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Abstract

We first present a solution to a conjecture of (Correa, Hentzel, Labra, 2002) in

the positive. We show that if A is a commutative nonassociative algebra over a field of

characteristic 6= 2, 3, satisfying the identity x(x(xx)) = 0, then Lat1Lat2 · · ·Lats ≡ 0
if t1 + t2 + · · ·+ ts ≥ 10, where a ∈ A.
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1. Introduction

Throughout this paper the term algebra is understood to be a commutative not necessarily

associative algebra. We will use the notations and terminology of (Fernandez, 2004). Let

A be an (commutative nonassociative) algebra over a field F . We define inductively the

following powers, A1 = A and As =
P

i+j=sA
iAj for all positive integers s ≥ 2. We

shall say that A is nilpotent if there is a positive integer s such that As = (0). The least

such number is called the index of nilpotency of the algebra A. The algebra A is called

nilalgebra if given a ∈ A we have that alg(a), the subalgebra of A generated by a, is

nilpotent. The (principal) powers of an element a in A are defined recursively by a1 = a

and ai+1 = aai for all integers i ≥ 1. The algebra A is called left-nilalgebra if for every a
in A there exists an integer k = k(a) such that ak = 0. The smallest positive integer k

which this property is the index. Obviously, every nilalgebra is left-nilalgebra. For any

element a in A, the linear mapping La of A defined by x → ax is called multiplication

operator of A. An Engel algebra is an algebra in which every multiplication operator is

nilpotent in the sense that for every a ∈ A there exists a positive integer j such that

Lj
a = 0.

An important question is that of the existence of simple nilalgebras in the class of

finite-dimensional algebras. In (Fernandez, 2004) we proved that every nilagebra A of

dimension ≤ 6 over a field of characteristic 6= 2, 3, 5 is solvable and hence A2A. For

power-associative nilalgebras of dimension ≤ 8 over a field of characteristic 6= 2, 3, 5, we
have shown in (Fernandez, Suazo, 2005) that they are solvable, and hence there is no

simple algebra in this subclass. See also (Elgueta, Suazo, 2004; Fernandez, 2004) for

power-associative nilalgebras of dimension ≤ 7.
We show now the process of linearization of identities, which is an important tool in

the theory of varieties of algebras. See (Gerstenhaber, 1960; Osborn, 1972; Zhevlakov,

1982) for more information. Let P be the free commutative nonassociative polynomial

ring in two generators x and y over a field F . For every α1, . . . , αr ∈ P , the operator

linearization δ[α1, . . . , αr] can be defined as follows: if p(x, y) is a monomial in P , then

δ[α1, . . . , αr]p(x, y) is obtained by making all the possible replacements of r of the k

identical arguments x by α1, . . . , αr and summing the resulting terms if x−degree of
p(x, y) is ≥ r, and is equal to zero in other cases. Some examples of this operator are

[ll]δ[y](x2(xy)) = 2(xy)2 + x2y2

δ[x2, y](x2) = 2x2y, δ[y, xy2, x](x2) = 0.

For simplicity, δ[α : r] will denote δ[α1, . . . , αr], where α1 = · · · = αr = α. We observe

that if p(x) is a polynomial in P , then p(x + y) = p(x) +
P∞

j=1 δ[y : j]p(x), where

δ[y : j]p(x) is the sum of all the terms of p(x+ y) which have degree j with respect to y.

Lemma 1. (Zhevlakov, 1982) Let p(x, y) be a commutative nonassociative polynomial
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of x-degree ≤ n. If F is a field of characteristic either zero or ≥ n, and the F -algebra A

satisfies the identity p(x, y), then A satisfies all linearizations of p(x, y).

