Proyecciones
Vol. 27, $\mathrm{N}^{o} 1$, pp. 97-102, May 2008.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/S0716-09172008000100006

SHARP INEQUALITIES FOR FACTORIAL n

NECDET BATIR
YUZUNCU YIL UNIVERSITY, TURKEY

Received: Septiembre 2006. Accepted: March 2007

$$
\begin{gathered}
\text { Abstract } \\
\text { Let } n \text { be a positive integer. We prove } \\
\frac{n^{n+1} e^{-n} \sqrt{2 \pi}}{\sqrt{n-\alpha}} \leq n!<\frac{n^{n+1} e^{-n 2} \sqrt{2 \pi}}{\sqrt{n-\beta}}
\end{gathered}
$$

with the best possible constants

$$
\alpha=1-2 \pi e^{-2}=0.149663 \ldots \text { and } \beta=1 / 6=0.1666666 \ldots
$$

This refines and extends a result of Sandor and Debnath, who proved that the double inequality holds with $\alpha=0$ and $\beta=1$.

2000 Mathematics Subject Classification : Primary : 30E15; Secondary : 26D07

Key words and phrases : Factorial n, gamma function, Stirling's formula, Burnside's formula.

1. Introduction

Stirling's approximation to n!,

$$
\begin{equation*}
n!\sim n^{n} e^{-n} \sqrt{2 \pi n}=\alpha_{n} \tag{1.1}
\end{equation*}
$$

plays a central role in statistical physics and probability theory. Inspired by this formula, many authors have made attempts to find a formula, which has an improvement over (1.1) and as simple as (1.1), to approximate n !. Such a typical result is due to Burnside [1] :

$$
\begin{equation*}
n!\sim \sqrt{2 \pi}\left(\frac{n+\frac{1}{2}}{e}\right)^{n+\frac{1}{2}}=\beta_{n} . \tag{1.2}
\end{equation*}
$$

It is known that (1.2) has great superiority over (1.1). Formula (1.2) was rediscovered by Y. Weissman [9] and caused a lively debate in the American Journal of Physics in 1983, see [6]. Schuster found some other formulas to approximate n ! but they are complicated and not easy to use [8]. In a recently paper Sandor and Debnath [7] found the following inequalities for $n \geq 2$:

$$
\frac{n^{n+1} e^{-n} \sqrt{2 \pi}}{\sqrt{n}} \leq n!<\frac{n^{n+1} e^{-n} \sqrt{2 \pi}}{\sqrt{n-1}}
$$

This formula was rediscovered by Guo in very newly paper [2]. In this short note we determine the largest number α and the smallest number β such that the inequalities

$$
\frac{n^{n+1} e^{-n} \sqrt{2 \pi}}{\sqrt{n-\alpha}} \leq n!<\frac{n^{n+1} e^{-n} \sqrt{2 \pi}}{\sqrt{n-\beta}}
$$

are valid for all positive integers n. Numerical computations indicate that the approximation

$$
\begin{equation*}
n!\sim \frac{n^{n+1} e^{-n} \sqrt{2 \pi}}{\sqrt{n-1 / 6}}=\gamma_{n} \tag{1.3}
\end{equation*}
$$

gives much more accurate values for n ! than α_{n} and β_{n} (see the table at the end of the paper). Throughout, we denote the gamma function Γ and its logarithmic derivative, known as psi or digamma function as

$$
\Gamma(x)=\int_{0}^{\infty} u^{x-1} e^{-u} d u, \psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}
$$

for positive real numbers x, respectively.

In order to prove our main result we need to present two lemmas.
Lemma 1.1 : For $x \geq 1$ we have

$$
\begin{array}{r}
\sqrt{\pi}\left(\frac{x}{e}\right)^{x}\left(8 x^{3}+4 x^{2}+x+\frac{1}{100}\right)^{\frac{1}{6}}<\Gamma(x+1) \\
<\sqrt{\pi}\left(\frac{x}{e}\right)^{x}\left(8 x^{3}+4 x^{2}+x+\frac{1}{30}\right) .
\end{array}
$$

This result is due to Karatsuba, see [4].
Lemma 1.2 : We have

$$
\lim _{x \rightarrow \infty}\left(\frac{2 \pi x^{2 x} e^{-2 x}}{[\Gamma(x)]^{2}}-x\right)=-\frac{1}{6}
$$

Proof : Applying Stirling's formula, we get after a little simplification

$$
\begin{array}{r}
\lim _{x \rightarrow \infty}\left(\frac{2 \pi x^{2 x} e^{-2 x}}{[\Gamma(x)]^{2}}-x\right)=\lim _{x \rightarrow \infty} \frac{2 \pi x^{2 x} e^{-2 x}}{[\Gamma(x+1)]^{2}} \frac{2 \pi x^{2 x+2} e^{-2 x}-x^{3}(\Gamma(x))^{2}}{2 \pi x^{2 x} e^{-2 x}} \\
=\lim _{x \rightarrow \infty} \frac{2 \pi-x^{1-2 x} e^{-2 x}(\Gamma(x))^{2}}{2 \pi\left(\frac{1}{x}\right)}
\end{array}
$$

By L'Hospital's rule this becomes

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\frac{2 \pi x^{2 x} e^{-2 x}}{[\Gamma(x)]^{2}}-x\right)= \\
& =\frac{1}{\pi} \lim _{x \rightarrow \infty} x^{1-2 x} e^{2 x}(\Gamma(x+1))^{2}\left(\psi(x)-\log x+\frac{1}{2 x}\right) .
\end{aligned}
$$

