nilalgebras in V' of index < 5 and next in Subsection 2.2 we study the

multiplication identities of the variety of all the nilalgebras in V of index < 6.

2.1. The identity x((xx)(xx))=0

We will now consider the class of all algebras in V satisfying the identity x(xx) = 0.

First, linearization 6[y]{z(x?)?} implies

(2.13) Ly2ys = —ALUL,

and identity §[y]{z?2z3} = 0 forces

(2.14) UU = —2ULL +2LUL + 4L*.

Next, using above identity and [y, #2]{z(2?)?} = 0 we get that 0 = AUUL + 4LUU +
8LLysL =4(UUL+LUU —2LLUL—4L%) = 8(~UL3+ LULL+2L° — LULL+ LLUL+
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2L° — LLUL — 2L°) = 8(~UL? + 2L°). Hence UL? = 2L°. Now idnetity L, (,2,2) = 0
and relations (2.5) and (2.14) imply L2UL = —L3U — 4L°. Thus, we have the following

multiplication identities.

Table vi. Multiplication identities of degree 5.
ULU LUL? LU L

UUL 0 2 0 0
LUU 0 -2 -2 -4
L*UL 0 0 -1 —4
UL? 0 0 0 2

From Table ii, we can prove that
(2.15) (UL)? = —UL?*U — (LU)? + 2L3U L + 4L*U + 16L5,
and §[z?|{2?(x(x(zy))) — 2z(z(z(z(2y))))} = O forces
(2.16) (UL)? + UL*U +2L3UL +4L5 = 0.

Combining (2.15) and (2.16), we have (LU)? = 4L and (UL)? = ~UL?U + 2L*U +4L5.
Now, we can check easily the following multiplication identities.

Table vii. Multiplication identities of degree 6.

ULLU L*U L ULLU L*U LS
Uuu -2 4 8 LLUU 0 -4 —4
UULL 0 0 4 UL* 0 0
ULUL -1 2 4 LUL® 0 0
LUUL 0 2 0 L2UL? 0 1
LULU 0 0 4 L3UL 0o -1 —4

Theorem 2. Let A be an algebra over a field F' of characteristic # 2 or 3, satisfying
the identities z* = 0 and x(x?2?) = 0. Then every monomial in P of z-degree > 7 and
y-degree 1 is an identity in A. In particular, LT = 0 for all a € A. Furthermore, the
algebra generated by L, and L,> is spanned, as vector space, by

LU L>UL,LU, L3 UL? LUL,L*U, L*,ULU, LUL? L3U, L°,U L*U, L*U, LS.

Proof. We shall prove that every monomial of z-degree > 7 and y-degree 1 is an
identity in A. Multiplying the operators in the first line of Table vii with L and U from the
left and from the right, and the operators in the first line of Table vi with U from the left
and from the right, and next using reductions from Tables i-vii we see that we only need
to prove that LUL?U = 0, L°U = 0 and L7 = 0 are multiplication identities in A. Now,
we have 0 = 6[y, 222?){x(2?)?} = 40,2, UL + 4LU L 2,2 = —16 LULUL — 16 LULUL =
—32LULUL = —32(LU)?L = —27L", so that L™ = 0. Also 0 = LULUL = L(UL)? =
—LUL?U + 2L°U. Therefore, LUL?U = 2L5U. Finally, from Table vi we have that
0= (L2UL + L3U + 4L%)L? = L2UL? + L3UL? = [3UL? = L(L*UL?) = L°U. This

proves the theorem. 0O
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2.2. The identity x(x((xx)(xx)))=0

In this subsection we consider the class of all algebras in V satisfying the identity
z(z(zx)) = 0. Because we use linearization process of identities and z(x(x?z?)) has
degree 6, we need consider the field F' of characteristic not 5 (2 or 3.)

From linearization §[y|{z(x(wx))}, we get the multiplication identity L, (,2,2)+LLg2,2+
4L2UL = 0 and now Lemma 2 forces

(2.17) LUU = —2LUL? — 213U — 4L°.

The relation 0 = [y, 22){z(x(2222))} = UL,2,2 + ALL”* L + AULUL + 4LUUL +
8L2L,sL + 4L2UU implies

(2.18) LUL? = —%(LQULQ + L3UL),

since we can use identities from Tables i-v. Next, by 0 = 6[y, 2®]{z(z(z%2?))} and
0 = 8y, 2%, 2 {a(2(2?2?))} we get

(2.19) ) L*UL = —3L°U — 1617,
(2.20) LPULU = —L3UL*+5L°U 4 2817,

and identities 0 = 6[y, 22, z, 2]{z(z(z%2?))} and 0 = §[y, 22, 23|{z(z(z%2?))} imply

1
(2.21) lcULYU = —§L2UL2U + 245U + 62L8,
(2.22) LPUL*U = 48L5U +156L8.

Now, identity 0 = §[y, zx?]{zx3} forces
(2.23) LU = —215.

Theorem 3. Let A be a commutative algebra over a field F' of characteristic not 2,3 or
5 , satisfying the identities x* = 0 and x(z(z%2%)) = 0. Then every monomial in P of

x-degree > 9 and y-degree 1 is an identity in A. In particular, L2 = 0 for all a € A.

Proof. By Tables i-v, we only need to prove that LUL*U = 0, L2UL?*UL = 0,
LU = 0 and L = 0 are multiplication identities in A. From (2.19-2.23) may be
deduced immediately L'U = —2L? and 2L° = 2[8L = —LSUL = —L*(L*UL) =
3LU +16L° = —6L° + 16L° = 10L°. Therefore L? = 0 and L'U = 0 are identities in
A. Now L2ULPUL = (LPUL?U)L = 48L8UL + 156L° = 0 and LUL*U = L(UL*U) =
—(1/2)L3UL2U + 24L7U + 62L° = —(1/2)L(L2UL*U) = —24L7U — 78L° = 0. This

proves the theorem. 0O
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