2. Left-nilalgebras of index 4

Throughout this section F is a field of characteristic different from 2 or 3 and all the

algebras are over F . We will study left-nilalgebras of index ≤ 4, that is the variety V of

algebras over the field F satisfying the identity

x4 = 0.(2.1)

Let A be an algebra in V . For simplicity, we will denote by L and U the multiplication

operators, Lx and Lx2 respectively, where x is an element in A. The following known

result is a basic tool in our investigation. See (Correa, Hentzel, Labra, 2002; Elduque,

Labra, 2007).

Lemma 2. Let A be a commutative left-nilalgebra of index 4. Then A satisfies the

identities

xx = −x(xx), xx = (x)3 = x(x(xx)),(2.2)

and p(x) = 0, for every monomial p(x) with x-degree ≥ 7. Furthermore, we have

[lcl]Lx = −LU − 2L3,(2.3)

Lxx2 = −U − 2UL2 − 2LUL+ 4L4,(2.4)

Lx(xx) = −LU − 2LUL− 2LUL− 4L3U − 12L5,(2.5)

Lx(x(xx)) = 2LU + 4LUL+ 4L4U + 8L6,(2.6)

and also

Table i. Multiplication identities of degree 5.
ULU LU2 UL3 LUL2 L2UL L3U L5

U2L 0 −1 2 0 0 −2 −8

and two identities of x-degree 6 which may be written as

Table ii. Multiplication identities of degree 6.

UL2U (LU)2 L2U2 UL4 LUL3 L2UL2 L3UL L4U L6

U3 −2 −2 2 −8 −8 0 −4 8 40

(UL)2 −1 −1 1 −4 −2 2 0 4 24

We note that, for example, Table i means that U2L = −LU2+2UL3−2L3U−8L5. From
the identities (2.3-2.6) we get that for any a ∈ A the associative algebra Aa generated by

all Lc with c ∈ alg(a) is in fact generated by La and La2 . Furthermore, every algebra in

V is a nilalgebra of index ≤ 7.
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We now pass to study homogeneous identities in A with x-degree ≥ 7 and y-degree

1. From the relation 0 = δ[y, x, x, x](x4) = 2y(x(x3x3)) + 4y(x3(xx3)) + 2x(y(x3x3)) +

4x3(y(xx3)) + 4x(x3(yx3)) + 4x3(x(yx3)) + 4x3(x3(xy)) = 2x((x3)2y) + 4x(x3(x3y)) +

4x3(x(x3y)) + 4x3(x3(xy)) = 2[LLx3x3 + 2LLx3Lx3 + 2Lx3LLx3 + 2Lx3Lx3L](y) we have

L3U2 = −2L3UL− L4UL− 5L5U − 20L7,(2.7)

since we can use the reductions (2.3-2.6) and replace the occurrences of (UL)2. Multi-

plying the identity of Table i by U from the left, replacing first the occurrences of U3 and

next using reductions from Table i, Table ii and above identity we get a new identity as

follows:

0 = U3L+ ULU2 − 2U2L3 + 2UL3U + 8UL5 = [−2UL2UL− 2(LU)2L+ 2L2U2L− 8UL5

−8LUL4 − 4L3UL2 + 8L4UL+ 40L7] + ULU2 − 2U2L3 + 2UL3U + 8UL5

= −2UL2UL+ [2LUL2U + 2L(LU)2 + [4L3UL2 + 2L4UL+ 10L5U + 40L7]
+8LUL4 + 4L2UL3 − 4L3UL2 − 8L5U + 48L7] + 2L2U2L− 8UL5 − 8LUL4

−4L3UL2 + 8L4UL+ 40L7 + ULU2 + [[−2L2U2L+ 4LUL4 − 4L4UL− 16L7]
−4UL5 + 4L3UL2 + 16L7] + 2UL3U + 8UL5,

that is,

ULU2 = 2

µ
UL2UL− UL3U − LUL2U − L2ULU+

2UL5 − 2LUL4 − 2L2UL3 − 3L4UL− L5U − 16L7
¶
.(2.8)

Next, we can reduce the relation 0 = δ[y, x, x, xx]x4 using the above identities. This

yields

UL5 = −LUL4 + 1
2
L2UL3 +

3

4
L4UL+

3

4
L5U + 8L7.(2.9)

Now combining (2.8) and (2.9) we obtain ULU2 = 2ULUL − 2UL3U − 2LUL2U −
2L2ULU −8LUL4−2L2UL3−3L4UL+L5U . Thus, we have three identities of x-degree

7 and y-degree 1 which may be written as multiplication identities:

Table iii. Multiplication identities of degree 7.