Using Stirling's formula again we get

$$
\lim _{x \rightarrow \infty}\left(\frac{2 \pi x^{2 x} e^{-2 x}}{[\Gamma(x)]^{2}}-x\right)=\lim _{x \rightarrow \infty} \frac{1-2 x(\log x-\psi(x))}{\left(\frac{1}{x}\right)}
$$

From [5] we have

$$
\log x-\psi(x)=\frac{1}{2 x}+\frac{1}{12 x^{2}}+\frac{\theta}{60 x^{4}},
$$

where $0<\theta<1$. Using this relation we find that

$$
\lim _{x \rightarrow \infty}\left(\frac{2 \pi x^{2 x} e^{-2 x}}{[\Gamma(x)]^{2}}-x\right)=\lim _{x \rightarrow \infty} \frac{1-2\left(\frac{1}{2}+\frac{1}{12 x}+\frac{\theta}{60 x^{4}}\right)}{\left(\frac{1}{x}\right)}=-\frac{1}{6}
$$

2. Main Result

Our main result is the following theorem.
Theorem 2.1 : For any positive integer n the following double inequality holds

$$
\frac{n^{n+1} e^{-n} \sqrt{2 \pi}}{\sqrt{n-\alpha}} \leq n!<\frac{n^{n+1} e^{-n} \sqrt{2 \pi}}{\sqrt{n-\beta}},
$$

where the constants $\alpha=1-2 \pi e^{-2}=0.149663 \ldots$ and $\beta=\frac{1}{6}=0.166666 \ldots$ are best possible.

Proof. : Set

$$
h(x)=\frac{2 \pi x^{2 x} e^{-2 x}}{[\Gamma(x)]^{2}}-x, x>0 .
$$

We show that h is strictly decreasing on $(0, \infty)$. Differentiating h, we get

$$
h^{\prime}=\frac{4 \pi\left(\frac{x}{e}\right)^{2 x}(\log x-\psi(x)-\Gamma(x))^{2}}{(\Gamma(x))^{2}} .
$$

Hence in order to show that $h^{\prime}(x)<0$, it sufficies to show that

$$
\left(\frac{\Gamma(x+1)}{x^{x} e^{-x} \sqrt{2 \pi x}}\right)^{2}-2 x(\log x-\psi(x))>0 .
$$

From the left inequality of Lemma1.1 we obtain for $x \geq 1$

$$
\left(\frac{\Gamma(x+1)}{x^{x} e^{-x} \sqrt{2 \pi x}}\right)^{2}>\left(8+\frac{4}{x}+\frac{1}{x^{2}}+\frac{1}{100 x^{3}}\right)^{\frac{1}{3}}
$$

In [3] it was proved that

$$
x(\log x-\psi(x))<\frac{1}{2}+\frac{1}{12 x} .
$$

Employing these two inequalities, we find that for $x \geq 1$

$$
\left(\frac{\Gamma(x+1)}{x^{x} e^{-x} \sqrt{2 \pi x}}\right)^{2}-2 x(\log x-\psi(x))>\left(8+\frac{4}{x}+\frac{1}{x^{2}}+\frac{1}{100 x^{3}}\right)^{\frac{1}{3}}-1-\frac{1}{6 x}>0 .
$$

Hence, h is strictly decreasing on $(1, \infty)$. Using $h(1)=2 \pi e^{-2}-1$ and $h(\infty)=-\frac{1}{6}$ by Lemma 1.2 , we get for any positive integer n

$$
-\frac{1}{6}=h(\infty)<h(n)=\frac{2 \pi n^{2 n+2} e^{-2 n}}{(n!)^{2}}-n<h(1)=2 \pi e^{-2}-1,
$$

for which the proof follows.
The following table shows that γ_{n} has great superiority over α_{n} and β_{n}, where α_{n}, β_{n} and γ_{n} are as defined by $(1.1),(1,2)$ and $(1,3)$.

n	$n!$	α_{n}	β_{n}	γ_{n}
1	1	0.92213	1.02750	1.01015
2	2	1.91900	2.03331	2.00433
3	6	5.83620	6.07151	6.00541
4	24	23.50617	24.22261	24.01174
5	120	118.01916	120.91079	120.03673
6	720	710.07818	724.62384	720.15071
7	5040	4980.39583	5068.04888	5040.76647
8	40320	39902.39545	40517.97261	40324.65478
9	362880	359536.87284	364474.04470	362912.87998

References

[1] W. Burnside, A rapidly convergent series for $\log \mathrm{N}$!, Messenger Math., 46, pp. 157-159, (1917).
[2] S. Guo, Monotonicty and concavity properties of some functions involving the gamma function with applications, J. Inequal. Pure Appl. Math. 7, No. 2, article 45, (2006)
[3] M. Fichtenholz, Differential und integralrechnung II, Verlag Wiss, Berlin, (1978).
[4] E. A. Karatsuba, On the asymptotic representation of the Euler gamma function by Ramanujan, J. Comp. Appl. Math. 135.2, pp. 225-240, (2001).
[5] E. A. Karatsuba, On the computation of the Euler constant γ, Numerical Algorithms, 24, pp. 83-97, (2000).
[6] N. D. Mermin, Improving and improved analytical approximation to n!, Amer. J. Phys., 51, pp. 776, (1983).
[7] J. Sandor and L. Debnath, On certain inequalities involving the constant e and their applications, J. Math. Anal. Appl. 249, pp. 569-582, (2000).
[8] W. Schuster, Improving Stirling's formula, Arch. Math. 77, pp. 170-176, (2001).
[9] Y. Weissman, An improved analytical approximation to n!, Amer. J. Phys., 51, No. 9, (1983).

Necdet Batir

Department of Mathematics
Faculty of Arts and Sciences
Yunzuncu Yil University
65080, Van
Turkey
e-mail : necdet_batir@hotmail.com