UL2UL UL3U LULU L(LU)2 LUL4 LUL3 L3UL L4UL L5U L7

L3U 0 0 0 0 0 0 −2 −1 −5 −20
UL5 0 0 0 0 −1 1/2 0 3/4 3/4 8

ULU2 2 −2 −2 −2 −8 −2 0 −3 1 0

In an analogous way, using successively the identities

0 = δ[y, x, x, x(x(x2x))]x4, 0 = δ[y, x, x, x2x]x4, 0 = δ[y, x, x2, x(x2x)]x4,

multiplying the second identity of Table ii with the operator U from the left and replacing

the occurrences of UUL, and finally using 0 = δ[y, x, x3, x2x]x4, we obtain the following

5 multiplication identities:



On commutative left-nilalgebras of index 4 107

Table iv. Multiplication identities of degree 8.

UL4U LUL2UL LUL3U L2ULU L2UL4 L4UL2 L5UL L6U L8

L3ULU 0 0 0 0 0 −1/2 −2 −11/2 −20
ULU2 −4 −2 −2 0 2 −5/2 13 31/2 32

(UL)2 0 1 0 −1 −12 −11/4 −7/2 25/4 36

UL3UL −1 −1 −1 0 −4 −11/2 −3 9/2 0

L3UL3 0 0 0 0 0 −3/4 −3/2 −3/4 −8

Now, relations 0 = δ[y, x, x3, x(x2x2)]x4, 0 = δ[y, x, x2, x(x(x2x2))]x4, 0 = δ[y, x2, x2,

(x2x2)]x4, 0 = δ[y, x, x2x2, x2x2]x4, 0 = δ[y, x2, x3, x2x2]x4, and multiplying the relation

determined by the last row of Table iii with the operator U from the left and first replacing

the occurrences of UUL, imply the following 6 multiplication identities:

Table v. Multiplication identities of degree 9.

LUL4U (L2U)2L L7U L9

L6UL 0 0 −7 −48
L(LU)2 0 0 −217 −4510/3
UL4UL 1 0 −587/2 −6155/3
L2UL3U 0 0 29/3 422/9

UL2ULU 0 0 1318/3 27988/9

L5UL2 0 0 −23 −496/3

The author used a simples MAPLE language program to check these identities. We now

present a solution of a Conjecture of (Correa, Hentzel, Labra, 2002) in the positive. We

see that for every a ∈ A, the associative algebra Aa, generated by the multiplication

operators La and La2 , is nilpotent of index ≤ 10.

Theorem 1. Let A be an algebra over a field F of characteristic 6= 2, 3, satisfying

x4 = 0. Then every monomial in P of x-degree ≥ 10 and y-degree 1 is an identity in A.

In particular, L10a = 0 for all a ∈ A.

Proof. First we shall prove that every monomial of x-degree 10 and y-degree 1 is an

identity in A. Multiplying the operators in the first line of Table v with L from the left

and from the right, and the operators in the first line of Table iv with U from the left

and from the right and next using reductions from Tables i-v we see that we only need to

prove that L2UL4U = 0, L8U = 0 and L10 = 0 are multiplication identities in A. Now,

for any x in A we have

[ll]L7UL = L(L6UL) = −7L8U − 48L10,
L6UL2 = (L6UL)L = −7L7UL− 48L10 = 49L8U + 288L10,
L6UL2 = L(L5UL2) = −23L8U − 496/3L10.

Therefore

27L8U + 170L10 = 0.(2.10)
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Now,

[ll]L5UL3 = (L5UL2)L = −23L7UL− 496/3L10 = 161L8U + 2816/3L10,
L5UL3 = L2(L3UL3) = −3/4L6UL2 − 3/2L7UL− 3/4L8U − 8L10

= −27L8U − 152L10,

and hence

141L8U + 818L10 = 0.(2.11)

Next

[ll]L3UL3U = L(L2UL3U) = 29/3L8U + 422/9L10,

L3UL3U = (L3UL3)U = −3/4L4UL2U − 3/2L5ULU − 3/4L6UU − 8L8U
= −3/4L(L3UL2U)− 3/2L2(L3ULU)− 3/4L3(L3U2)− 8L10

= 9/4L6UL2 + 15/4L7UL+ 667/4L8U + 2345/2L10

= 1003L8U + 3281/2L10,

so that

17880L8U + 28685L10 = 0.(2.12)

Combining (2.10-2.12) we obtain that L8U = 0 and L10 = 0. Now, we have by Table v

that 0 = (L2UL3U)L = L2(UL3UL) = −L2UL4U − L3UL2UL− L3UL3U − 4L4UL4 −
11/2L6UL2−3L7UL+9/2L8U = −L2UL4U−(L3UL2U)L−4L(L3UL3)L = −L2UL4U .
Therefore, we have L2UL4U = 0.

In an analogous way, we can see that every monomial of x-degree 11 and y-degree 1

is an identity in A. This proves the theorem. 2

Now we shall investigate two subvarieties of V . We start in Subsection 2.1 with

the class of all nilalgebras in V of index ≤ 5 and next in Subsection 2.2 we study the
multiplication identities of the variety of all the nilalgebras in V of index ≤ 6.

2.1. The identity x((xx)(xx))=0

We will now consider the class of all algebras in V satisfying the identity x(xx) = 0.

First, linearization δ[y]{x(x2)2} implies

Lx2x2 = −4LUL,(2.13)

and identity δ[y]{x2x3} = 0 forces

UU = −2ULL+ 2LUL+ 4L4.(2.14)

Next, using above identity and δ[y, x2]{x(x2)2} = 0 we get that 0 = 4UUL + 4LUU +
8LLx3L = 4(UUL+LUU−2LLUL−4L5) = 8(−UL3+LULL+2L5−LULL+LLUL+
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2L5 − LLUL − 2L5) = 8(−UL3 + 2L5). Hence UL3 = 2L5. Now idnetity Lx(x2x2) = 0

and relations (2.5) and (2.14) imply L2UL = −L3U − 4L5. Thus, we have the following
multiplication identities.

Table vi. Multiplication identities of degree 5.

ULU LUL2 L3U L5

UUL 0 2 0 0

LUU 0 −2 −2 −4
L2UL 0 0 −1 −4
UL3 0 0 0 2

From Table ii, we can prove that

(UL)2 = −UL2U − (LU)2 + 2L3UL+ 4L4U + 16L6,(2.15)

and δ[x2]{x2(x(x(xy)))− 2x(x(x(x(xy))))} = 0 forces

(UL)2 + UL2U + 2L3UL+ 4L6 = 0.(2.16)

Combining (2.15) and (2.16), we have (LU)2 = 4L6 and (UL)2 = −UL2U +2L4U +4L6.
Now, we can check easily the following multiplication identities.

Table vii. Multiplication identities of degree 6.

ULLU L4U L6

UUU −2 4 8

UULL 0 0 4

ULUL −1 2 4

LUUL 0 2 0

LULU 0 0 4

ULLU L4U L6

LLUU 0 −4 −4
UL4 0 0 2

LUL3 0 0 2

L2UL2 0 1 0

L3UL 0 −1 −4

Theorem 2. Let A be an algebra over a field F of characteristic 6= 2 or 3, satisfying

the identities x4 = 0 and x(x2x2) = 0. Then every monomial in P of x-degree ≥ 7 and
y-degree 1 is an identity in A. In particular, L7a = 0 for all a ∈ A. Furthermore, the

algebra generated by Lx and Lx2 is spanned, as vector space, by

L,U,L2, UL,LU,L3, UL2, LUL,L2U,L4, ULU,LUL2, L3U,L5, UL2U,L4U,L6.

Proof. We shall prove that every monomial of x-degree ≥ 7 and y-degree 1 is an

identity in A. Multiplying the operators in the first line of Table vii with L and U from the

left and from the right, and the operators in the first line of Table vi with U from the left

and from the right, and next using reductions from Tables i-vii we see that we only need

to prove that LUL2U = 0, L5U = 0 and L7 = 0 are multiplication identities in A. Now,

we have 0 = δ[y, x2x2]{x(x2)2} = 4Lx2x2UL+ 4LULx2x2 = −16LULUL− 16LULUL =
−32LULUL = −32(LU)2L = −27L7, so that L7 = 0. Also 0 = LULUL = L(UL)2 =

−LUL2U + 2L5U . Therefore, LUL2U = 2L5U. Finally, from Table vi we have that

0 = (L2UL + L3U + 4L5)L2 = L2UL3 + L3UL2 = L3UL2 = L(L2UL2) = L5U . This

proves the theorem. 2
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2.2. The identity x(x((xx)(xx)))=0

In this subsection we consider the class of all algebras in V satisfying the identity

x(x(xx)) = 0. Because we use linearization process of identities and x(x(x2x2)) has

degree 6, we need consider the field F of characteristic not 5 (2 or 3.)

From linearization δ[y]{x(x(xx))}, we get the multiplication identity Lx(x2x2)+LLx2x2+

4L2UL = 0 and now Lemma 2 forces

LUU = −2LUL2 − 2L3U − 4L5.(2.17)

The relation 0 = δ[y, x2]{x(x(x2x2))} = ULx2x2 + 4LL
x2x3L + 4ULUL + 4LUUL +

8L2Lx3L+ 4L
2UU implies

LUL3 = −1
2

³
L2UL2 + L3UL

´
,(2.18)

since we can use identities from Tables i-v. Next, by 0 = δ[y, x3]{x(x(x2x2))} and
0 = δ[y, x2, x2]{x(x(x2x2))} we get

[lcl]L4UL = −3L5U − 16L7,(2.19)

L2ULU = −L3UL2 + 5L5U + 28L7,(2.20)

and identities 0 = δ[y, x2, x, x]{x(x(x2x2))} and 0 = δ[y, x2, x3]{x(x(x2x2))} imply

[lcl]UL4U = −1
2
L2UL2U + 24L6U + 62L8,(2.21)

L2UL2U = 48L6U + 156L8.(2.22)

Now, identity 0 = δ[y, xx2]{xx3} forces

L6U = −2L8.(2.23)

Theorem 3. Let A be a commutative algebra over a field F of characteristic not 2, 3 or

5 , satisfying the identities x4 = 0 and x(x(x2x2)) = 0. Then every monomial in P of

x-degree ≥ 9 and y-degree 1 is an identity in A. In particular, L9a = 0 for all a ∈ A.

Proof. By Tables i-v, we only need to prove that LUL4U = 0, L2UL2UL = 0,

L7U = 0 and L9 = 0 are multiplication identities in A. From (2.19-2.23) may be

deduced immediately L7U = −2L9 and 2L9 = 2L8L = −L6UL = −L2(L4UL) =
3L7U + 16L9 = −6L9 + 16L9 = 10L9. Therefore L9 = 0 and L7U = 0 are identities in

A. Now L2UL2UL = (L2UL2U)L = 48L6UL + 156L9 = 0 and LUL4U = L(UL4U) =

−(1/2)L3UL2U + 24L7U + 62L9 = −(1/2)L(L2UL2U) = −24L7U − 78L9 = 0. This

proves the theorem. 2
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